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Partial Molar Properties and Fugacity

Hello,  and  welcome  back,  in  the  previous  lectures,  we  looked  at  solution

thermodynamics and we defined what are known as partial molar properties, we looked

at several relations amongst the partial molar properties and then we looked at the phase

equilibrium problem in  detail  where  we  said  the  chemical  potential  for  each  of  the

species  in  a  phase  needs  to  be  same.  So,  to  be  able  to  solve  the  phase  equilibrium

problem we equate the chemical potentials, but it turns out that chemical potential is an

abstract concept and to be able to relate it better to physical reality we brought in a new

quantity which is known as fugacity.

What we will do in this lecture today is look at some examples trying to calculate partial

molar properties given a sum of the partial molar properties, calculate other partial molar

properties and also how to calculate fugacity of a pure species given an equation of state.

We will look at a few more examples we have done some examples  in the previous

lectures, let us look at a few more examples in this lecture.
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So, to begin with; we are given the partial molar excess Gibbs free energy for component

1 in a binary mixture that is G 1 bar etcetera; remember this superscript E stands for

excess quantity G is the Gibbs free energy the subscript 1 is for component 1 and the

over bar on top of this indicates the partial molar property. So, in that sense G 1 bar E is

the partial molar excess Gibbs free energy for component 1. We are given a relation for

this in terms of A, a parameter A and the composition x 1.

So, in that sense a is a quantity which will depend on temperature and pressure of the

mixture, but then for now we are looking at a given temperature and pressure G 1 bar E

is given to be A times 1 minus x 1 whole square and we need to find expressions at the

same conditions for G 2 bar E and the excess Gibbs free energy G E let us see how we

can solve this problem.

Now, if you recall the way the two excess quantities are related to one another, G 1 bar E

and G 2 bar E are related to one another at constant temperature and pressure is we are

the Gibbs-Duhem equation which says x 1 d G 1 bar E plus x 2 d G 2 bar E equals 0 or

sigma x i d G i bar E is 0. This is true at constant temperature and pressure. So, we will

maintain the temperature and pressure conditions constant. At these conditions we want

to know how G 1 bar E and G 2 bar E are related to one another.

So, if I expand this for a binary mixture it will be like I said x 1 d G one bar E plus x 2 d

G 2 bar E is 0 and both G 1 bar E and G 2 bar E at these conditions of temperature and

pressure are going to be functions of mole fraction. So, we will take this derivative with

respect to one of the two mole fractions let us say x 1. So, Gibbs-Duhem equation now

will read x 1 d G 1 bar E by d x 1 plus x 2 d G 2 bar E over d x 1 equals 0.

So, since I know G 1 bar E, I can use this relation and try to calculate G 2 bar E, let us

see how we do that. Now, let me try to find the derivative first d of G 1 bar E over d x 1

from the given equation is derivative of A times 1 minus x 1 whole square,  right; over d

x 1. A is a parameter that is independent of composition so, we can bring that out. So,

this will be 2 times or negative 2 times A times 1 minus x 1 the negative sign is because

x 1 has a negative sign in front. So, this is the derivative I am looking at, right.

Let us give these equations some numbers. Let me call this as equation 1 and this is

equation 2. What I will do is I will put the result from equation 2 into equation 1, right

then equation 1 becomes x 1 times negative 2 A into 1 minus x 1 plus x 2 d G 2 bar E



over d x 1 equals 0. I can substitute or I can simplify this equation and it will become x 2

d G 2 bar E over d x 1 is going to be the negative sign we will take it to the other side.

So, it will be 2 A x 1 1 minus x 1 and remember 1 minus x 1 in here is since it is a binary

mixture this is x 2 and that x 2 will cancel out with this x 2.

So, in effect what I will have is derivative of G 2 bar E over d x 1 is going to be simply 2

A x 1. This is the derivative I am looking at. Now, if I am interested in G 2 bar E; I can

integrate this equation with respect to x 1 ah. So, this becomes G 2 bar E is going to be

integral of 2 A x 1 d x 1.  If I integrate it will be A times x 1 squared over 2 and then I

have a 2 there plus some constant. Let us call that as C 1 and that makes G 2 bar E to be

equal to A x 1 square plus a constant C 1.

We will come back and look at how to calculate this constant C 1, but that is the form of

the expression we are looking at for G 2 bar A. Now, remember when we say constant it

is  a  constant  that  is  independent  of  composition  because  the  integration  is  being

performed with respect to composition; it might depend on temperature and pressure just

as A can, right.

For now, we will hang on to this equation 3, what we will do next is try to calculate the

total excess Gibbs or the molar excess Gibbs free energy G E, not the partial molar, but

the molar excess Gibbs free energy of the mixture G E first and once we calculate G E

we will try to look at properties of G E and see if we can estimate or if you can say

something about this constant C 1.

So, we will move on to the next step for now. To get the molar property of the mixture G

E; we will use what we call as this summability relation earlier.
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And, if you recall for a multi component mixture; the summability relation is given by

sigma x i G i bar E; sum of the partial molar properties weighted with the appropriate

mole fractions. Now, for a binary mixture which is our case of interest here, it will be x 1

G 1 bar E plus x 2 G 2 bar E. This is the excess Gibbs free energy for the mixture. I have

expressions for both G 1 bar E and G 2 bar E. So, let me bring those two equations here.

So, G E is going to be x 1 times G 1 bar E is A times 1 minus x 1 whole squared plus x 2

G 2 bar E is A times x 1 squared plus the constant C 1. Now remember we said this

quantity in the first term this quantity here is x 2 because it is a binary mixture x 1 plus x

2 is 1. So, what this will make is G E is going to be equal to  A times x 1 x 2 squared plus

A times x 1 squared x 2 from the second term plus the constant C 1 times x 2. This would

be the final expression I have for the excess Gibbs free energy of the mixture, right.

I can simplify this a little bit more G E is going to be A times x 1 x 2 from the first two

terms for times x 2 plus x 1  plus C 1 times x 2 and because this is a binary mixture again

x 1 plus x 2 is simply 1. So, that equation will then simplify to G E is going to be  A

times x 1 x 2 plus the constant C 1 times x 2 this is my expression for the total Gibbs free

energy of the mixture  4. Let us call that as equation 4.

Now, we still have the constant C 1 in there which we could not get from the earlier

integration. Let us see if I can estimate it now. Recall one of the behaviour for excess

properties. We said the excess properties at both the pure component limits x 1 going to 1



or x 2 going to 1; the excess property needs to go to 0 because it is mostly made of either

pure 1 or pure 2. If that be the case limit right limit of x 1 going to 0; G E or let us say x

1 going to 1, this will be the pure component limit for 1 which means x 2 is going to 0; G

E should be equal to 0 and limit of x 1 going to 0 which is x 2 going to 1. This is pure

component limit for to G E should be 0 again at both these limits the excess property

should go to 0.

Now, if I apply these two requirements to equation 4, right let us see what happens; limit

of x 1 going to 1, x 2 going to 0 G E is A x 1 x 2 plus C 1 x 2 and this will be since x 2

appears in both the terms and it is going to 0, this will go to 0. So, no problem with the

first limit, it will be obeyed with by equation 4. If I look at the second limit limit of x 1

going to 0, x 2 going to 1; G E again is the x 1 x 2 plus C 1 x 2 from equation 4 x 1 is

going to 0. So, the first term disappears x 2 is going to 1. So, the second term will be C 1

and by the requirement for an excess property this has to be 0 which implies the only

way it can go to 0 is if this value of C 1 will be 0. So, that is how we estimate the

constant C 1 it needs to be 0 in this scenario.

So, once we have the C 1 value I can go back and write both the partial molar property G

2 bar E from equation 3; if you look at equation 3 it is A x 1 square plus C 1 and now C 1

is determined to be 0. So, G 2 bar E will be simply A x 1 squared; will be simply A x 1

squared and G E the molar excess Gibbs free energy is going to be simply A times x 1 x

2. So, these are the two expressions we are looking at or we wanted to solve in this

particular problem.

So, again essentially what we are using is relating the partial molar properties why are

the Gibbs-Duhem equation it  needs to be satisfied always. We are also imposing the

thermodynamic requirements for the limits of at the limits of both the pure components

the excess property should go to 0 and that is how we obtain the constant C 1 and the

summability relation always needs to be obeyed, that is how we got G E from G 1 bar E

and G 2 bar E. So, that summarizes the approach to solving this particular problem.
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Let us look at  another example.  So, in this problem we are interested in deriving an

expression for fugacity given the equation of state. Equation of state is given as P times

V minus m is RT. Remember that for an ideal gas PV is RT. For this particular gas the

equation  of state  is  P times V minus m as RT and we are interested  in  deriving an

expression for fugacity.

Now, if you recall to do that the way we handle this particular problem is to write the

expression for the fugacity coefficient ln phi and it turns out that this fugacity coefficient

ln phi is related to the residual Gibbs free energy G R over RT. Now, this is for of course,

a pure speciesand since it is just related to the residual Gibbs free energy the way we

have handled it earlier if you recall what we did for a virial equation of state is write the

residual Gibbs free energy in terms of the integral 0 to P Z minus 1 dP over P; Z is the

compressibility factor and which we get from the equation of state and then we need to

integrate that Z minus 1 by P from 0 to P.

So, what this essentially implies then is that the fugacity coefficient ln phi is also going

to be given by the same expression Z minus 1 dP over P. So, then to obtain fugacity we

first calculate the fugacity coefficient and then since fugacity coefficient is f over P; I can

go back and write an expression for fugacity. First let us solve for the fugacity coefficient

from the given equation of state.



So, I am going to a start from this expression or equation 1 which relates the fugacity

coefficient to the compressibility factor what I will do is take the given equation of state

and see if I can derive an expression for the compressibility factor. P times V minus m is

RT which implies P is going to be RT by V minus V minus m. So, this implies PV over

RT is going to be V by RT times RT by V minus m and if I cancel RT out, what I am left

with is on the left hand side PV by RT is Z and on the right hand side RT cancels out and

what I have left is V by V minus m. And, since I am interested in Z minus 1 it turns out

to be V by V minus m minus 1 which will be m over V minus m, right. So, this is the

value for Z minus 1.

Now, I am going to use this expression for Z minus 1 in equation 1, but the challenge is

that equation 1 is in terms of pressure and equation 2 which gives me an expression for Z

minus 1 is in terms of volume. So, I cannot directly use this in 1; what I need to do rather

is convert equation 2 in terms of pressure somehow and then put it back in equation 1.

Let us see how I do that.

Now, remember the equation of state itself is given by this expression here, let us call

that as expression A. So, from A; 1 over V minus m is going to be P over RT, right, let us

call that as B. So, I am just rewriting the given equation of state to get 1 over V minus m;

let us call that as B now what I will do is I will put B in equation 2. So, essentially this is

what I am going to I am going to a take this equation here and put it in this expression

for Z minus 1 over there.
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If I do that write equation 2 reads Z minus 1 is m by V minus m equation B reads 1 by V

minus m is 1 by V minus m is P over RT right. So, I am going to put B in equation 2

which implies Z minus 1 is going to be m times 1 by V minus m is P over RT.

So, now I have rewritten Z minus 1 in terms of P alone. So, I can easily use this equation

in one to be able to integrate Z minus 1 with respect to P,. So, ln phi is from equation 1 is

integral 0 to P Z minus of 1 dP over P because Z minus 1 is m times P over RT this will

be 0 to P m times P over RT dP over P and. So, that is essentially integral 0 to P m over

RT dP, the parameter m R and T are independent of pressure. So, they can come out and

this integral evaluates to simply mP over RT. So, that is the expression we have for ln phi

and if you recall this is exactly identical to a virial equation of state with only the second

virial coefficient.

Now, once  I  have  expression  for  ln  phi  I  can  calculate  phi  which  is  going  to  be

exponential of mP over RT and I can write phi as f over P would be fugacity coefficient

is fugacity over the pressure. So, the fugacity itself is going to be the pressure times

exponential of mP over RT. So, that is the expression I am looking at for this particular

scenario. Expression for fugacity in terms of the given equation of state; the pressure, the

temperature and the parameter for the equation of state which is m.

So, there are a couple of tricks we have done to get this solution. The first thing is relate

the fugacity  to Gibbs free energy and because of the residual  Gibbs free energy and



because we already know the expression for residual Gibbs free energy in terms of the

parameters for equation of state I can rewrite ln phi in terms of Z that is the first thing we

have done and once we went on to obtain an expression for Z minus 1 as in equation 2

we realize  that  I  cannot  use equation 2 directly  in  equation 1 because equation  1 is

integration with respect to pressure equation 2 is something we have in terms of volume.

These are simple equations, so, it is easy to perform the mathematical manipulation here

to rewrite 2 in terms of pressure which is what we have done. We have rewritten the

given equation of state to get 1 over V minus m in terms of the pressure alone without

involving  any  volume.  Once  I  have  that  in  equation  B,  I  can  go  back  rewrite  the

suppression for Z minus 1; compressibility factor minus 1 in terms of P alone and once I

have it only in terms of P; I can come back and integrate this expression only in terms of

P, obtain the final result and then calculate the fugacity coefficient followed by the value

for fugacity.

Now, if it is not easy to do this manipulation and obtain an expression for Z minus 1 only

in terms of P then it will not be possible to do this particular integration and we will have

to resort to other methods. Remember, we have done something like that for residual

Gibbs free energy when there is a cubic equation of state. There we write the expression

for residual Gibbs free energy in terms of volume only without bringing in the pressure.

So, it is important to have everything inside this integral for residual Gibbs free energy or

the fugacity coefficient either only in terms of pressure without involving the volume or

only in terms of volume without involving the pressure. It is important to have it in one

or the other way then we can go ahead and perform the integration to obtain the result we

are interested in.

So, that completes this particular problem. Let us move on to the next one.
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Here we have an equation of state which is something similar to the previous expression

with an additional term added to P here. P plus n by V square square root of T times V

minus m is RT this is our equation of state. The values of the parameters m and m, m and

n for this particular equation of state are given to us. What we are interested in is finding

the fugacity of the particular fluid in bar at a given temperature which is 373 Kelvin and

the molar volume is 305 10 power minus 6 meter cube per mole. So, the temperature and

molar volume are given to us. Once temperature and molar volume are given we can

always go back and use the equation of state to find the pressure, but so, everything else

is fixed of course, because it is a pure species, but for now what we are interested in is

calculating the fugacity of the fluid given this particular equation of state.

Let us see how we solve this particular problem. What we will do again is try to write the

equation for fugacity coefficient first right and let us write that ln phi is G R over RT.

And, now as in the previous problem I can use an expression for G R over RT in terms of

the compressibility factor Z, but then I should be able to write the final expression inside

the integral only in terms of pressure which is not going to be possible in this scenario

because it is cubic in volume.

So, we will have to use the other expression we have derived earlier for the residual

Gibbs free energy and that expression if you recall was in terms of the density and it is

written as integral of 0 to rho. The density rho which is inverse of the molar volume; Z



minus 1 d rho over rho plus Z minus 1 minus ln Z. This is the expression we have written

for residual Gibbs free energy when we had a cubic equation of state. We will use that

expression here.

Now, this is a cubic equation of state, but it does not fall in one of those four equations of

state cubic equations of state we had in the table. Although we can rewrite in that form

with a little bit of manipulation it is much easier we handle it directly ah. The only four

equations  of  state  we had in  the  table  were Van der  Waals,  Redlich-Kwong,  Soave-

Redlich-Kwong and Peng-Robinson and this does not fall in one of those four categories.

So, what we will do is take the expression for the residual Gibbs free energy directly in

terms of density and try to use the equation of state and integrate to get an expression for

ln phi. Once we have the expression we will plug in the numbers calculate the fugacity

coefficient, and hence the fugacity, alright.

So, this is the expression we start with right G R over RT is this integral. So, to be able to

do the integration then I need to write Z minus 1 only in terms of density and I need to

eliminate the pressure completely and remember like I said density is 1 over the molar

volume. So, what I will first do is rather write the equation of state in terms of density

rather instead of the volume.

So, P plus n times rho square because 1 over V square is rho squared the density is

inverse of molar volume square root of T 1 over rho minus m. So, m is molar density

maybe we should write it down. Sorry, rho is molar density right rho is molar density and

this is 1 over V that is the expression we are using to rewrite the equation of state this is

RT; RT, right.

So, if you rewrite this particular expression then P plus n rho squared over square root of

T times 1 minus m rho is going to be RT rho, right and what we are interested in is the

compressibility factor Z. So, let us see if I can derive an expression for Z. now, Z is PV

over RT as you know and this is going to be P over RT rho then in terms of density. So,

we are interested in deriving an expression for this. So, what I will do is rewrite the

equation of state. Let us let us move this to the top Z is PV over RT. So, that is going to

be in terms of density it will be P over RT rho.

So, we will rewrite this P plus n rho squared over square root of T is going to be RT rho

over 1 minus m rho and that implies P is going to be RT rho over 1 minus m row minus



m row square by square root of T and since we are interested in d what I will do is divide

this by RT rho on both sides. P over RT rho is going to be 1 over 1 minus m rho; RT rho

in the numerator  and denominator  get cancelled minus and rho squared over RT rho

square root T. So, this would be Z will be equal to 1 by 1 minus m rho minus n rho by RT

to the power 3 over 2. I notice that I have cancelled the rho in the denominator with one

of the rho in the numerator. So, that leaves row in the numerator and then T times root T

is T to the power 3 by 2.

So,  this  is  the  expression  we  have  for  Z  the  compressibility  factor  from the  given

equation of state we are interested in the integral Z minus 1 d rho over rho what I will do

is from this I will first calculate Z minus 1.
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So, let us rewrite that expression we had for Z. Z is 1 by 1 minus m rho minus n rho by

RT to the power 3 over 2. Z minus 1 is going to be 1 by 1 minus m rho minus n rho by

RT to the power 3 over 2 minus 1. So, that would be 1 minus 1 plus m rho by 1 minus m

rho I am combining the first and the last terms RT to the power 3 over 2. So, Z minus 1

then is going to be m rho by 1 minus m rho minus n rho by RT to the power 3 by 2.

Now, notice that Z minus 1, I have written it only in terms of the density there is no

pressure term at  all.  So,  it  is  rather  easy to  integrate.  Now, the first  term I  have an

equation for the residual Gibbs free energy or the fugacity coefficient is integral of Z

minus 1 d rho over rho. So, let me handle that first term. Integral of 0 to rho Z minus of 1



d rho over rho is going to be integral of 0 to rho m rho by 1 minus m rho minus n rho by

RT to the power 3 over 2 1 by rho T rho, right and that will simplify to integral 0 to rho

m by 1 minus m rho minus n by RT to the power 3 over 2 d rho. The rho here will get

cancelled with this rhos. So, that is the expression I have for the integral.

And, if I simplify that integral what I will end up with what I will end up with is integral

of 0 to rho Z minus of 1 d rho over rho is going to be the integral of the first term will be

m by minus m ln of 1 minus m rho and integral of the second term is going to be n rho

by RT to the power 3 over 2. That will be the value of the integral and if you simplify

that it will be integral of 0 to rho Z minus of 1 d rho over rho is going to be negative ln 1

minus m rho minus m rho by RT to the power 3 over 2, right.

So, this is the final in expression for the integral evaluated in terms of densities for the

given equation of state. What we will do is, take this expression and put it in equation 1

to get an expression for ln; ln phi. So, ln phi then is going to be the integral value minus

ln 1 minus m rho minus n rho by RT to the power 3 over 2 plus Z minus 1 minus ln Z.

This  is  the  final  expression  we  have  for  the  fugacity  coefficient,  let  us  call  that  as

equation 2.

Now, if  you look at  this  equation  all  we have  all  we have  is  the  densities  and the

compressibility factors that appear on the on the right hand side.  Now, to be able to

calculate a numerical value than I need both the density as well as the compressibility

factor Z, alright. So, let us see what numbers are given to us. I have the values of the

parameters m and n here. I have mm I have and what I am given is the molar volume V.

So, I need to use this expression 1 over V to calculate the density rho. I do not have I do

not have the compressibility factor, but what I can do you is use this expression rewritten

form of equation of state let us call that as A; I can use this expression A to calculate the

compressibility factor Z and again A involves only the temperature and the density apart

from the two parameters m and n.

So, that is going to be our strategy then from the given values of the temperature m and n

as well as the molar volume we will convert it into density once we have these we can

calculate the compressibility factor Z in terms of A from equation A and then we will use

that value of Z and the density and the other given values to calculate ln phi, alright.
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So, let us then rewrite these two equations on the next slide. Equation A is a rewritten

form of the given equation of state in terms of the compressibility factor Z is 1 by 1

minus m row minus n rho by RT to the power 3 over 2; 1 by 1 minus m rho minus n rho

by RT to the power 3 over 2. And, equation 2 we had an expression for ln phi and it is

given as ln phi equals minus ln 1 minus m rho minus n rho by RT to the power 3 over 2,

right plus Z minus 1 minus ln ln Z. So, this is equation 2 for the fugacity coefficient.

So, from the given data we need to calculate the density and the compressibility factor

then. The given data say is the molar volume V is 305.7 into 10 to the power negative 6

meter cube per mole. What this implies is the density rho is going to be 1 over the molar

volume and that value evaluates to be 3271.2 moles per meter cube. So, we are simply

taking the inverse of the molar volume to get the molar density or rho. Once I have rho

we also know the temperature T is given to be 373 Kelvin.

So, what I will do is I will put them in a box. We are also given the two parameters m

and n. We will use SI units throughout. So, m is 42.8 and n is 6.378 into 10 power minus

6 meter cube per mole Pascal meter cube per mole inverse Kelvin; meter cube mole

Pascal meter cube meter power 6 and mole to the power 2 Kelvin to the power half.

These are the values given to us. So, I will just put them in this box so that we know that

these are the given this is the given data and from this data what I have calculated is the

density rho first.



The second thing we will calculate is use this density to calculate Z, from equation 2 it is

1 by 1 minus m rho minus n rho by RT to the power 3 over 2 and this turns out to be

0.8145 substitute the numerical values. Once I have Z and rho I can go back and use

equation 2 to calculate ln phi and that value of ln phi from equation 2 turns out to be

negative 0.78, right negative 0.178 and what that means, is phi is going to be e to the

power of this value negative 0.178 the turns out to be 0.8371. So, I have calculated the

value of the fugacity coefficient from the given information.

The next thing we are interested in is in calculating the fugacity and recall that phi is f

over P which implies the fugacity  f  is going to be the fugacity coefficient  times the

pressure. I have the fugacity coefficient, but I do not have the value for the pressure P,

right and what we will do is we will either use the given equation of state or I can use the

use the expression for  the or  the value of the  compressibility  factor  to  calculate  the

fugacity coefficient, right.

And, if you recall remember that the compressibility factor is related to the pressure. It is

Z RT rho right; pressure is Z RT rho I have values of everything else. So, what we will

do is write this as phi times Z RT rho. I have values for everything now 0.8371 times Z is

0.814 times R is 8.314 times T is 373 times rho is 3271.2. And, if you simplify the

numerical value it turns out to be 69.16 into 10 power 5 Pascals or 69.16 bar. So, that is

the value of fugacity I am looking for.

So, let us quickly summarize this problem what we have done to obtain the value of the

fugacity. We have taken the equation of state;  we realized that  this equation of state

cannot be written only in terms of pressure because it is cubic in volume. So, we have

decided to use equation 1 for GR by RT which is same as ln phi and we have written the

given equation of state in terms of density and obtain the value for the compressibility

factor Z and hence Z minus 1.  Once we get that value we ensured that Z minus 1 is only

in terms of density. So, that I can go back and use equation 1 to do the integration we

integrated it in terms of density and then used it to obtain the expression for ln phi.

Once we have the expression we have to calculate the numerical value. So, we use the

given  data  to  obtain  to  obtain  these  numerical  values  we  had  to  do  a  couple  of

manipulations; 1; to calculate density from the given molar volume. 2; to calculate the

compressibility factor using the equation of state and finally, to calculate fugacity we



realize that we did not have the pressure, we rewrite it in terms of the compressibility

factor Z. So, that we have pressure and from that we calculate  the fugacity. So, that

completes this particular problem.
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Let us look at another example. What we are interested in is getting expressions for the

following derivatives in terms of volume or enthalpy. ln f i hat right if you recall ln f i hat

is defined by this derivative d G i is RT d ln f i hat. The fugacity of species i in the

mixture f i hat is related to the Gibbs free energy G i d G i bar or the partial molar Gibbs

free  energy d G i  bar,  right;  that  is  how we define  the fugacity. It  is  related  to  the

chemical potential. This comes directly from the definition for fugacity of species i in the

mixture.

Now, if I take the derivative with respect to pressure at constant temperature and x right,

the other way of writing it is d ln f i hat is simply d of G i bar 1 over RT. Now, if I am

taking the derivative of this with respect to the pressure at constant temperature and x

derivative  of  ln  f  i  hat  over  pressure  at  constant  temperature  and  x  and  because

temperature is constant it can go into the derivative. So, it will be derivative of G i bar

over RT over pressure at constant T and x.

And, if you recall the fundamental property relation which I will write on the top here;

we said d G i bar is V i bar or d G i bar over RT is V i bar over RT dP minus H i bar over

RT square d T plus sigma mu i d n i. This is the one of the forms of the fundamental



property relations which we have written earlier this is actually derivative of the total

value G i bar over RT.

So, now if I am interested in this derivative with respect to P at T and x, T; well, I am

sorry this should have been not d n i bar sigma mu i d x i, right we are writing the molar

properties. So, this would be rather x i. Now if I take the derivative with respect to T and

x then the second and the third terms drop out and the derivative with respect to pressure

will simply be V i bar over RT and since this also happens to be the derivative for ln of f

i hat over P that is what we have, right. This is for part A, right.

Now, if  I  look at  part  B, it  is  not the derivative for the fugacity, but rather  it  is the

derivative for the fugacity coefficient. Now, if you recall derivative now if you recall the

fugacity coefficient phi i hat is related to f i hat we have this equation y i P or x i P since

we are writing using x for mole fraction let us write it as x i P, right. Now, then the G i

bar R will be related to d ln phi i hat, right. So, the residual Gibbs for free energy will be

related to the fugacity coefficient or sorry, the partial molar residual Gibbs free energy

rather would be related to the fugacity coefficient whereas, the partial molar Gibbs free

energy  is  going  to  be  related  to  the  fugacity  itself.  So,  that  is  all  that  is  the  only

difference.

And, once we identify that difference I could write the fundamental property relation for

residual Gibbs free energy also and that would simply add on a residual term on the top,

right, a residual term there at constant T and x this term drops out anyway, right. That is

the fundamental property relation at constant composition for a system and hence the

derivative with respect to pressure will simply be and hence the derivative of ln phi i hat

with respect to pressure at constant T and x will be derivative of G i bar R over RT with

respect to pressure at constant T and x and that will simply be V i bar R over RT.

So, the essential difference between the two derivatives the first and the second one for

fugacity, the other one for fugacity coefficient is that the first case it is the molar; partial

molar volume V i bar over RT and in the second case it is residual partial molar volume

which is V i bar R over RT, that is the only difference between these two derivatives.
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Now, the third and the fourth derivatives are with respect to temperatures. I am interested

in the derivative of ln f i hat over temperature at constant P and x. And, again we will

identify this as the derivative of G i bar over RT with respect to temperature at constant P

and x just like we did before the derivative with respect to pressure. This time it is with

respect to temperature, but it is still related to the derivative of G i bar by RT and because

of the fundamental property relation this derivative would turn out to be negative of H i

bar over RT square, right.

So, the derivative with respect to temperature for the algorithm of fugacity of fugacity is

H i bar over RT square and similarly, for fugacity coefficient just like the earlier scenario

for pressure it will be the derivative of G i bar R over RT with respect to temperature at

constant P and x and that will be H i bar R the residual partial molar enthalpy over RT

square negative H i bar R over RT squared.

So, these are the four derivatives we are interested in. All of them can be obtained readily

from  the  fundamental  property  relation  and  identifying  that  fugacity  or  fugacity

coefficient are related to the partial molar Gibbs free energy or residual partial molar

Gibbs free energy.
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Let us solve one last problem for today before we wind up. We want to show that the

residual Gibbs free energy G R by RT is sigma x i ln phi i hat and the second part we

want to show that sigma x i d ln phi i hat at constant T and P is 0. Let us see how we do

that. It is almost; it is very easy if we recall what we have done in the previous problem.

So, let us give this some numbers a and b. Let us look at part a first.

Now, recall that d G i bar R the residual Gibbs free energy is related to the fugacity

coefficient via this relation, right and by definition we make sure that for ideal gas the

residual Gibbs free energy is 0. So, by definition ideal gas the fugacity coefficient will be

equal to 1. So, if we take that then essentially ln phi i hat is G i bar R over RT, right. ln

phi i hat is a partial molar property with respect to G R over RT.

So, I can write that G R over RT is a mobility relation is sigma x i G i bar R over RT and

I can replace this G i bar over RT with ln phi i. So, it will become x i ln phi i hat. So, that

is how we did have this particular expression essentially it is the part that we identify ln

phi i hat is a partial molar property just like G i bar R over RT and it is related to G R

over RT. So, we use the summability relation to obtain this particular expression. Once

we identify this the second part is almost straight forward ln phi i hat is a partial molar

property and by Gibbs-Duhem equation at constant temperature and pressure sigma x i d

m i bar in this  case let  us say the partial  molar  property we are interested  in  is  the

residual Gibbs free energy G i bar R over RT needs to be equal to 0, right.



Since G i bar R over RT is a partial molar property sigma x i the derivative of that should

be equal to 0 at constant temperature and pressure we are the Gibbs-Duhem equation.

And, because we have identified d G i bar R over RT as d ln phi i hat, it simply means

that sigma x i d ln phi i hat also needs to be equal to 0 at constant temperature and

pressure. So, this automatically follows from the definition of the fugacity coefficient

and the Gibbs-Duhem equation.

So, that completes this particular problem. Thank you for watching this video today. We

will  come  back  in  the  next  class  and  talk;  continue  our  discussion  on  solution

thermodynamics.

Thank you.


