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Lecture – 24
Fugacity

Hello and welcome back. In this lecture, today we are going to look at a quantity called

as Fugacity. Fugacity comes from a root word which means the tendency to escape and

this has been developed to characterize vapor liquid equilibrium in an easier fashion.

Before we get into details of fugacity, let us quickly revise what we have done so far. 
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We are looking at solution thermodynamics or thermodynamics of mixtures of chemical

species we talked about partial molar properties, we talked about how the total property

of a mixture is related to the partial molar property, we looked at properties of ideal gas

mixtures and we also defined an ideal solution which has similar characteristics as that of

an ideal gas mixture. For example, G for an ideal solution is same as it is counterpart for

the ideal gas mixture.

So, G for an ideal solution is sigma y i G i for the pure species plus RT sigma y i ln y i

and based on this we can derive the other thermodynamic properties such as the entropy

for  an  ideal  solution  enthalpy  and volume for  an ideal  solution  as  well  as  we have



defined  a  host  of  other  thermodynamic  properties  such  as  a  property  changes  upon

mixing etcetera. 
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In addition to this in the previous lecture we have also looked at a quantity known as an

excess property which is essentially the deviation from the ideal solution behavior, we

defined it as for any thermodynamic property we defined it as m minus M ideal. We also

looked  at  the  fundamental  property  relations  in  terms  of  Gibbs  free  energy  as  the

generating function d nG by RT we said is nV by RT dP minus nH by RT square dT plus

sigma over i let us write it as G i bar by RT d n i.

In addition we can also write similar equations for the residual Gibbs free energy. All the

quantities change into residual quantities in this case and we get this by subtracting an

analogous equation for ideal  gas plus sigma over i  G i  bar R which is partial  molar

residual Gibbs free energy d n i. And if we subtract the ideal solution equation from this

what we get is d n G E by RT from the first equation of course, is nV E by RT dP minus

nH E by RT square dT plus sigma over i G i bar E by RT d n i. And based on this we can

write a host of derivatives such as derivative of n G over RT with respect to temperature

will be negative nH by RT square and so on of course, that derivative is taken at constant

pressure and composition. 

So, we looked at the similarities between the residual properties and excess properties

and we also talked about the nature of excess properties we said at the pure component



limit x i going to 1 M E the excess property should go to 0 because it will hit the pure

component limit both M and M for the ideal solution approach the pure component limit,

so, that difference will go to 0. This is true at all the corresponding pure component

limits for each of the species. 

In addition we also said that there is no other thermodynamic restriction for variation of

G E  or  H E  with  composition  we  have  seen  that  G E  can  be  positive  or  negative

depending on whether the system has positive deviations from ideal solution behavior or

negative deviations from ideal solution behavior. We also said that H E, can be greater

than or less than G E it can be a positive quantity negative quantity and it can have a

wide variety of behavior as we have seen in the previous lecture. 

Now, the task in front of us is to be able to characterize the behavior of mixtures or

solutions  and to  be  able  to  do that  we have  introduced  a  quantity  known as  excess

quantity which is essentially the deviation from ideal solution behavior and to be able to

characterize excess quantity we want to use Gibbs free energy as the generative function

or G E as the generating function. And if you recall  in the last class we said G E is

obtained  from  vapor  liquid  equilibrium  experimental  data.  It  is  obtained  from

experimental data for vapor liquid equilibrium. 

In addition, H E is obtained from mixing data or experimental data for mixing of two

chemical species. If that be the case to be able to understand the behavior of systems

which are not ideal we want to quantify the excess quantity or excess Gibbs free energy,

we need to understand the vapor liquid equilibrium behavior of substances or mixture of

substances. So, to be able to do that let us quickly recall what we discussed about vapor

liquid equilibrium. 
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We said then there is 2 phases that are in equilibrium with each other then the chemical

potential for each of the species in the 2 phases alpha and beta needs to be same and this

is  true  for  all  the  chemical  species  i  that  are  present  in  the  2  phases.  And  this

characterizes equilibrium in addition to the equality of temperatures in both the phases

and equality of pressures in both the phases. 

Talking about a vapor and liquid equilibrium then and if we have two components then

mu 1 in the vapor phase should be equal to mu 1 in the liquid phase, mu 2 for component

2 in the vapor phase should be equal to mu 2 for component 2 in the liquid phase. This is

for a binary system of two species in equilibrium VLE for a binary system. 

Now, I can write chemical potentials also in terms of partial molar Gibbs free energies.

This also means that G 1 bar in the vapor phase should be equal to G 1 bar in the liquid

phase and G 2 bar in the vapor phase should be equal to G 2 bar in the liquid phase. Let

us take a minute and look at what G 1 bar and G 2 bar in the vapor and liquid phases are

in any phase for that matter. If you recall for an ideal gas G 1 bar for an ideal gas was G

1 for the ideal gas of the pure species at the same temperature and pressure plus RT ln y i

or y 1. 

So, G 1 I G will be gamma 1 some constant for that species plus RT ln p and G 1 bar ig

then will be gamma 1 T plus RT ln y 1 p and for any species i of course, this will be G i

ig will be gamma i T plus RT ln y i P. As pressure goes to 0, the only way this equation



will be satisfied is if this partial molar Gibbs free energy G i bar ig goes to negative

infinity only then this particular equation will be satisfied.
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So, this is true in general for any chemical species the limit at 0 pressure both G i bar ig

hence the chemical potential mu i ig will approach negative infinity. So, in that sense

chemical potential is not a convenient function to use or easily relate to. So, what we

rather do is try to define a quantity which is not so abstract and to be able to do that we

resort back to the equation we started with dG ig or dG i bar ig is RT d ln y i P for an

ideal gas this equation is true.

What we do is for a real gas we will write an analogous equation d G i bar for any gas,

so, for any substance for that matter not just gas is written as RT d ln fi hat. So, what I

am doing is  replacing  the partial  pressure in  the ideal  gas y i  times  P is  the partial

pressure P i with a quantity called as f i hat. The hat is the hat I put on top of f i of

course, right f i and a hat and it indicates that we are talking about the quantity f in a

mixture. F for species i because of the subscript i and this quantity f is what we call as

fugacity and like I said at  the beginning of this  lecture fugacity generally means the

tendency to escape and in relation to vapor liquid equilibrium as we will see greater the

fugacity greater is the tendency of that species to stay in the vapor phase and hence the

name.



So,  this  is  the  definition  for  fugacity  of  species  i  in  the  mixture  and to  be  able  to

complete the definition we need to define a limit and that limit turns out to be the limit at

the 0 pressure we say that at limit as P goes to 0 f i hat will be y i times P it will approach

the ideal gas limit. That is how we complete the definition for fugacity of species i. 

So, these two equations right here put together define the fugacity of species i in the

mixture which we are calling it as f i hat. We use a hat instead of the bar we have used

for partial molar properties such as partial molar Gibbs free energy here because f i hat is

not a partial molar property, but we are still talking about a species i in the mixture. So,

differentiate it from a partial molar property we are using a hat instead of the over bar as

in case of partial molar properties. 

So, these two relations here complete the definition for fugacity right and if you observe

these two equations closely the first  equation is G i  bar like I said earlier  in can be

written as some constant for that species i at the temperature of interest plus RT ln f i hat

and for an ideal gas I can write an equation because it is only dependent on temperature

and the species that constant is still going to be the same plus RT ln y i P for an ideal gas.

And if I subtract one from the other what I get on the left hand side is G i bar R or the

partial molar residual Gibbs free energy and on the right hand side we have RT ln f i hat

over y i P, right and this quantity here on the right hand side f i hat over y i P is called as

phi i hat corresponding to f i hat we have a phi i hat which is the fugacity coefficient. It is

essentially  the ratio  of fugacity  to the partial  pressure and we call  it  as the fugacity

coefficient. 
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So, what we have now then is two equations one is d G i bar is RT d ln f i hat and f i hat

over y I P is what we are calling as phi i hat and in addition limit of P going to 0 f i hat is

y i P or limit of P going to 0 f i hat over y i P is limit P going to 0 phi i hat for the

fugacity coefficient and this value is 1, right. So, the fugacity coefficient of species at the

0 pressure limit is going to be 1.

 In addition to this once we have written these equations for a mixture we can also write

corresponding equations for pure species d G i is RT d ln f; f over P for pure species y is

1. So, f over P is f i over P is phi i and limit of P going to 0 f i will be equal to P and limit

of P going to 0 f i over P will be limit of P going to 0 phi i and it will still be 1.

Now, notice the analogy between the two for a mixture or for a pure species we have

analogues equations except that we are replacing the fugacity of species i in the mixture f

i hat with the fugacity of the pure species, I am sorry I should have written a i here

fugacity of the pure species f i and because it is a pure species d G i bar will be same as d

G i and the fugacity coefficient will be phi instead of phi i hat. So, the equations are

otherwise analogues they will reduce to pure component equations as y i goes to 1 of

course. 

In addition to this what is the advantage of using fugacity for vapor liquid equilibrium

calculations? 
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If you think about it G i bar is some constant plus RT ln f i and recall that G i bar is same

as the chemical potential mu i.  Now, if I write these equations for the vapor and the

liquid  phases then mu i  in  the vapor  phase is  gamma i  which is  a  function  only of

temperature. It will not depend on the phase it will depend only on the species as long as

the species i is same it will simply be gamma i T plus RT ln f i hat the fugacity of that

species i in the vapor mixture.

Similarly, mu i in the liquid phase is going to be same constant plus RT ln f i hat in the

liquid mixture and because at  equilibrium mu i hat vapor is mu i hat and because at

equilibrium mu i vapor is mu i liquid from these two equations what we get is f i hat in

the vapor phase, the fugacity of species i in the vapor mixture should equal the fugacity

of species i in the liquid mixture. So, instead of relating the vapor liquid equilibrium we

had if you chemical potentials what we have achieved by introducing fugacity is that the

fugacity of these species in the vapor and liquid mixtures are going to be same for a VLE

right.

So, in that sense we can probably easily relate to these quantities and these quantities are

well behaved even at the limit of 0 pressure, as we have seen the fugacity is boil down to

partial  pressures, in a pure component it  is simple the pressure, etcetera.  So, we can

relate to fugacity in an easier fashion than to chemical potential probably. If that be the

case to be able to characterize the vapor liquid equilibrium behavior we can work with



fugacity  is  provided  we  know how to  calculate  fugacities.  How  does  one  calculate

fugacity of a species?

So, by the way to be able to calculate fugacity, let us go back to it is definition and ask a

question what is fugacity of species in an ideal gas? So, first let us talk about fugacity of

an ideal gas.

(Refer Slide Time: 18:52)

Let us say we have a pure species in an ideal gas state by definition fugacity is d G is RT

d ln f and we want to calculate this quantity an dG R or G R by RT is ln phi, right. This is

for pure species we can use a subscript i, but because there is only one species we will

just ignore the subscript. 

So, the residual Gibbs free energy is related to the fugacity coefficient phi we have this

equation. For an ideal gas G R by RT is 0, because there is no residual property which

means that ln phi is 0 or the fugacity coefficient is 1 because the fugacity coefficient is 1,

f by P is 1 or f is equal to P for an ideal gas. This will hold because the residual Gibbs

free energy for an ideal gas of course, is 0. 
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Now, if we have a scenario where the residual Gibbs free energy is not 0, if the gas is not

ideal, so, let us talk about a real gas and we are still talking about pure species, but let us

talk about a real gas which obeys virial equation of state. Then, by definition ln phi is G

R over RT I am talking about pure species.

 So, like I said I am ignoring the subscript i, ln phi is G R over RT and if it obeys virial

equation of state if you recall how we calculated the residual properties G R over RT was

integral 0 to P, the compressibility factor z minus 1 dP over P, that was the relation for G

R over RT. And for virial equation of state z is 1 plus BP over RT using only the second

virial coefficient or z minus 1 is BP over RT. 

So, this integral will then be BP over RT times dP over P. These two get cancelled; the

second virial coefficient is function only of temperature. So, I can take everything out of

that integral sign because there only functions of temperature B over RT integral 0 to P

dP or this will be BP over RT. So, G R over RT is essentially BP over RT using virial

equation of state or ln phi is going to be simply BP over RT. Once I have phi I can

calculate the fugacity coefficient if I know the pressure. 

So, if I have virial equation of state and I know the second virial coefficient then I can

easily calculate the fugacity for pure species right. Let us work on one quick example

using this idea.
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We have a virial equation of state and we want to calculate the fugacity and fugacity

coefficient for ethylene at 373 Kelvin one temperature and three different pressures; 1

bar, 10 bar and 30 bar. And the second virial coefficient for this particular compound is

given by the relations shown here we first need to calculate two quantities B naught and

B 1 which are related to the reduced temperature and once I have the two quantities and I

know the critical constants I can go back and calculate the second virial coefficient.

And throughout as you can see the second virial coefficient will only be functions of the

reduced temperature or temperature and the critical properties, nothing else. So, it will

only depend on temperature for that matter and the pressure changes from 1 to 10 to 30

bar B is not going to change. So, what we will do is first calculate this quantity B so that

I can then use it for all the 3 pressures to be able to do that we need the critical properties

so  that  I  can  calculate  T R.  Let  us  use  a  suitable  reference  and  obtain  the  critical

properties for ethylene turns out for ethylene the critical temperature is 282.3 Kelvin and

the critical pressure is 50.4 bar and the eccentric factor omega is 0.087.

Once I have these three I can calculate the reduced temperature it is T over T c or 373

over 282.3. So, this will be 1.32, then once I have the reduced temperature I can calculate

B naught which is 0.083 minus 0.422 divided by 1.32 to the power 1.6 and this value

turns out to be negative 0.1872. Similarly, B 1 is going to be 0.0856 and once I have B

naught and B 1 I can calculate B it will be negative 0.18724 B naught plus the eccentric



factor 0.087 times B 1 which is 0.0856 times R which is 83.14 bar cc per mole per

Kelvin times T c is 282.3 Kelvin over P c which is 50.4 bar and once we use these units

what we get is a value of B as negative 83.72 cc per mole. 

So, now I have the value for the second virial coefficient from the given correlations.

Once I have this value I can use this B to calculate the residual Gibbs free energy the

fugacity coefficient and hence the fugacity. 
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If you recall both the residual Gibbs free energy and ln phi are same or residual Gibbs

free energy G R by RT and ln phi are same and they are equal BP over RT for virial

equation of state using only the second virial coefficient. And once I have the value for B

which is negative 83.72 cc per mole I just need to be careful with the units the pressure

we have 3 different conditions for which we are interested in calculating ln phi.

 First one is one bar over 83.14 and 373 Kelvin right and for this value it turns out that ln

phi is 0.0027 and I take an exponential of that we get phi which turns out to be 0.9973

and f if you recall is phi is f over P which implies f is going to be 0.9973 times the

pressure which is 1 bar.

So, the units for fugacity of course, are going to be same as that of pressure. So, that will

be 0.9973 bar I can do it at 10 bar and the values I get are ln phi is negative 0.027 and

phi will be 0.9734 and f is going to be 9.734 bar. I can repeat the calculation at 30 bar ln



phi is going to be negative 0.081, phi is going to be 0.922 and f is going to be 27.67 bar.

As you can see once the pressure increases we are moving away from 0, the ideal gas

behavior  and hence  the fugacity  coefficient  phi  moves further  away from 1 and the

fugacity  itself  f  is  going to  move further  away from pressure  P and that  is  what  is

happening as we increase the pressure from 1 bar to 10 bar to 30 bar. This is how we can

use a virial equation of state to calculate fugacity of pure species.
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Now, recall  we  have  used  Lee  Kesler  tables  to  calculate  the  residual  properties  the

residual  enthalpy and the residual  entropy. So, these Lee Kesler  tables  also exist  for

calculation of fugacity and fugacity coefficient. If you recall they are based on Pitzer

correlations which arise from theorem of corresponding states.

And we said species  which  have  which  are  at  the  same reduced conditions  reduced

temperature and reduced pressure with the same value of eccentric factor omega behave

similarly. One of  the  ways  we have  used  Lee  Kesler  table  to  calculate  the  residual

enthalpy is by calculating H R by RT via two quantities H R by RT 0 plus and H R by RT

1. Both these quantities  can be obtained in two different  tables at  the given reduced

conditions T r and P r and then the total H R by RT was sum of these two the second

quantity of course, multiplied with the eccentric factor omega. 

Similar tables also exist for calculation of fugacity coefficient, essentially it is related to

residual Gibbs free energy, right. So, and the way we use Lee Kesler tables is again



calculating two quantities and phi naught and phi 1 or looking up for two quantities phi

naught and phi one in the Lee Kesler tables at the given reduced conditions T r and P r

and then calculating phi the fugacity coefficient using the relation phi is phi naught phi 1

times phi 1 to the power omega. Actually what it is ln phi is going to be ln phi naught

plus omega times ln phi 1 ln phi of course, is the residual Gibbs free energy G R by RT.

So, we combine them with omega and then if you get rid of the logarithms what we end

up with is a relation like this.

So,  this  is  how  we  are  going  to  use  Lee  Kesler  tables  for  calculation  of  fugacity

coefficients. Let us try to solve this particular problem using this idea. We are interested

in calculating the fugacity coefficient again for ethylene at 373 Kelvin and 30 bar at

these conditions. The first thing we have to do is calculate T r and P r if you recall in the

previous problem we said T c for ethylene is 282.3 Kelvin P c is 50.4 bar and omega is

0.087. 

And what this means is T r is going to be T over T c, it is going to be 1.32; P r is going to

be P over P c which is going to be 0.595. At these conditions in fact, it is 1.321 and at

these conditions we are interested in calculate or looking up the Lee Kesler tables for a

value of phi naught and for phi 1. As usual Lee Kesler tables are listed at discrete steps.

The  ones  I  have  used  the  reduced  pressure  it  is  listed  at  0.4  and  0.6  for  reduced

temperature it is listed at 1.3 and 1.4. What we are interested in is something in between

1.3 to 1 and 0.595, right. 

So, if you recall we need to do a double linear interpolation. So, first let us write what we

have at the conditions listed in the table 9419, 0.9141, 0.955 and 0.933. We can do a

double linear interpolation and end up with a value of 0.9188, this is for the quantity phi

naught. This will give us a quick estimate if we want to do a more rigorous calculation

we will also involve phi 1. I look up for these four values in the table and then do a

double linear interpolation and once I do that I will end up with the value of phi 1 at the

desired conditions right.

So, these are the two quantities I am looking at the desired conditions phi naught and phi

1. I will combine them using the eccentric factor omega to get phi 0.9188 times 1.0411 to

the power 0.087 and this value turns out to be 0.922 and once I have phi f is going to be



phi times the pressure and in this case the pressure is 30 bar. So, it will be 0.922 times 30

which turns out to be 27.66 bar.

So,  using the tables  we can also estimate  fugacity  of the pure species.  So,  we have

looked at virial equation of state to estimate the fugacity of pure species, we have used

the Lee Kesler tables to estimate the fugacity coefficient and hence the fugacity for pure

species. When we come back in the next lecture, we will look at how to estimate fugacity

coefficient using cubic equation of state and then extend this discussion to a mixture of

chemical species.

Thank you.


