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Hello and welcome back. So, we were talking about solution thermodynamics yesterday

and in this lecture,  we will continue our discussion on solution thermodynamics. But

before we do that let us quickly recap what we have done so far on this topic.
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The first thing we have defined for a mixture or a solution is what is known as the Partial

Molar Property. Partial Molar Property, this can be any thermodynamic property such as

internal energy, enthalpy, entropy, Gibbs free energy etcetera.

And this partial molar property we have indicated it as Mi over bar Mi bar let us say and

this Mi bar represents the partial molar property for component i and it is defined as the

derivative  of  the  total  property  nM  with  respect  to  the  number  of  moles  of  that

component  i,  when  we  hold  the  temperature,  pressure  and  moles  of  all  the  other

components j not equal to i constant. This is how we have of defined the partial molar

property and we have looked at a few relations for partial molar property.



The  first  one  is  that  it  arises  from  the  definition  of  a  for  a  or  it  arises  from  the

fundamental property relation for an open system. So, the fundamental property relation

for an open system using this partial  molar property is written as d of n M the total

change in the property M will be the derivative of n M with respect to the pressure at

constant T and all the moles are a n i’s constant; d P plus the derivative with respect to

the temperature at constant P and n i d T plus the sigma over all the components i the

derivative with respect to each one of those ni’s d n i.

And notice that the last term essentially of the derivative in the last term essentially is

what we call as Mi bar. This is the fundamental property relation for any thermodynamic

property M and we can use it to write for example, the relation for d nG will be nv d P

minus ns dT plus sigma Gi bar d ni over all i. The other thing we have defined yesterday

is Gi bar is also known as mu i or the chemical potential; the chemical potential. 

In addition to this, if we look at this equation and if I write this equation just for one

mole of substance of course, dG if n equals 1, then d G will be VdP minus SdT plus

sigma over i mu i for 1 mole d ni will be same as d x i. This is true for an open system. If

the system is closed, then dG will be simply VdP minus SdT because for a closed system

dx equals o. So, dG will be simply VdP minus SdT whatever we had earlier for a closed

system right.

So,  in  that  sense  this  particular  equation  is  more  general.  We  can  write  similar

thermodynamic  properties  for  a  fundamental  property  relations  for  involving  other

thermodynamic variables, but the Gibbs free energy is of more interest for us in chemical

engineering applications. The other thing we might want to mention here is that we have

derived a condition for phase equilibrium between two phases, alpha and beta phases. 

And it turns out that we said T alpha will be T beta. The pressure in the alpha phase all is

equal to the pressure in the beta phase. And finally, the chemical potential for each of the

species in the alpha phase needs to be equal to the chemical potential for each of the

species  in  the  beta  phase  for  all  these  species  right.  This  was the  criteria  for  phase

equilibrium; we have derived using the chemical potential in the previous lecture. 
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Now, in addition to this, we have also derived a few other relations involving the partial

molar properties. One of them is what we called as the summability relation M. It turns

out will be equal to sigma x i Mi bar. We call this as the summability relation right. What

this means is that for a binary system M will be equal to x 1 M 1 bar plus x 2 M 2 bar. 

So, in that sense what we are trying to do is trying to treat the total property in a mixture

M as if it  were it is a result of contribution of a part coming from component 1 and

another part coming from component 2. And each of these parts from components 1 and

2 is proportional to the partial molar volume or partial molar property coming from 1 and

partial molar property coming from 2. So, this total property for the mixture M is arising

from a  contribution  proportional  to  M 1  bar  from component  1  and  a  contribution

proportional to M 2 bar from component 2 right.

Now, in addition to this remember that because we are talking about a mixture M 1 bar

need not be same as M 1 and M 2 bar need not be same as M 2. When we say just

quickly to so that we reiterate the notations, when we say M i, it is for the pure species i.

When I say Mi bar, it is for species i, but it is a partial molar property in mixture and

when I  say  only  M,  it  is  the  molar  property  for  the  mixture  that  contains  whatever

components there are in that particular mixture. So, that is the notation we are using M i,

Mi over bar and M and in a mixture obviously, with the example we looked at yesterday



in terms of volume M 1 bar need not be same as the pure component value M 1; M 2 bar

need not be same as the pure component value M 2 etcetera right.

Now, all of these are molar properties. Partial molar property Mi is the molar property

for pure species i. M is the molar property for the mixture of components and all of them

are molar properties. So, all of them are Intensive variables. They do not depend on the

size of the system right. What do they depend on? Well, what they depend on comes

from the phase rule. 

For example, in case of a binary mixture the number of components is 2. I have a binary

mixture and I have one phase number of phases is 1. Then the degrees of freedom is C

minus of pi plus 2. So, that is 3. So, I have 3 degrees of freedom and like we talked

yesterday. For example, the Gibbs free energy is going to be a function of 3 variables the

temperature, the pressure and one of the 2 mole fractions either x 1 or x 2 in case of a

binary mixture right. In general the property M is going to be a function of 3 variables T,

P and x 1. If it is a multi component mixture, it will be dependent on M minus 1 mole

fractions etcetera.

If this be the case if M is dependent on temperature, pressure and mole fraction; I take

the derivative of this with respect to ni nM obviously, will be dependent on the way we

indicated it for G was small M right T, P n 1, n 2 right for a binary mixture and so on and

if I take the derivative of this with respect to n 1 or n 2, then what I get is either M 1 bar

or M 2 bar. Then, it turns out that M 1 bar is going to be a function again of the three

variables right T, P and x 1 or T, P and x 2. 

So, the degrees of freedom does not change. It is a partial molar property, it still remains

3. So, M 1 bar also will be a function of three variables T, P and x or in general for a

multi component mixture, it is going to be a function of the temperature the pressure and

composition; it will depend on all of these variables and these are again molar properties.

So,  they  are  intensive  variables,  but  then  in  case  of  a  mixture  they  will  depend on

temperature pressure and composition for a pure component of course, they depend only

on temperature and pressure. 
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Now, if I ask you what is the partial molar property for a pure species? For a pure species

of  course,  M lets  say  I  have  only  1  component.  Pure  species,  one  alone  and  I  am

interested in finding M 1 bar right. For pure species n will be equal to n 1 and M the

molar property will be equal to M 1; the molar property of the pure species 1 with the

notation we have used. So, M 1 bar, then will be equal to derivative of nM with respect

to n 1, when I hold temperature, pressure and n 2 here. I only have one component. 

So, holding n 2 everything else anyway there is no other species which needs to be held

constant. So, it is simply derivative of n M with respect to n 1 at P and T right and since

n is same as n 1 and M is M 1 which is constant; M 1 itself will not depend on the

number of moles, it is a molar property. So, independent that is right that independent of

n 1 right because it is an intensive property, it is a molar property for pure species 1. So,

it is independent of n 1.

So, I can write this guy as n times n 1 times M 1 over n 1 at P and T and that M 1 can

come out of the derivative and what I have is derivative of n 1 with respect to n 1 at P

and T and this will be M 1. So, M 1 bar for pure species is same as the pure species

molar property. So, partial molar property will be same as the pure component property

if I have only one component in that mixture obviously, right.
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Now, let  us talk about another  very important  relation we commonly use in solution

thermodynamics right; we call this as Gibbs-Duhem Equation. It turns out that if I write

a fundamental property relation for any molar property M, dM was derivative of M with

respect to P at T and x for T and n i. So, it is T and x d P plus derivative of M with

respect to T at P and x dT plus sigma over i M i bar d x. I am right? We have also seen

that through summability relation M is a sigma over i x i Mi bar. What this means is that

if I take a derivative of this dM will be sigma over i x i d Mi bar plus sigma over i Mi bar

d x i. 

Now, if I use these two relations 1 and 2, I can eliminate the M right and what results is

derivative of M with respect to P T x d P plus derivative of M with respect to T P x dT

plus the sigma Mi bar dx; I will cancel out will be equal to sigma of i x i d Mi bar. In a

more general way, we actually bring it to the other side and write it as negative this will

be equal to 0. This particular equation the last equation is known as the Gibbs-Duhem

equation. 

What  it  gives  us  is  that  this  equation  must  always  be  satisfied  for  any  changes  in

temperature,  pressure  and  partial  molar  property  Mi  bar.  We  can  restrict  this  for

conditions of constant temperature and pressure which is a more useful way of using

Gibbs-Duhem equation. At constant temperature and pressure the first two terms drop



out right and what we are left with is sigma over i x i d Mi bar will be equal to 0 at

constant temperature and pressure right. 

This  is  more  restricted  form of  Gibbs-Duhem equation  at  constant  temperature  and

pressure, but then it is more useful for practical applications let us see what we mean by

that right. Let us consider a binary system.
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So, the molar volume, it  is  easy to explain most of this  concept  in terms of volume

because we can easily relate to the volume right. So, v the molar volume of the mixture v

in a binary mixture by summability relation is x 1 v 1 bar plus x 2 v 2 bar. 

So, now if I say at constant T and P sigma x 1 d, yeah well sigma x i dVi bar has to be 0.

This is Gibbs-Duhem equation right. So, what this means is x 1 dv 1 bar plus x 2 dv 2

bar equals 0. This is a binary system. So, we can actually write x 2 in terms of x 1. So,

this  is  x  1 dv 1 bar  plus  1 minus  x 1 dv 2 bar  is  0.  Like  we said this  is  constant

temperature and pressure the only way v 1 bar or v 2 bar will change is when x changes

right. 

So, essentially when we say dv 1 bar, it is change in v 1 bar due to change in x. So, I can

also write this equation as x 1 dv 1 bar by dx 1 plus 1 minus x 1 d v 2 bar over dx 1

equals 0 or in other words, d v 2 bar over dx 1 is negative of x 1 by 1 minus x 1 d v 2 or

rather d v 1 bar by d x 1. 



Now, what this equation gives me is that the change in the molar volume for two v 2 bar

is not independent. It is dependent on how v 1 bar changes with x 1, the slope of v 1 bar

versus x 1 curve which is dv 1 by dx 1 will determine the slope of v 2 bar versus x 1

curve also via this relation; both of them are not completely independent in that sense.

So, this equation always has to be satisfied which means there are two partial  molar

properties v 1 bar and v 2 bar cannot independently change by themselves. They are

somehow related to one another in this case we are this particular equation. Now, we will

hang on to this for the next part of our discussion also. We will come back and revisit this

equation. Let us see another important property of a partial molar proper partial molar

properties right.
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We said v is we will go back to our example of a binary system right. 

Let us look at a binary system. So, v is x 1 v 1 bar plus x 2 v 2 bar; if I write the total

volume, then n times v will be n 1 v 1 bar x 1 times n is n 1 plus n 2 v 2 bar. Now,

remember that n is n 1 plus n 2. This is a binary system right. Now at this case we decide

to add delta n 1 clue very small value delta n 1 moles of 1 to this mixture all right. 

We decide to add delta n 1 moles of 1 to this mixture and what happens is there will be a

change in volume and v final will be n 1 plus delta n 1 times v 1 bar; v 1 bar and v 2 are

all though a functions of composition, we are doing it at the same T and P. Those are not



changing although they are functions of composition, if the change in n 1 is very very

small; delta n 1 goes to 0. Then, v 1 bar and v 2 bar is essentially the same right. 

So, n 1 plus delta n 1 times v 1 bar plus n 2 times v 2 bar right and v final minus nv

initial right; the initial value is right here all right and we final minus nv initial will be

essentially then delta n 1 times v 1 bar right. So, let us call this as delta nv. This will be

delta n 1 times v 1 bar right. So, the change in volume of the mixture is delta n 1 times v

1 bar. 

Now, at pure component limit of one that is if I take my mixture to be mostly 1, there is

very small amount of 2; then x 1 goes to 1, x 2 goes to 0 and this will be the case when n

1 is very large than then n 2 right. If this is the case, I have a mixture which is mostly 1

and very small amount of 2, in this particular mixture. At such a scenario, what if I add

delta n 1 moles of 1; what would be the change in volume?

It will no doubt be delta n 1 times v 1 bar at every location, whatever that v 1 bar value

is. But if my mixture is mostly 1 and I add delta n 1 moles of 1, then there is no reason to

believe that the change will not be proportional to the pure component value of 1. Or in

other words, delta for nv will be equal to delta n 1 times v 1. At this limit the change in

volume because I am adding additional moles of 1 and it is mostly pure component 1

anyway, it will be same as delta n 1 times the pure component value for 1. 

So, what this tells me is that at this pure component limit, then limit x 1 going to 1 v 1

bar should equal to v for pure 1. You can compare this particular equation here and this

equation which is  the general  case applicable  in  all  the compositions  and looking at

them, you can tell that they add the pure component limit v 1 bar will be equal to the

pure component value for 1 which is v 1. 

Similarly, right limit of at the other pure component limit, when I have mostly 2 at that

case v 2 bar will be same as v for pure 2. So, in general then at the pure component limit,

the partial molar property will be same as the molar property for the pure species. That

was an easy result to obtain.
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Let us talk about the other limit. What happens when x 1 goes to 0 which will be the case

when n 1 is much smaller than n 2? At this limit if I add, now remember this is a general

result delta nv is delta n 1 times v 1 bar right. At x 1 going to 0, if n 1 is much smaller

than n 2; then, can I say something about v 1 bar? At the other limit when x 1 was going

to 1, v 1 bar was same as pure 1. 

At the limit when x 1 goes to 0; can I say something about v 1 bar? First of all as x 1

goes to 0, we call this as infinitely dilute 1 or infinite dilution for component 1 in the

mixture of course ok. To answer this question, what happens to v 1 bar, we resort to

using the Gibbs-Duhem equation we had earlier. 

What  we  have  obtained  earlier  in  terms  of  Gibbs-Duhem equation,  if  you  recall  is

expression between dv 1 bar by dx 1 and dv 2 bar by dx 1 right. So, it turns out that dv 1

bar over dx 1 is negative 1 minus x 1 by x 1 d v 2 bar over d x 1. As x 1 goes to 0; x 2

goes to 1, it is pure species 2. So, because it is pure species 2 dv 2 bar over dx 1 v 2 bar

approaches v 2 and dv 2 bar by dx 1 approaches 0 right. It does not change; its 0 because

you are approaching the pure component limit. 

The second term is 0 alright, but the first term also is divided by 0. So, what we do is we

apply lhopitals  rule for this particular expression; evaluate it and as you will see if I

apply lhopitals rule at this limit, it turns out that the limit of x 1 going to 0 v 1 bar by dx



1 is negative limit x 1 going to 0, 1 minus x 1 by x 1 d v 2 bar over dx 1 and this limit

applying lhopitals rule turns out to be 0.

What this means is that v 1 bar approaches a constant value. That is the only way this

derivative can go to 0, when we say constant value, we mean that it is independent of x.

So, at the other limit when x 1 goes to 0, v 1 bar approaches a constant value or it is it

approaches a value which is independent of the composition. Now, we also know that the

change in the total volume is delta n 1 times v 1 bar delta n 1 is finite. 

So, v 1 bar also has to be a finite value so that the change in the total volume will be

finite which means that v 1 bar will approach some constant finite value. So, I am going

to add that term here, constant finite value right. So, then we call that constant finite

value v 1 bar infinity or partial molar volume for one at infinite dilution. 

So, we have looked at two limits; one is the limit when we approach the pure component

value for pure component of 1, at that case v 1 bar is unit v 1 bar is same as v 1. At the

other end when I approach the pure component limit for 2 or infinite dilution for 1, then

v 1 bar will  be v 1 bar infinity. So, we talked about a molar volumes,  but then this

discussion is applicable to any thermodynamic property.
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So, let us summarize what we just said about partial molar properties limit of x i going to

1 M i bar is M i. At the pure component limit the partial molar property is same as the



pure component property. Limit x i going to 0 at the infinite dilution limit Mi bar is a

constant value called as the infinite dilution value M i bar infinity. So, these are the two

important characteristics of a partial molar property. We can use it and say that and in

when I say H 1 bar infinity, this is the enthalpy for 1 at infinite dilution when I say S 1

bar infinity, infinite entropy for 1 at infinite dilution limit etcetera. 
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Now, we looked at some of the characteristics of partial molar properties. Let us look at a

few more important relations amongst partial molar properties themselves. If you recall d

nG was nv dP minus ns dT plus sigma over i mu i d n i. We can write it for a size of the

system equal to 1 and in that case d G will be VdP minus SdT plus sigma over i for sake

of clarity I am going to use Gi bar instead of mu I, both of them are identical as you

know d x i right.

Now, looking at  this fundamental property relation for an open system, if I ask what

would be the derivative of G with respect to the temperature, when I hold the pressure

and composition all mole fractions of all the components P and x constant. Then, we can

easily answer that it is negative S right. Similarly, if I look at this equation and ask the

derivative  of  G with  respect  to  P at  constant  T n  x  is  V right.  Once  x  is  constant

remember that it means that we are in a condition for the closed system. 

So, essentially these were the equations which we actually used for a closed system right.

Now I start from here and then the last equation of course, is going to be derivative of G



with respect to ni at P, T and nj all the other j’s that are not equal to i will be Gi bar. Now,

what I will do is I will take these equations 1, 2 and 3. I will take these equations 1, 2 and

3; let us start with one and three first right and then so, now what we will do is take

equation 1 here and take the derivative with respect to n i. Derivative with respect to n i,

Derivative of G, derivative of T at P and x and with the derivative with respect to n i is

taken at P, T and n j right and on the right hand side, it will be derivative. So, I am using

equation 1 and taking derivative with respect to ni on both sides, it will be negative S at

P, T and n j right. 

Now, if I look at the right hand side derivative of S with respect to ni at P, T and nj;

obviously, is the definition for partial molar entropy. So, it will be S i bar a negative sign

that carries. And on the right hand side, what we will do is we will change the order of

differentiation.  So,  it  will  be derivative  of  G with  respect  to  n i  at  P, T and nj  and

derivative of that with respect to T at P and x and the term within the square parentheses

here is essentially Gi bar as you know. 

So, that value will be derivative of T Gi bar at P and x is negative Si bar right. This is

what I get using equation 1. I can similarly use equation 2 to get derivative of Gi bar with

respect to P at constant temperature and x is essentially V i bar. This follows from 2; this

was from 1 right. So, now, I have equation 4 and equation 5. If you look at equation 4

and 5, in both cases my composition is constant; we are at constant x right.
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So, if we take that, then it turns out in a mixture of constant composition. Derivative of

Gi bar with respect to T at P and of course, x because it is constant composition anyway,

it is negative Si bar derivative of Gi bar with respect to P at T n x is V i bar right and in a

constant composition mixture. Obviously, G i bar will be a function only of two variables

T and P because x is already constant. 

We said in general Gi bar is a function of T P and x i, but then because it is a constant

composition mixture this term drops out and all I have is functionality with respect to T

and P and if I write the total derivative then d Gi bar is derivative of Gi with respect to P

at constant temperature and of course, x is constant dP plus derivative of Gi bar with

respect to T at constant P and x of course dT. 

The first term here is Vi bar; the second term here is negative Si bar. So, what we end up

with is d Gi bar is Vi bar d P minus S i bar dT. On the other hand, if in a constant

composition mixture if I write the equation fundamental property relation for the open

system; then, dG is VdP minus SdT plus sigma over i mu i d x i and in case of constant

composition dx i will go to 0. So, what I will have is essentially dG is VdP minus minus

SdT. This is constant composition x.

So, now, I have two relations; one on the left hand side relating partial molar properties

to changes in temperature and pressure and another on the right hand side, relating the

total property to changes in temperature and pressure and if you look at the structure of

these 2 equations. They are identical for the total property dG is VdP minus SdT and for

the partial molar property d G i bar is Vi bar dP minus Si bar dT right. 

So,  partial  molar  properties  are  related  by  analogous  equations  to  that  of  the  total

properties  in  a  constant  composition  mixture  in.  I  can  also  write  the  other

thermodynamic properties right. For example, d U is Td S minus Pd V in a constant

composition mixture d U i bar is Td Si bar minus Pd Vi bar.
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What we have done today is looked at what we call as the Gibbs-Duhem equation and

you already see in its application in obtaining the partial molar property at the infinite

dilution. We also looked at the values of the partial molar properties at the two limits x 1

going to 0; or x i going to 0 and x i going to 1. And finally, we looked at the relationships

between the partial molar properties themselves; relationships amongst the partial molar

properties. So, we are trying to build a thermodynamic framework to handle solutions or

a mixture of chemical species. We looked at partial properties, several relationships that

relate these partial molar properties amongst themselves. 

And then, we looked at what is known as the summability relation which relates the

partial  molar property to the property of the mixture and we looked at Gibbs-Duhem

equation which essentially talks about how the partial molar properties vary with respect

to composition or the relationship amongst variation in the partial molar properties of

different species.

And so, we will end our discussion there today. When we come back, we will  carry

forward this ideas of partial molar properties and solution thermodynamics so that we

can apply them to chemical engineering problems.

Thank you.


