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Fugacity

Right now let us get an example.
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We have  water  at  373 Kelvin  and  a  100 bar  and  we  want  to  estimate  the  fugacity

coefficient  and fugacity  for this  water. The following data  is  given the second virial

coefficient is given, this is B this is the density for water or rather inverse of density I

should say this is in cc program. So, this is actually the molar volume. So, this is inverse

of density and then this is the vapor pressure. So, essentially the saturation pressure this

is the information given to us we can also call this as V the specific volume, and based

on this information we are to calculate the fugacity and fugacity coefficient for water this

is liquid water 373 Kelvin alright.

So, the first thing we do is we will write the equation we just derived which reads the

fugacity of liquid, I will omit the subscript I we just have one species anyway is the

fugacity at the saturation conditions. So, it is the fugacity coefficient times the saturation

pressure, times the pointing correction factor which reads exponential of the volume of

the liquid P minus P sat over RT this is the expression we have just derived.



So, we have to use this expression and calculate the fugacity of the liquid phase. We will

take each term at a time P sat is given to us all that is right what is known P sat is given

to us it is 1 bar, P also is given to us it as a 100 bar R is 83.14 bar cc per mol per Kelvin

and the temperature is 373 Kelvin. The volume of the liquid is 0.958 cc per gram, but

remember we work with molar quantities in all these equations. So, this is a specific

volume what we will do is we will multiply with the molecular weight for water which is

18 grams per mole.

So, that will be equal to 17.24 cc per mole this is a molar volume at the given condition

we have converted it from the specific volume two molar volume. So, I have V liquid.

So, I have everything that I need to calculate the pointing correction factor. The only

thing that is missing in this on the right hand side of this equation is the saturation vapor

pressure,  how do we get  the  saturation  vapor  pressure? If  you recall  we said at  the

saturation condition because we are at equilibrium between the vapor and liquid phases,

the fugacity of the liquid will be equal to the fugacity of the vapors which we are calling

it as the saturation fugacity or fugacity coefficient.

So, what we will do is we will use the vapor phase and the second virial coefficient to

estimate the fugacity coefficient in the vapor phase, and we will use that value for the

saturation condition. So, l n phi for pure species if you recall is BP and because we are at

the saturation condition I will use P sat R T. This will be fugacity coefficient at T and P

sat for vapor. And once we calculate it for vapor it is of course, going to be same for the

liquid as well, but this is our going to a calculate the fugacity coefficient at the saturation

condition. 

So, B is given to us negative 452 cc per mole multiplied with 1 bar over 83.14 bar cc per

mole per Kelvin multiplied with 373 and if I simplify this numerical value, what I will

get is negative 0.01458 what; that means, is the fugacity coefficient will be exponential

of this value, negative 0.01458 which will be 0.9855 this will be the fugacity coefficient.
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Now, I  have everything I  need to calculate  f  liquid f  liquid we said is  phi sat  P sat

exponential V for the liquid P minus P sat over RT this value the first value was 0.9855

times P sat is 1 times exponential of V liquid is 17.24 cc per mole times 100 is the value

for pressure 1 bar is the value for P sat 83.14 is the value for R in bar cc per mole per

Kelvin, and the temperature is 373 Kelvin. With these numbers the first two numbers the

product of those is 0.9855 of course, multiplied with the exponential value, I have is

1.0566. So, this pointing correction factor as you can see even when the pressure changes

by about a 100 bar, the pointing correction factor is only 1.05 for this liquid volume and

this is typically the case for 100 bar we have bar 5 percent change in the molar volume

for typical liquids, we encounter in the industry.

So, this is a number we are looking at in terms of pointing condition factor and if you

guessed  yet  saturation  conditions  and  once  we  multiply  these  two,  we  will  get  the

fugacity of the liquid 1.0413 bar. So, as you can see the fugacity of the liquid at 373

Kelvin and 1 bar which is the saturation condition is about 0.9855 and the fugacity of the

liquid when we change the pressure from 1 bar to about a 100 bar, right a 100 bar is

1.0413 and like I said it is about a 5 percent change in that is the only change we get for

a change in pressure of 100 about 99 bar right.

So, of course, both these units are in bars right. So, those are the type of numbers we are

looking at when we talk about fugacities of the liquid phase. This of course, comes with

the assumption that liquid is fairly incompressible. So, going from 1 bar to 100 bar the

average molar volume will be more or less constant at that number of 17.24 if that is not



the  case  of  course,  we  see  a  slight  change  in  these  numbers,,  but  they  are  fairly

incompressible the molar volume does not change much at these conditions. So, that is

how we use the concept of vapor liquid equilibrium and use it in calculation of fugacity

of the liquid phase we are the pointing correction factor.

Now, once we look at this, this expression is going to be useful for the discussion we are

going to do in our next section right. The next section will be talking about the vapor

liquid equilibrium in general, how we go about modeling vapor liquid equilibrium for

non ideal solutions and how we collect experimental data to obtain the excess Gibbs free

energy  values.  Remember  when  we  talked  about  the  excess  properties,  we  said  the

excess Gibbs free energy comes from vapor liquid equilibrium data typically and the

excess enthalpy comes from the mixing experiments.

So,  we will  start  our  discussion on vapor  liquid  equilibrium modeling  for  non ideal

solutions and then look at how experimental data is collected to obtain the excess R

Gibbs free energy.
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Recall that the Gibbs free energy d G i bar the partial molar Gibbs free energy is related

to fugacity of species i in a mixture we are this relation right. I can integrate this is at

constant temperature I can integrate this and what we get is G i bar is some function for

that species i some constant which is a function of temperature for that species i plus R T



l n f i hat also recall that for an ideal solution G i bar ideal we have written it as G i plus

RT l n x i.

Now, this is how we have defined an ideal solution. Now if I can expand G i right it will

be for a pure species, it will be the constant gamma i it is same it is only dependent on

the temperature T and the species i as long as it is the same species i and we are at the

same temperature, then it will be same value of gamma i plus because it is for a pure

species all I will have is simply RT l n f i right. So, this will be G i. So, then G i bar for

ideal solution will be gamma i T plus RT l n x i f i right and if you compare these two

equations what we get is f i hat in an ideal solution should be equal to x i times f i right

both these equations are identical, one is for written for ideal solution one is a general

equation. So, what this essentially implies is that for an ideal solution f i hat ideal should

be equal to x i f i and we call this as Lewis Randall rule. 

So, an ideal solution the fugacity of species in the mixture is going to be proportional to

the pure component fugacity or its going to sorry it is going to be proportional to the

mole  fraction  and  the  constant  of  proportionality  is  of  course,  the  pure  component

fugacity because at one end, it has to be the pure component fugacity right and we call

this as the Lewis Randall rule. So, if I were to if I were to draw a picture of f i hat ideal

in a binary mixture let us say this is x 1 going from 0 to 1, and this is f 1 hat right. If I

were to draw how f 1 hat changes with the composition x 1 it will look something like

that. At one end when x 1 is 0 f 1 hat is going to be 0 because of Lewis Randall rule at

the other end it will be same as f 1 that is for pure species 1. 

So, this is of course, only true if Lewis Rendell rule is valid or if it is an ideal solution f i

f 1 hat ideal will look something like that. That is how it changes with mole fraction of

that particular species in the mixture. In general though if we take these two equations

here right for a non-ideal solution, if I take this equation 1 and this equation 2 right and I

subtract one from the other, what I get on the left hand side is G i bar E that is the excess

Gibbs free energy G i minus G i ideal is the excess Gibbs free energy is going to be equal

to RT l n f i hat over x i f i. Or, if I were to write it in a better way, G i bar E over RT is

going to be l n f i hat over x i f i right. We call this quantity on the right hand side as

gamma i or the activity coefficient.
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So, let us rewrite that equation one more time. G i bar e over RT is equal to l n of f i hat

by x i  f i  and we will call  that as activity coefficient gamma i,  it  is the ratio of the

fugacity of species in the mixture over what is given by the ideal solution. So, it is f i hat

over f i hat ideal right and we call this as the activity coefficient; obviously, gamma i

equals 1 for an ideal solution because f i hat will be equal to f i hat ideal otherwise, it will

not be unity will have value that is not equal to unity and the and that number will denote

how non-ideal the solution s right. If it is 1 we have an ideal solution if it is not 1 we

have a non ideal solution right.

And also note that G i bar E over RT is a partial molar property. So, G E by RT will be

equal to sigma x i G i bar E over RT this is using the summability relation right. If we

add  the  partial  molar  properties  multiplied  with  the  mole  fraction  we  get  the  total

property, what this means is G E over RT is going to be sigma x i l n gamma i. So, if I

know the activity coefficient of the species in the solution, I can calculate the excess

Gibbs free energy for that particular solution. We will come back and see how we can

obtain this value of gamma i from experiments.

But  that  is  the  essential  idea  of  introducing  activity  coefficients  just  like  a

compressibility factor for ideal gases it is 1, for non ideal gases we deviate from one

similarly for ideal solutions the activity coefficient is 1, for non-ideal solutions we are

going to deviate from 1. And, like we said the excess Gibbs free energy itself can have



positive or negative deviations from ideality similarly gamma i can be greater than 1 or

less than 1 depending on whether we have positive or negative deviations from ideality

for that particular solution.

Now, since we talked about the excess Gibbs free energy and fugacity of and how the

fugacity of species in a solution is related to the excess Gibbs free energy. Now, let us go

back to our original problem of how to obtain G E by RT from vapor liquid equilibrium

data. To do that what we need to do is formulate the vapor liquid equilibrium problem.
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If you recall we said for vapor liquid equilibrium mu i in the vapor phase should be equal

to mu i in the liquid phase or f i hat in the vapor phase should be equal to f i hat in the

liquid phase. We have derived this equation we said the chemical potential should be

equal or in other words the fugacities of each of the species in both the phases need to be

equal. 

Now, let us take each one of these fugacities and see how we can obtain them. The vapor

phase fugacity is fairly straightforward to obtain what we will do is we will write it as the

fugacity  coefficient  of  that  species  in  the  vapor  mixture  multiplied  with  the  partial

pressure of that species y i times P. At low pressures for some most of our industrial

applications, we might be able to use. Now, this is fugacity of species in the vapor at low

pressures most gases behave as ideal gases. So, the fugacity coefficient for the species



can be approximated to 1 and if we do that, the fugacity in the vapor phase will simply

be equal to y i times P.

Now, when we look at the fugacity of the liquid, we said this will be by definition of the

activity coefficient. So, let us write gamma i first multiplied with the fugacity of the ideal

solution which is x i times f i. f i is the fugacity of the pure species i and for the pure

species i, we can write that fugacity as the fugacity at the saturation conditions phi i sat P

i sat multiplied with the pointing correction factor P minus P i sat over RT.

And as we have seen in the example we worked using the pointing correction factor even

for a change of 100 bar, the pointing correction factor is less than 5 percent for smaller

changes the pointing correction factor can be safely ignored for smaller changes from P

to P i sat that is. And if the saturation pressure also is low P i sat and P minus P i sat also

being or the difference between P and P i sat also being low, what we can do is we can

safely ignore the pointing correction factor and we can also assume that the gas phase

itself is going to be ideal.

So, we can ignore the fugacity coefficient at the saturation condition for the vapor phase

because P i sat itself is and if that happens we can approximate f i had liquid to be x i

gamma i P i sat. Now, remember for this to happen the vapor phase at the saturation

condition needs to behave as an ideal gas and the pointing correction factor should be

small enough, that we can ignore it and when that happens f i hat liquid will be this.

So, once we have this, we can equate the vapor and liquid phase fugacities with the

approximations we have made that equation becomes x i gamma i P i sat will be equal to

y i times P if we only ignore the pointing correction factor and do not ignore the non-

idealities in the vapor phases. Then this equation will become x i gamma i P i sat times

phi sat for non-ideality at the saturation conditions will be equal to y i P times phi i hat

for the vapor phase.

So, depending on the pressures and the saturation conditions we will choose one of these

equations  and  try  to  work  with  them accordingly.  So,  what  we  have  done  via  this

exercise is we have related the vapor and liquid phase fugacities in terms of quantities we

can easily work with. The only thing we still did not talk about is gamma i the activity

coefficient which we related it to the excess Gibbs free energy.



Now, remember when we said one of the ways to obtain the excess Gibbs free energy is

using the vapor liquid equilibrium data.
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So,  if  you  look  at  the  previous  equation  or  the  simplified  version  of  the  previous

equation, it reads y i P is x i gamma i P i sat when we ignore the non idealities in the

vapor phases. When that happens this means gamma i is going to be y i P by x i P i sat, I

can perform a vapor liquid equilibrium experiment obtain the composition of the liquid

phase which x I, the composition of the vapor phase which is y i the total pressure P and

I know the pure component vapor pressures P i sat, and if I have this information I can

calculate the activity coefficient gamma i. And, once I calculate gamma i remember we

said G E over RT is sigma x i l n gamma i.

So, I can do an experiment I can take a closed vessel fill it with pure species and note the

put it in an isothermal bath nor the pressure, that will give me P i sat at that temperature

change the liquid, but it will give me P 2 sat the first one was P P 1 sat. And, then I can

put a mixture of both the liquids and allow it to attain equilibrium and at equilibrium I

will have both the liquid and the vapor phases each with different compositions the vapor

phase composition is y i the liquid phase composition is x i I can sample them obtain the

composition or mole fraction in the vapor and the liquid phases. And, once I have all this

information,  I can go back and calculate  the activity  coefficient  and once I  have the

activity coefficient I can calculate the excess Gibbs free energy. So, this is one of the



ways to obtained excess Gibbs free energy, using the vapor liquid equilibrium data in this

case.

Once we have that information we can build models for excess Gibbs free energies just

like we have equation of state for PVT relationship we can build a model that relates a

excess Gibbs free energy to the compositions. And once we have that model, we can use

that to obtain the fugacity coefficients and obtain vapor liquid equilibrium behavior for

that particular mixture. Let us talk about one final thing before we stop the lecture today.
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This relates to the behavior of the systems at the ends of the composition diagram. We

said that the fugacity varies with composition f 1 hat varies with composition linearly if

it is an ideal solution, this is f 1 hat ideal and this value then needs to be f for pure one at

the temperature and pressure of interest. But in real life the solutions are not ideal. If they

are not ideal f 1 hat ideal will not fall along this line it might look something like that

right.

So, let us join them. So, there is a deviation from ideality for f 1 hat. Nevertheless at d

ends of the composition limit x 1 going to 0 f 1 hat should go to 0 and limit x 1 going to

1 f 1 hat should approach f 1 right. The other thing we can note from this particular

diagram is sigma x i d mu i is 0 because mu i is a partial molar property and Gibbs

Duhem equation as to hold at constant temperature and pressure.



Since, d mu I is d G i bar mu i and G i bar are same is RT d l n f i hat what this means in

a binary system is x 1 RT d l n f 1 hat plus x 2 RT d l n f 2 hat should be equal to 0 we

can get rid of R T. So, what it means is x 1 d l n f 1 hat over d x 1 f 1 hat varies with

composition it either d x 1 or d x 2 in a binary does not matter plus x 2 d l n f 2 hat with

respect to the same x, x 1 in this case equals 0 this means x 1 over f 1 hat d f 1 hat over d

x 1 plus x 2 over f 2 hat times d f 2 hat over d x 1 should be equal to 0. So, this is a

requirement because Gibbs Duhem equation always needs to be satisfied. So, f 1 hat and

f 2 hat in that sense are not completely independent they are somehow related to one

another.
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So, let us rewrite that reemphasize that again. So, this equation one is the Gibbs Duhem

equation. Now, at the limit of x 1 going to 1 the solution becomes ideal we have mostly

pure one and the excess Gibbs free energy will be equal to 0 and because the solution

becomes ideal f 1 hat will be equal to x 1 times f 1 because that is the property of an

ideal solution as we have seen a minute ago. When that happens the limit at x 1 going to

1 x 1 over f 1 hat d f 1 hat over d x 1 will be x 1 by x 1 f 1 and the derivative of f 1 hat

with respect to x 1 will be f 1. So, this value turns out to be 1.

Now, from 1 and 2; 1 is applicable everywhere 2 is applicable at a particular limit. So,

limit as x 1 going to 1 x 2 will go to 0 at this limit x 2 over f 2 hat, d f 2 hat over d x 2

and the first term at this limit is 1. So, 1 plus this should equal 0 or what this means is



limit x 1 going to 1 x 2 going to 0, x 2 by f 2 hat d f 2 hat over d x 1 should be equal to

negative 1. 

Now, recall that x 1 plus x 2 in a binary system is 1. So, d x 1 plus d x 2 is 0 or d x 1 is

negative of d x 2. So, I can easily replace this d x 1 here with d x 2 and what; that means,

is limit as x 2 goes to 0 d f 2 hat over d x 2 times x 2 over f 2 hat will be equal to 1 or

limit as x 2 goes to 0, d f 2 hat over d x 2 will be equal to f 2 hat over x 2. What this

means is that the slope will be same as the ratio of f 2 hat to x 2 or f 2 hat will be the

slope whatever that value is multiplied with x 2 we call that slope as h or the Henrys

constant. Let us see what it means.
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Let us draw a diagram of how things change with composition x 1 0 and one and what I

will do is are also indicate x 2 on this particular diagram x 2 is 1 here and 0 here and let

me write f 1 hat here; f 1 hat when this is 0 we will start here. And, as we have seen the

ideal solution line or the Lewis Rendell line will go like this until this point which is f for

pure one if the solution is non ideal it will go like this and then go like that.

Now, as you have seen here limit as x 2 goes to 0 f 2 hat is H times x 2 similarly at the

limit as x 2 goes to 0, f 2 hat is some constant H for 2 times x 2 similarly limit we can

also show that limit as x 1 goes to 0, f 1 hat will be H for 1 times x 1. So, that is the slope

of this line for f 1 hat at the 0 composition. So, if I draw the slope here right that is the

slope that slope will  meet  the line x equal to 1 at  H 1.  H 1 is  called as the Henrys



constant. These are the two limits at the compositions going to 0; the other two limits we

have seen are at the compositions going to one limit as x 1 goes to 1, f 1 hat will be an

ideal solution. So, it will be x 1 times f 1 similarly limit as x 2 goes to 1 f 2 hat will be

equal to x 2 times f 2.

So, these are the two ends of the composition diagram what I have shown here is for f 1

hat we can draw a similar diagram for f 2 hat, in that case we will have the slope to be

the Henrys constant for species 2 or H 2 right. We have obtained this using the Gibbs

Duhem equation what it means is that, in the region where f 1 hat is proportional to the

composition x 1 which is in this region. At the same region f 2 hat because x 1 is going to

one in the same region x 2 is going to 0 in the same region f 2 hat also needs to be

proportional to x 2 this is stipulated by the Gibbs Duhem equation.

So, let us write that done if f 1 hat is proportional to x 1 then f 2 hat will be proportional

to x 2. This is a stipulation we can obtain from Gibbs Duhem equation. The constant of

proportionality here will be the pure component fugacity at one limit as x 1 goes to 1 and

at the same limit the constant of proportionality as x 1 goes to 1, it is almost pure 1 we

have infinite dilution of 2 and the constant of proportionality at infinite dilution we are

going to call it as the Henrys constant for 2 H 2. Similarly at the other limit at x 2 going

to  1  we  have  almost  pure  2.  So,  f  2  hat  will  be  x  2  times  f  2  the  constant  of

proportionality is f 2 and as x 2 goes to 1 x 1 goes to 0 we have infinitely dilute 1 and f 1

hat will be x 1 times h one or the Henry constant for 1.

So, this is the overall summary of how the fugacities are going to behave at the two ends

of the composition diagrams. And as you see the fugacity of both the species are related

they cannot independently behave. So, with that we stop the lecture today when we come

back, we will try to look at the application of what we have derived today in terms of

activity  coefficients  and  how  we  go  about  using  this  data  or  using  this  model  for

obtaining the vapor liquid equilibrium behavior.

Thank you.


