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Ideal Gas Mixtures

Hello  and  welcome  back  in  the  previous  lectures,  we  were  talking  about  solution

thermodynamics and what we looked at so far, is trying to define a property known as

partial molar property for a mixture.
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And then relate it to the total property of the mixture M, we are the summability relation

and then some of the relationships amongst the partial molar properties themselves. Now

while these are certainly helpful, they still do not give the complete picture of how a

mixture behaves like we said earlier there are more than 22 million compounds in known

in the process industry. And they form a large number of mixtures and it is very difficult

to characterize each and every mixture.

So, what we like to rather do is try to somehow relate the property of a mixture to its

pure component counterparts or if I can obtain a relationship or predict the relationship

between either M or M i bar to M i, what I am looking for then is a relation between M i

bar  or  M and the  pure  component  counterparts  M i.  If  I  can  somehow relate  these

quantities then I can at least predict how the mixture is going to likely behave. To be able



to do that we start off with the easiest type of mixtures. We can predict recall how we

have dealt with P V t relationships, we introduce the ideal gases first where the P V t

relationships are fairly linear and then we extended it to real gases.

So, we will do a similar exercise here. When we talk about mixtures the first thing we

will try to analyze is how the pure component M i is related to the partial molar property

M i bar in case of ideal gas mixtures.
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So, let us look at a example what exactly we mean by an ideal gas mixture over here, we

have two gases which are separated by a wall in between. And at some time T equal to 0,

we decide to remove this wall and then the gases are going to mix freely. Before mixing,

we have pure species 1 and the P V t relationship for this pure species 1 is P 1 sorry, P V

1 t is n 1 R T.

So, both these gases are at the same temperature and pressure even before mixing and

they are at the same temperature and pressure after mixing. Let us say these are ideal

gases. Then for pure 1, P V 1 t will be n 1 R P V 1 t being the total volume for gas 1. And

for pure species 2, P V 2 t will be equal to the number of moles for 2 n 2 R T. T and P are

same. So, now after I mix all I have is a mixture, right.

 And for the mixture P V t is n times R T, because the temperature and pressure are same

and both gases are ideal. Note that V 1 t over n 1 is the molar volume for gas 1 should be



equal to the molar volume of gas 2, because temperature and pressure are same and both

gases are ideal. And that should also equal V t over n and let us call this as the molar

volume V. All the three molar volumes for the pure individual pure species as well as for

the final mixture is same let us call it as V, right.

Now, if this is a mixture and I want to calculate the partial molar volume for this mixture,

how do I get that? For the mixture, the partial molar volume V 1 bar is the derivative of

the total volume n times V over n 1, I have only two components. So, it is at constant

temperature pressure and n 2 is held constant, right and recall that n is n 1 plus n 2.

So, derivative of n with respect to n 1 at constant n 2 is 1. So, if I take this the molar

volume V is constant anyway it comes out. Once, the temperature and pressure constant

molar volume V is constant, it comes out. And then I have derivative of n with respect to

n 1 at constant n 2 which will be V, right.

And similarly V 2 bar will also be equal to V and notice that then for this ideal gas

mixture V 1 bar will be equal to V 2 bar will be equal to V which is also same as the

individual molar volumes for 1 n to V 1 and V 2. So, this is an example for a binary gas

mixture, we can extend it in general V i bar will simply be equal to V i for an ideal gas

mixture.

Now, we  have  demonstrated  that  the  partial  molar  volume  of  an  ideal  gas  may  of

component i in an ideal gas mixture is same as the pure component molar volume. It

does not depend whether there is other gas or not. Intuitively, it makes sense, because

ideal gas by definition has no size the molecules of an ideal gas have zero, occupy zero

volume and they do not interact with one another. So, the molar volume will not change

as long as the temperature and pressure are same. Now, what happens to something like

internal energy, enthalpy or entropy, etcetera?
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To answer  this  question,  we  resort  to  what  is  known  as  the  Gibb’s  Theorem.  And

according to the Gibb’s theorem the partial molar property M i bar in a mixture at T and

P is given by the pure component property at the same temperature, but at its partial

pressure p i. So, this partial pressure p i is essentially the mole fraction times the total

pressure, right .We call this as the Gibb’s theorem essential idea behind this theorem is

that one’s an ideal gas is in a mixture and because of the properties of an ideal gas having

zero volume and no interactions with one another.

Although the ideal gas is in a mixture, it behaves as if, it is an individual component with

its own partial pressure, it is not going to interact with the other species that is present in

there. That is the idea behind the Gibb’s theorem and then the partial molar property is

given by the pure component property, but at it is partial pressure.

Now,  we  will  take  this  idea  to  estimate  the  other  partial  molar  properties  or

thermodynamic quantities. The first one of interest is U i bar at a given temperature and

pressure. This will be U i at it is partial pressure p i, right. The temperature is same, but

this time in the pressure has changed to the partial pressure, but for an ideal gas, this is

an  ideal  gas.  For  ideal  gas  U  does  not  depend  on  pressure,  it  only  depends  on

temperature, if you recall.

So, U i bar i g than at T and P is U i i g at T and, I according to the Gibb’s theorem and

this is same as U i at T and P, because it is independent of the pressure. And so, the



partial molar property for component i is same as the pure component property at the

temperature and pressure of the mixture, right. Going by similar logic H i bar i g at T and

P, you can show that it will be same as the pure component property at T and P. And

again as long as the temperature is same the enthalpy does not change, right. What these

two relations for enthalpy and internal energy also mean is that for the mixture, the total

molar property U according to the summability relation is x i U i bar and because U i bar

is same as U i this will be same as x i U i.

Similarly, H is oh this is for an ideal gas alone, right. So, we will use this i g to denote

that we are talking about an ideal gas, sorry. This we should write it as y i for mole

fraction. And similarly H i i g is y i H i bar i g which will be identical to y i i H i i g. So,

for an ideal gas all we need to estimate the property of the mixture is the pure component

properties at the same temperature and pressure as long as I have that information. I can

directly calculate what the enthalpy and internal energy for the mixture are, I do not need

any additional information.
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Now, what about entropy? According to the Gibb’s theorem, S i bar for an ideal gas at T

and P is S i at T and p i, right. This is at some composition y i. Let us call this as S i i g at

T and P I, right. Now, if you recall at constant temperature, if you recall d S for an ideal

gas is minus R d ln P. So, what I will do is I will take this. And integrate it from the total

pressure P to or from the partial pressure p i to the total pressure P. And if I do that



integral going from p i to P d S i i g will be minus R ln P over p i, right. If I do the

integral on the right hand side and apply the limits then it will be P over p i.

So, it will be minus R ln P over p I, right . So, on the left hand side, what I have is S i i g

at T and P minus S i i g at T and p i will be this difference will be minus R ln P over p i

or S i i  g at T and p i will be the pure component value at T and P plus R times ln

remember that mole fraction y i s p i over P. So, P over p i is 1 over y i. So, this will be 1

over y i. So, S i bar i g at T and P will be S i the pure component value at T and p i which

is now the pure component value at T and P minus R ln y i. I have inverted 1 over y i and

then brought the negative sign before R.

So, then for the partial molar property or partial molar entropy in a mixture of ideal gas S

i bar i g will be the pure component value for entropy T and P minus R ln y i.
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Now, we can extend this. What we had earlier is S i bar i g is S i i g at T and P minus R

ln y i . Now S is sigma y i s i bar from some ability relation what this means is S i g will

be sigma S i i g minus R sigma y i ln y i, right. This is the total entropy of an ideal gas

mixture  in  terms  of  the  pure  component  entropy  S  i  i  g  and  the  mole  fraction  y  i.

Remember  that  this  is  at  some  temperature  and  pressure,  this  also  is  at  the  same

temperature and pressure.



So,  what  we  have  done  is  in  effect  related  the  entropy  of  the  mixture  at  a  given

temperature. And pressure to the pure component entropy at the same temperature and

pressure and the mole fractions of course, for an ideal gas scenario. We can also write the

Gibb’s free energy which is  of more interest  to us,  because it  is  related  to chemical

potential  and  phase  equilibrium  problems  dependent  chemical  potential  like  we

discussed earlier. The Gibb’s free energy, partial molar Gibb’s free energy mu i i g is

same as the chemical potential as you recall. And this will be H i bar i g minus T times S

i bar i g.

Now, if you recall H i bar i g was H i i g, it is same as the pure component property at the

same temperature and pressure minus T times, I am going to replace this S i bar i g here

with this quantity here, right. So, that will be S i i g minus R ln y i. So, G i bar i g will be

H i i g minus T S i i g plus R t ln y i or this quantity here is G i for the pure component

plus R T ln y i. So, the partial molar Gibb’s free energy or the chemical potential is equal

to the pure component Gibb’s free energy G i plus R T ln y i.

So, what we have done is derived a relationship between the partial molar property and

the pure component property all at the same temperature and pressure. Let us quickly

summarize what we have done so far V i bar is V i U i bar is U i H i bar is H I, right. S i

bar is S i minus R ln y i and G i bar is G i plus R T ln y i. Now all of these are for ideal

gases.
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 So, I am going to use the superscript i g, we have derived all these relations. For partial

molar  properties  in  terms  of  the  pure  component  properties  all  are  at  T  and  P  the

temperature and pressure are same which is same as that of the mixture.

Now, following these relations we can also show that U is sigma y i U i i g, we use the

summability relation over the partial molar properties to get these equations sigma y i H i

i g S i g, the mixture entropy is sigma y i S i i g minus R sigma y i ln y i. And finally, the

Gibb’s free energy of the mixture is sigma y i G i plus R T sigma y i ln y i. So, we have

derived the partial molar properties as well as the total properties for the mixture of ideal

gases, right. One final thing while we are at this is to define a property called as property

change upon mixing. When we mix two substances as we looked at the schematic earlier

this  one,  I  have  two  different  species,  pure  species  separated  initially  at  some

temperature.  And pressure and what  happens when I  mixture  how much is  the  total

property change, we call that as the property change upon mixing.

So, let us quickly write that quantity by looking at these equations here. So, what I will

do is  I  will,  alright.  And write property change upon mixing and the way we define

property change upon mixing is the property of the mixture at T P and y i minus the pure

component property is weighted with their mole fractions also at the same temperature

and pressure, right.

So, for sake of clarity I am going to drop the functionalities, this is simply M minus

sigma y i M i M as well as M i all are take are all taken at the same temperature and

pressure and the corresponding mole fraction for M is y i of course, right. So, by looking

at this expression I can write property change on mixing for delta U mixing of an ideal

gas is U for an ideal gas minus sigma y i U i and because of this  relation here this

automatically implies delta U mixing for an ideal gas is 0. Going through similar steps I

can also derive the following equations. Delta V mixing for an ideal gas is 0 delta H

mixing for an ideal gas is 0.
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The entropy of mixing delta S mixing for an ideal gas mixture is minus R sigma y i ln y

i. And finally, the Gibb’s free energy of mixing for an ideal gas mixture is R T sigma y i

ln y i.

So, these are all the various quantities of course, in the previous slide we derived internal

energy change upon mixing is 0 as well. So, these are various property changes upon

mixing for an ideal gas mixture.  Now that we talked about ideal gas mixtures let  us

quickly run through two examples on using the equations, we have just derived before

we move on and extend this discussion on ideal gas mixtures to what are known as ideal

solutions.
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The first example says, we have a stream of nitrogen flowing at a certain flow rate and

oxygen flowing as well and these two streams I have a stream of nitrogen and another

stream of  oxygen  and  what  we  get  out  is  a  stream of  air  or  mixture  of  these  two

compounds.  And  we  are  interested  in  assuming  the  or  sorry,  we  are  interested  in

calculating the rate of entropy change for this particular process, right.

To calculate the rate of entropy change what we will do is first find the molar flow rates

of the two streams, right. So, for N 2 molar flow rate n 1 dot is 22.148 kilograms per

second times  1000 grams  per  1  kilogram times  1  mole  per  28  grams.  So,  that  will

translate to 791 moles per second. Similarly, for oxygen n 2 dot is 209 moles per second.

And the total molar flow rate for the mixture n, this is n 1 dot plus n 2 dot. This will be

1000 moles per second some of 791 and 2 or 9. This is the total mixture, I am making

and we are interested in finding the rate of entropy change. So, delta S total dot will be n

dot times S, let us call these streams, let us give them some numbers, right.

So, let us call this as 1, this as 2 and this as 3. Then delta S total the change in total

entropy or the rate of that change is n dot times S 3 minus n 1 dot times S 1 minus n 2

dot times S 2. So, this will be essentially n dot times S 3, the molar entropy of stream 3

minus y 1 S 1 minus y 2 S 2 dot. And if you look at this we can easily recognize that the

quantity inside the parentheses, here is the entropy change upon mixing delta S mixing.



So, then essentially delta S total this change or rate of this changes n dot times delta S

mixing the molar entropy change upon mixing. And that is what we are interested in

calculating I already know n dot all I need to find is the entropy change upon mixing and

I can then calculate what I need.
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Now, by definition if you recall for an ideal gas mixture, we can assume that this is an

ideal gas mixture delta S mixing for an ideal gas mixture is minus R sigma y i ln y i. So,

this will be negative 8.314 times y 1 which is 0.791 ln y 1 n which is again 0.791 plus

0.209 ln of 0.209.

 And this quantity, right here turns out to be 4.262 Joule per mole Kelvin, right. And if I

am interested in the total entropy change, rate of total entropy change total dot. Then it is

n dot multiplied with delta S mixing for an ideal gas, because we can assume the streams

to be ideal gas streams. In this  scenario,  this turns out to be 1000 moles per second

multiplied with 4.262 Joule per mole Kelvin.

So, that would be 4.262 kilo Joules per Kelvin second. This is the rate of entropy change

for this particular process. I noticed that the entropy change is positive which it should be

for a process, it should be positive it is greater than 0.
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Let  us look at  another  example  can be shown that  the minimum work of separation

necessary to separate an ideal gas mixture is negative delta G mixing, this is a minimum

work required to separate an ideal gas mixture.

Now, calculate the minimum works necessary to separate 1 mole of air containing 80

percent nitrogen and the balance oxygen of course, we can assume that in this particular

scenario,  we  are  talking  about  ideal  gas  mixtures.  So,  if  we  have  to  calculate  the

minimum work required W minimum then is negative delta G mixing of an ideal gas,

right.

 And we are given that y 1 is 0.8, y 2 for oxygen is 0.2 and the temperature is 300, Kelvin

right. Now, for an ideal gas mixture delta G mixing is RT, right sigma y i ln y i so that

will be negative 8.314, 300 times 0.8 ln 0.8 plus 0.2 ln 0.2. So, value right here turns out

to be, so, delta G mixing is a molar quantity. So, the minimum work required is the

minimum work per 1 mole of gas. So, that is how we can use the concepts about ideal

gas mixtures .We learnt earlier and do some quick calculations on entropy changes upon

mixing and Gibb’s free energy changes upon mixing. What we will do next is we will

continue this discussion on ideal gas mixtures and extend it to a larger class of mixtures.

The idea being some of the characteristics of ideal gas mixtures can also be translated to

dense phases.  If  we get  denser mixtures  of gases or even liquids and solids  for that



matter, right. So, let us extend our discussion on ideal gas mixtures to a new class of

mixtures known as Ideal Solutions.

(Refer Slide Time: 29:59)

 In  an,  an  ideal  gas  mixture  recall  that  the  partial  molar  Gibb’s free  energy  or  the

chemical potential is related to its pure component value via this equation.

 What we will do is a define a class of solutions or mixtures known as ideal solutions

which exhibit similar relationship between the partial molar Gibb’s free energy or the

chemical potential and the pure component Gibb’s free energy. So, G i bar in an ideal

solution i d standing for an ideal solution is related to G i the pure component, Gibb’s

free energy in exactly similar relationship.

Notice that I have changed the mole fraction y i to x i, y i is something we usually use for

a gaseous phase x i  is  something we use for liquid phase.  This class  of  mixtures  is

typically a used to define liquid solutions. So, I am using x i in this case, but the idea is

that we have extended a characteristic of ideal gas mixture that is a relationship between

the chemical potential and the pure component Gibb’s free energy to denser phases, right

be it a denser gaseous phase or even a liquid phase. In this case the ideal gas relationship

P V equal to n RT or other characteristics of non interaction between the molecules or

zero size of the molecules may not hold, but still the partial molar Gibb’s free energy is

related to the pure component Gibb’s free energy in a similar fashion as that in an ideal

gas mixture.



So, what this does is it gives the composition dependency for the partial molar property

in terms of the mole fraction in a similar fashion as that in a ideal gas mixture. Now it

serves well for dense gases liquids or even mixtures of solids as long as we call them as

ideal solutions. And typically it works well when, when the liquid mixtures have species

that  contain  molecules  of  similar  sizes  and  similar  chemical  nature.  For  example,

adjacent species in a homologous series or isomers can be well defined using a ideal

solution behavior.

Now, because of this reason, right, so we can use the relationships, we have developed

earlier to calculate the other thermodynamic properties for an ideal solution. Now we

know that G i bar i d is G i plus R T ln x i, x i can be mole fraction either for gas or a

liquid phase like I said earlier. Now if I want to calculate V i bar ideal then recall that V

is the derivative of the Gibb’s free energy with respect to the pressure at constant T and

x, right.
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And once T and x are constant then this will simply be the derivative of G i with respect

to pressure at constant. Well, let me write that explicitly this will be derivative of G i plus

R T ln x i with respect to pressure at constant T and x. Now, because temperature and x

are constant the second term drops out and all I have left is derivative of G i with respect

to P at T n x which is essentially the molar volume for component i V i. Now notice that



this molar volume does not have to be ideal gas volume, it is whatever the molar volume

for component pure component i at that temperature and pressure is.
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Next thing we want to calculate is the partial molar entropy in an ideal solution S i bar i

d.  This  is  derivative  of  the  partial  molar  Gibb’s  free  energy  with  respect  to  the

temperature at constant P and x. So, this will be derivative of G i plus R T ln x i with

respect to temperature at P and x. In fact, this is negative of that quantity, right.

So, that would be negative derivative of G i with respect to temperature at P and x for the

pure component minus R times ln x i all of them are constant, we only have temperature.

So,  the derivative  of temperature  with respect  to  temperature  is  1.  The first  term of

course, is the entropy of the pure species i minus R ln x i, right. So, what we have then is

S i bar i d is S i minus R l n x i. And finally, we can calculate the enthalpy H i bar i d, it

is since G is H minus T S, H is G plus T s or it is G i bar plus T s i bar i d. So, that is G i

plus R T ln x i plus T times S i minus R l n x i.

So, that will be G i plus T S i that is for the pure species and the other two terms cancel

out. So, that quantity will then be equal to H i. So, H i bar id is same as H i. So, now, let

us quickly summarize what we have derived so far for an ideal solution.
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The first thing is G i bar i d, this is by definition of an ideal solution is G i plus R T ln x i.

Then we have derived that V i bar i d is V i. S i bar i d is S i minus R ln x i. And finally,

H i bar i d is H i Now we can also write the property changes upon mixing delta H

mixing for an ideal solution will be equal to 0, because it is H minus sigma x i H i.

Similarly, delta V mixing for an ideal solution will also be equal to 0, delta S mixing will

be minus R sigma x i ln x i and delta G mixing of an ideal solution will be equal to R T

sigma x i ln x i. So, notice that all these property changes upon mixing are same as that

for an ideal gas mixture. So, what we have done is extended the concept of an ideal gas

mixture to a class of solutions known as ideal solutions and it turns out that the various

thermodynamic  property  changes  for  ideal  solutions  are  similar  to  what  we  have

observed for ideal gas mixtures.

So, like I said what it gives us is a handle on how to relate the property changes upon

mixing or the partial  molar properties to either the pure component  properties or the

mole fractions, right. So, with that we will stop the lecture today when we come back in

the next class, what we will do is try to extend this discussion on ideal solutions and see

how we can apply them to real life problems.

Thank you.


