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Hello  and welcome back.  In  the  previous  lectures,  we dealt  with  Calculation  of  the

change  in  Thermodynamic  properties  which  have  a  single  component;  one  chemical

species or in fact, those calculations we have done will also be applicable for systems,

where the composition is constant even if it is a mixture. As long as the composition is

constant all the equations we have dealt with are applicable. 

So,  what  we will  do in  this  lecture  from now on is  try  to  deal  with the mixture  of

chemical  species  because  that  is  most  commonly  encountered  in  a  chemical  process

industry. When we have a mixture of chemical species, the behavior of such a mixture is

going to be different from the pure component counterparts all right. When we mix there

are going to be other types of interactions that take place in the mixture between the two

distinct chemical species and somehow we need to account for these type of changes or

at  least  know how to formulate  a thermodynamic  framework to  handle a  mixture of

chemical species and we do that. One of the ways we do that is through what is known as

a solution Thermodynamics approach.

We need to define additional thermodynamic properties, then what we have done so far

to be able to lay the theoretical framework for dealing with mixtures that is what we will

try to do in today’s lecture. We start with a simple example, if you recall the one we

discussed in one of the introductory lectures.



(Refer Slide Time: 02:25)

Let us say I have a mixture of methanol and water. This is methanol. Let us say I have

0.3 moles of methanol and the molar volume for methanol is about 40.7 cc per mole at

temperature and atmospheric pressure. And then, I have another beaker which contains

water and I have about 0.7 moles of water and the molar volume for water the same

conditions is about the 18.1 cc per mole. Because I have 0.3 moles, this total volume for

one; here is about 12.21 cc and the total volume for the water I am taking is about 12.67

cc. This is number of moles multiplied with the molar volume now one. 

Once I have these two distinct chemical  species and I try to mix them, the resultant

would be a mixture of these two compounds right. And if I posed a question what would

be the total volume for this mixture? Then, we would be tempted to say that it is going to

be 12.21 plus 12.67 which is 24.88 cc. 

However, it turns out when you do this exercise the volume you measure is not 24.88 cc

rather  it  is  24.03 cc’s lower than water  you would expect  by a simple  additive  rule

mixing  rule.  You  apply  for  this  particular  scenario  that  is  because  the  interactions

between methanol and water are going to play a role in determining the molar volume for

this particular mixture. 

So, then it turns out if I have a mixture, I cannot simply use the information on the pure

components and try to tell what the molar volume for a mixture is. In fact, it is true not

just for molar volume, but for any thermodynamic property bit enthalpy, bit entropy or



Gibbs free energy. The mixture is going to behave differently than the pure component

counterparts or by simple edit addition of the pure component properties. 

Now, let  us  also  take  this  discussion  a  little  forward  so  that  we  can  define  a  new

thermodynamic property. Let us say I have 1 mole of this mixture as we have seen here

and this 1 mole is going to occupy 24.03 cc and this particular value let us call this as the

volume of the mixture, this is the total volume of the mixture; the total number of moles,

we will drop the subscript n 1 is for methanol and 2 is for water; n is simply n 1 plus n 2

which is 1 mole. 

So, the molar volume of the total volume in this case because I have 1 mole is going to

be 24.03 cc or cc per mole and then, the mole fraction in this scenario let us write the

mole fraction for methanol with this subscript 1 in this scenario is 0.3. So, now, I have a

case where I have a mixture with 0.3 mole fraction for methanol, whose total volume or

the volume occupied by 1 mole of this particular mixture is 24.03 cc. 

Now, if I take this mixture and I decide to add a little bit more methanol to this mixture,

let us say I want to add some additional number of moles of methanol to this mixture; a

small quantity 0.001 moles. Now, this additional number of moles is going to contribute

to additional volume right and that will increase the total volume of the mixture right. 

So, it turns out v total when I add this additional number of moles, this v total would go

from 24.03; n equal the total mixture is n equal to 1 mole x 1 is 0.32 to 24.0686 cc’s; n is

1 plus 0.001 moles of methanol. So, this particular quantity here is delta n 1. We have

added pure methanol to this mixture and the mole fraction has changed from 24.03 to

24.0686, just as in case of adding methanol and water a pure additive volume is not

going to work, even when I add the additional number of moles the difference is not

going to be directly related to 0.001 or the volume of 0.001 moles of methanol. 

So, if you look at it delta v is in this scenario delta v total is in this scenario 24.0686

minus 24.03 which is 0.0386 cc right and I have added 0.001 moles. So, if I divide this

the change in the total volume with delta n 1 0.0386 over 0.001, if I divide the total

number of moles I  have added or the total  volume change with the total  number of

moles, I have added for methanol this value turns out to be 38.6 cc or more and note that

this value is not equal to v 1.



The  molar  volume  of  methanol  molar  volume  for  methanol  is  right  here  40.7  cc;

whereas, when I divide the volume change with the number of moles I have added what I

get is 38.6 cc. So, this number is different from 40.7 cc as you would expect. Once we

looked at the first scenario that when I add, they do not simply the volume simply do not

add up. So, when I add additional number of moles of volume change is not going to be

directly proportional to the molar volume of methanol.
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So, this is an important observation. This change limit of delta n 1 going to 0, delta v

total over delta n 1 is not equal to v 1 in this scenario. So, we will give this particular

limit; a name we will call it as v 1 over bar and we call it as partial molar volume. We

will come back to why that name has been used for this particular case, when we derive

more relations, but for now let us call it as partial molar volume. It is the change in total

volume of the mixture divided by the change in additional number of moles I have added

for methanol. In this case I have added methanol. So, this (Refer Time: 10:29) subscript

for partial molar volume will be for methanol which is 1 right.

Similarly, if I take limit of delta n 2 going to 0, the change in the total volume of the

mixture over delta n 2, this will not be equal to the molar volume of water. But rather it

would be equal what we call as v 2 over bar this is still partial molar volume. But in this

case  it  is  partial  molar  volume for  water;  in  the  previous  case,  it  was  partial  molar

volume for methanol right. So, we have a scenario where the mixture behaves differently



right than their pure cop pure component counterparts and v 1 bar is not equal to v 1, at

least in this case. In certain cases they may be equal, but they do not have to be and v 2

bar is not equal to v 2. The partial molar volume for methanol is not same as the molar

volume for methanol; the partial molar volume for water is not same as the molar volume

for water.

So, we have defined a new property for a mixture partial molar volume right. In fact, we

can mathematically write this limit as the derivative of the total volume of the mixture

which is the number of moles multiplied with the molar volume of the mixture n times v

over n 1, the derivative of this quantity. 

Remember,  we have  taken  that  example  at  constant  pressure  and temperature,  room

temperature, atmospheric pressure we said and when we change the number of moles for

methanol, we are holding the number of moles for water constant and to this quantity is

called as the partial molar volume. This is this quantity is what the limit represents.

So, mathematically we are going to define v 1 bar as the partial derivative of the total

volume with respect to the number of moles of methanol, when we hold the temperature

pressure and number of moles for water constant. Similarly, if I need to define the partial

molar volume for water it would be derivative of n v with respect to n 2 at P T and n 1.

This is called as v 2 bar or partial molar volume for water. 
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So in fact, not just these quantities I can define other thermodynamic quantities also. I

can define H 1 bar; it would be derivative of the total enthalpy over n 1, when I hold the

temperature pressure and n 2 constant. Similarly, H 2 bar is going to be derivative of the

total enthalpy of the mixture over n 2, when I hold temperature pressure and n 1 constant

etcetera.  I  can  define  U 1 bar  which  is  the  H 1  bar,  remember  is  the  partial  molar

enthalpy  U  1  bar  is  partial  molar  internal  energy  right  and  again,  this  is  equal  to

derivative of the total internal energy over n 1 at P T and n 2. 

Similarly, I can define U 2 bar partial molar internal energy for let us call it as 1, I can

define it for 2, I can define partial molar Gibbs free energy G 1 bar, G 2 bar etcetera. In

fact, any partial molar property M can be defined in this fashion, it is the total property

over n 1 P T and n 2. This will be M 1 bar in a binary mixture of course. I can extend this

discussion to a multi component mixture, when there is more than two components and

in that case it would we call this as M i bar, this is the partial molar property for i and this

will be the derivative of the total property over n i. 

Because I need M i bar, I would need to take the derivative with respect to n i and I need

to hold the number of moles for all the other species j. It can be if I need it for 1, then I

need to hold 2 and all the other species 3, 4 etcetera constants we represent it as n j not

equal to i. So, it would be the derivative of the total property M with respect to n i when

the temperature pressure and n j where that j is not equal to i; all those moles for all the

other species j which are not i need to be held constant. When we do that we get what is

known as M i bar, this is this expression for a multi component mixture. 

So, we can extend this discussion from binary mixture to multi component mixture in a

straightforward fashion. So, the partial molar volumes, partial molar enthalpies, partial

molar Gibbs free energies etcetera can be defined in this way for a multi  component

mixture. Now, let us try to write some fundamental property relations for a mixture of

chemical species. 
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Now, recall that the Gibbs free energy the total Gibbs free energy is n v d P minus n s d

T. This is applicable for a closed system single phase, but if we have a single phase

homogenous  single  phase  system and  it  is  closed,  then  this  particular  expression  is

applicable is what we said. Now, if we have a single phase system and the system itself is

closed, then the number of moles for all the chemical species are same right; they are not

changing. 

So, this expression just considers the change either in the temperature or pressure of the

system, but not in the number of moles of the system because there is only one phase and

it is closed. The moles whatever are present in that vessel are always present right. I have

a vessel like this closed vessel I have something inside this vessel, all that is changing is

the temperature or pressure the number of moles cannot change once it is closed and it is

in a single phase. 

So, this equation in that sense is actually applicable not just for a closed single phase

system, but it  is  applicable  when we say closed single phase system, it  will  also be

applicable  for  a  system where  constant;  where  the  composition  is  constant.  So,  this

system actually or this particular equation actually is also applicable for a system with

constant composition. I can have a mixture inside this, but as long as it is closed and it is

in a single phase even that mixture can be or the change in Gibbs free energy of that



mixture  can  be  expressed  by  this  particular  expression  because  the  mixture  is  at  a

constant composition.

Now, what happens if it is not a closed system, if it is an open system and the system is

allowed to exchange matter with the surroundings. I can add some number of moles for

one of the chemical species or for both the chemical species. It is a mixture of chemical

species and how do we express the change in Gibbs free energy for such a system. So, to

answer that question let  us revisit the phase rule. The phase rule says the number of

degrees of freedom F is the number of chemical components minus the number of phases

plus 2 right. 

Now, if I have a single phase system with two chemical species, then the number of

degrees  of freedom is going to be 3 right.  So,  I  need to  fix 3 intensive variables  to

completely fix the state of system at equilibrium right. This is for 2 components and

single phase. I have a mixture of two components. So, we can think of this as the Gibbs

free energy, it can be any thermodynamic variable. Let us say it is a Gibbs free energy is

a function of temperature pressure. 

We need three variables; one is temperature, the second one is pressure and the third one

can be mole fraction of one of the components right. Note that when I say mole fraction

of one of the components, I can choose either x 1 or x 2; once I choose x 1 since the two

mole fractions should add to 1, x 2 is automatically fixed. So, I could have said T, P, x 1

or I could have said T, P and x 2; it does not matter, I can choose any one of the 2 mole

fractions if they are equivalent. 

So, the Gibbs free energy or in fact, any thermodynamic property is a function of three

variables in this case we chose it to be T, P and x 1. Now, if I have a mixture of three

components and one phase; I am still talking about a single phase system, but then I have

three components then F is obviously, going to be 4. As you can see and the Gibbs free

energy is going to be a function of 4 variables that would be the temperature pressure x 1

and let us say x 2, the mole fractions of two of the components. The third component

obviously is fixed because x 1 plus x 2 plus x 3 is 1; the mole fraction of the third

component is going to be fixed. I can choose any two of these 3 variables x 1, x 2 and x

3. In this case we are writing it as a function of x 1 and x 2. So, similarly we can keep

extending this.



So, in general Gibbs free energy in a multi component system is going to be a function of

T, P, x 1, x 2 all the way through x n minus 1 if there are M components; then, I need a M

minus mole fractions and temperature and pressures. So, that would be a total of M plus

1 variables So, to fix the state of the system, I need M plus 1 variables and this is how I

can write the functionality for Gibbs free energy. Now, let us carry that a little forward

that is the Gibbs free energy G which is a molar value.
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And it is a function of M plus 1 variables and we are conveniently writing it as G equal

to a functionality expressed in terms of T, P, x 1 x 2 so on all the way through x m minus

1. 

Now, if I ask a question, what is the functionality for the total Gibbs free energy not the

molar Gibbs free energy? Molar Gibbs free energy is an intensive property; the units are

something  like  joules  per  mole  what  I  want  is  the  total  Gibbs  free  energy  j;  well

obviously, the total Gibbs free energy is an extensive property. It depends on the size of

the system do I have 5 moles; do I have 10 moles in the system that is going to determine

the total Gibbs free energy. So, the size of the system matter. So, then it is going to be a

function of nG that is the total Gibbs free energy right. 

So, we will let us write it as G total is nG. It is going to be a functionality expressed in

terms of temperature, pressure, x 1, x 2 all the way through x m minus 1 and n the total

size of the system; n number of moles or equivalently once I have n and x 1, n times x 1



is obviously, the number of moles for 1 n times x 2 is obviously, the number of moles for

2 and so on. This functionality can be equivalently expressed as it is a function of T, P, n

1, n 2, n 3 so on nm minus 1 and the last value, I can either write as n or I can write the

number  of  moles  for  the  last  component  as  nm,  both  of  them  are  equivalent

functionalities right. 

So,  then  the  total  Gibbs  free  energy  nG is  a  function  of  these  variables;  M moles

temperature and pressure. Now if I want to take the derivative total derivative of this

total Gibbs free energy d nG is going to be the derivative of G or nG right both of them

are same, with respect to the pressure. When you hold the temperature and all the moles

constant times dP plus the derivative of the total Gibbs free energy with respect due to

the  temperature  and you hold  pressure  n  1  n  2  n  3  nm constant  times  dT plus  the

derivative of nG with respect to n 1 right.

When I hold the temperature pressure and all the remaining moles except 1 because I am

taking the derivative with respect to 1, I have to hold all the remaining moles constant. In

this case, they turn out to be n 2, n 3, n 4 so on nm dn 1 plus the derivative of n G with

respect to now first component to n 2; when I hold temperature pressure n 1 n 3 all the

way through nm except everything except n 2 times dn 2 plus so on and the last one

would be derivative of n G with respect to nm. 

When I hold temperature pressure n 1, n 2 and m minus 1 d nm; this would be the total

derivative d nG. Now here I am allowing n 1, n 2, n 3 etcetera to change which means

the system can exchange the number of moles of any of those chemical species with the

surroundings. So, it would be an open system. So, this would be the total change in the

total Gibbs free energy of the system of an open system actually right. 

Now, let us write it here. When I have n 1, n 2, n 3 and looking at the first term when I

have all of these constant all the number of moles constants, then it is as good as a closed

system because I am not exchanging moles with the surroundings. So, it is as good as a

closed system and for a closed system derivative of n G. It is just for this particular term

that derivative is n v. If you recall it is n v right. We said this is for a closed system. 

So, if I write the derivative of n G with respect to P at constant temperature,  then it

would be n v right. This is true for a closed system. Similarly, derivative of n G with

respect to T at constant pressure is going to be minus n s right. This is true for a closed



system with constant composition. So, I can substitute derivative of nG with respect to P

at constant temperature with n v; then of course, all the other moles are constant in which

case, it  turns out to be a closed system of constant composition. Again, even for the

second term all the moles from n 1 through nm are constant. 

So, it  again is a closed system at constant composition.  So, this derivative term here

would  be  minus  n  s  right  and  if  you recall  the  definition  of  partial  molar  property

derivative of nG with respect to n 1, when you hold temperature pressure and moles of

all the other chemical components constant except n 1; then this term is what we call as

partial molar property, in this case it is partial molar Gibbs free energy G 1 bar. Similarly

this one would be partial molar Gibbs free energy G m bar etcetera. 
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So, now I am going to make this substitution. So, that the derivatives look a little simpler

and I will rewrite this equation d nG is going to be equal to n v dP minus n s dT plus G 1

bar dn 1 plus G 2 bar dn 2 plus all the way through G M bar d nm right and partial molar

Gibbs  free  energy  is  a  quantity  that  appears  so  often  in  chemical  engineering

thermodynamics, we will give it a special name. We are going to call this partial molar

Gibbs  free  energy  as  Chemical  Potential.  It  is  a  very  important  aerodynamics  for

separation processes for chemical reactions etcetera. So, we give it a special name we

will call it as Chemical Potential and denote it by a Greek letter mu and because it is for



1, we call it as mu 1. The over bar is not required it automatically mu 1 itself is partial

molar Gibbs free energy or chemical potential.

Similarly this is mu 2. This is mu m etcetera. So, if I were to write this expression in

terms of chemical potentials, it would be d nG is going to be equal to n v dP minus n s

dT plus summation over all these species i going from 1 through m; mu i the chemical

potential of that particular species i d n i. So, this is a fundamental property relation for

the role of Gibbs free energy of the system of an open system right. If the system is

closed of course, if you look at this equation if the system is closed, then d n i for all i is

0 right because it is closed. The number of moles for all the species are constant; d n i

would be 0. The last term drops out and this equation reduces to.

This is for a closed system all right. For a closed system d n i is 0 for all i and this

equation would reduce to d of n G is n v dP minus n s dT which is what we already know

right. So, it will go back to its form for the closed system. So, this equation in that sense

is more general. It is applicable for both open and closed systems. For a closed system,

the last term going to be 0 of course right. This is called as the Fundamental property

relation and in fact, we can write all the derivatives we talked so far by looking at this

fundamental property relation, if I were to take the derivative of nG with respect to P

holding the temperature and all n i is constant. Then, holding temperature and all n i is

constant will cancel out the second and the third terms; all I have left is the first term. So,

this will be n v. 

Similarly, I  can look at  this equation and easily  write that the derivative of nG with

respect to temperature, holding pressure constant will cancel out the first term. Holding a

n i is constant and will cancel out everything in the third term. So, this will be equal to

negative n s. Similarly, derivative of nG with respect to n i and remember when I say ni,

this is a summation over a number of chemical components. When I say i, it is only one

chemical component. So, I need to hold P T and n j not equal to i. All other components

which are not; I need to be held or the moles for all those components need to be held

constant. This would be equal to mu i which of course, is what we know the definition

for partial molar Gibbs free energy G I bar etcetera. 

So, from now onward when we write these derivatives for partial molar properties when

I say mu i, we are going to ignore this particular expression right. We will simply call it



as nj and by nj we automatically mean that nj not equal to i.  So, that will make the

notation  a  little  easier.  So,  the  partial  molar  Gibbs  free  energy  then  is  same as  the

chemical potential which is the derivative of total Gibbs free energy with respect to ni at

P T and n n j right. So, now, having said that let us look at the importance of chemical

potential;  chemical  potential  for  phase  equilibrium  and  then  certain  relationships

between various partial molar properties right. 
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Let us first look at the phase equilibrium part. Now let us talk about a system that is

closed. It has two phases any two phases; it can be a vapour and a liquid phase. So, let us

talk it vapour liquid equilibrium, but then this is extendable to any equilibrium. So, I

have some liquid mixture here and a corresponding vapour mixture above the liquid

mixture. For generality let us call this as the alpha phase and this as the beta phase. Let

us give it a different color.

So,  we  have  alpha  phase  on  the  top  and  beta  phase  on  the  bottom.  Now, for  this

particular scenario, let us write the expression for the total Gibbs free energy change of

the alpha phase and the total Gibbs free energy of the beta phase. For the alpha phase d n

G for alpha is going to be equal to n v alpha dP minus n s alpha dT plus sigma over i mu

i alpha d n i alpha. This is the expression for the total Gibbs free energy of the alpha

phase right. 



Now, the let us say that these two phases are in equilibrium right and when we have

these  two phase mixture,  they  are  free  to  exchange  the  total  vessel  is  closed,  but  a

particular phase is open because it is free to exchange matter with the other phase. So,

for example, some moles from the alpha phase can be transferred to beta phase for a

component i; some moles for beta phase can go through alpha phase. 

So, each phase in itself is an open system, but both phases put together are inside the

closed vessel and they constitute a closed system right. And what we have written here is

the total  Gibbs free energy for the alpha phase. I can also write the total  Gibbs free

energy for the beta phase d nG beta is going to be equal to n v beta d P minus n s beta dT

plus sigma over i mu i beta d n i beta right..

Now, notice that we have not used a subscript for P and for T. So, the implicit assumption

in here is  that  they are inside the container  both of them are in equilibrium. So, the

temperature and pressure for both the phases is same. So, we are simply going to use P

instead of P alpha or P beta T instead of T alpha or T beta. So, these are the expressions

for alpha and beta phases now.

For the total closed vessel, for both the phases put together right the Gibbs free energy d

nG is going to be the summation of the Gibbs free energies of the alpha phase and the

beta phase right and its going to be n v alpha phase plus n v beta phase dP minus ns for

the alpha phase right ns for the beta phase dT plus mu i for the alpha phase d n i alpha

plus mu i for the beta phase d n i beta and summation of this over all the components i.

When I say all the components i, it is from i equal to 1 to m; where, m is the number of

components in this particular system.

So, this is the expression for d of n G the system itself is closed right. So, because the

system is closed the total volume of the system is not going to change. Now, the system

itself is closed right. Then, I look at the first term in this particular scenario nv of alpha

phase plus nv of beta phase is the total volume of the alpha phase plus total volume of

the beta phase, when we add these two volumes what we get is the volume of the system

we can simply call it as nv right.

So, d of nG is going to be equal to nv; where, n is the total volume of the system that for

the alpha phase plus that for the beta phase dP minus as for the alpha phase plus as for

the beta phase is the role entropy ns dT plus sigma over i this term stays as such d n i



alpha plus d n i beta d n i beta right. Now, because the system is closed right d of n G is

for a constant composition system, when we put both the phases together this equation

should hold. So, this was the first equation and this is the second equation, this is true for

any closed system. Once the system is closed both the phases put together are closed,

they are not exchanging outside the yellow box.
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So, the second equation has to hold from equations 1 and 2, it is obvious that sigma over

i mu i d n i for the alpha phase plus mu i d n i for the beta phase should equal to 0. Now,

if you think about it; d n i alpha is the number of change in i for alpha phase which

means the number how many moles have changed from the alpha phase and because n i

alpha is automatically means that d n i alpha plus d n i beta equals 0. So, the number of

moles that have disappeared from one phase have to appear in the other phase or in other

words, d n i alpha is negative of d n i beta. 

So, if I take that, then this equation reduces to mu i alpha minus mu i beta d n i alpha is

equal to 0 right. So, let me extend that a little bit. This would be mu i alpha minus mu i

beta or mu 1 alpha plus mu 1 beta times d n 1 alpha plus mu 2 alpha minus mu 2 beta

times d n 2 beta plus so on all the way through the mth component mu m alpha minus mu

m beta times d n m beta; this needs to be equal to 0. 

Now, each  of  these  components  n  1  alpha  n  2  alpha  etcetera  are  independent  and

arbitrary. We can choose the number of moles for any of the species arbitrarily and they



are independent of each other and because of that reason the only way this expression is

going to go to 0 is if each of the terms goes to 0 or in other words, mu 1 alpha has to be

equal to mu 1 beta; mu 2 alpha has to be equal to mu 2 beta and so on all the way

through the m component mu m alpha has to be equal to mu m beta. 

So, in that sense if the phases are in equilibrium, then it turns out that the chemical

potential for each of the species 1 2 3 all the way through m have to be equal in both the

phases alpha and beta. In addition of course, we already considered that the temperature

and pressure in both the phases are same. So, the criteria for equilibrium then is that the

temperature, pressure and the chemical potential mu i for all species i is or are same in

both the phases right. 

This is the criteria for equilibrium and now we see why this is such an important variable

for  chemical  engineering  applications  right.  Chemical  potential  turns  out  to  be  an

important  variable  which  decides  on  how much  phase  dry  or  mass  transfer  we  can

achieve from one phase to another. We will come back to that discussion later on, but for

now let us move on with the partial molar properties. 
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So,  we looked at  what  partial  molar  volume is  in  detail  and then,  we extended that

discussion  to  various  partial  molar  properties  such  as  Gibbs  free  energy,  enthalpy,

internal energy etcetera and it turns out there is a common thread that binds all these our

partial  molar  properties.  If  you recall  the discussion we had for the total  Gibbs free



energy, we can write a similar expression for the any total thermodynamic property d of

n M, it would be the partial derivative of M with respect to the pressure when we hold

temperature and ni constant  times dP, the partial  derivative of M with respect to the

temperature. 

When I hold pressure and ni constant times dT plus the partial derivative or summation

of the partial derivatives of nm with respect to ni, when I hold pt and nj constant right d n

i and the last term is what we call as the partial molar property M i. So, I am going to

replace the last term with M i bar just to make it simpler to handle, it is M i bar d n i.

Now d of nM is M times d n plus n times dM. 

And similarly, if I write ni is the total number of moles multiplied with the mole fraction

then d n i is going to be d of n times x i or n times d x i plus x i times dn. Now, let me put

these two expansions in the previous equation. So, that what we get is n times dm plus M

times dn is the derivative of nm with respect to P temperature ni dP plus derivative nm T

pressure n i dT plus M i bar n d x i plus x i d right. 

So, we will take this equation here and try to rearrange the terms a little bit; what we get

is d M minus the derivative of nM with respect to P at T and n i write and when I hold all

the n i ok, let us make one other. Now the derivative of nm with respect to P and I hold

all the n is constant, it automatically means the total number of moles n is constant. So,

this can come out of this derivative. So, this will be n times the derivative of M with

respect to P and because all ns are constant I can also claim that the mole fraction x is

constant. 

Similarly, for the second term derivative  of nm over T at  P and n i  will  be n times

derivative of M with respect to T at P and x. So, I am going to make let us number them

so that it is easy this is 1 2 3 4 5 and 6. So, what I will do is, I will substitute 2 3 5 and 6

and 4. I will  make this substitution and do a little  bit  of rearrangement  of the terms

etcetera.
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And if you do that I will leave it for you to do it. If you do that what we will end up with

is dM minus derivative of M with respect to P T x dP minus derivative of M with respect

to T P x dT minus sigma over i M i bar d x i multiplied with plus M minus sigma over i x

i d mi bar multiplied with the d n i or d n equals 0.

So, we rearrange the terms and made those substitutions to get this equation and once we

are at this stage, if you look at it what this tells me is that sum of two turns needs to be 0.

If  you  look  at  this  equation  there  are  two  terms  in  this  equation;  the  first  term  is

multiplied with n, the size of the system and the second term is multiplied with d n or the

change in size of the system. Both these quantities n and d n are arbitrary. I can choose

any size of the system and I can choose decide to change that size by any amount I wish

to d n and both of them are independent and arbitrary in that sense.

And the only way this particular equation will be applicable, then for all the scenarios is

if each of the terms inside the parenthesis is going to go to 0 and if that happens the first

term is an equation which we already know the total molar property M is going to be the

derivatives of the partial properties dx dP oh sorry is going to be the total molar property

M is going to be the derivative of M with respect to P at T n constant T n x dP derivative

of M with respect to T at constant P and x dT plus sigma mi bar d x i overall i. The

second equation is M is sigma x i M i bar again over all i.



Now this first equation here is actually a special case of the equation we already know

right. Now, if you take this equation 1 and you make the total size of the system n equal

to 1 right; in equation 1 here if I put n equal to 1, what we get is dm on the left hand side

dm  over  dP  dou  M  over  dou  P  at  constant  T  and  n  i;  if  all  ni’s  are  constant,  it

automatically means the mole fraction of all is also is constant right. 

So, it is same as dou n by dou P at T and xd P dou M by dou T at P and x dT plus sigma

M i bar and when the size of the system is 1; d n i equals dx i. If the total number of

moles is 1 right. So, the last term will be d x i. So, this equation 1 essentially reduces to

what we have here; this is a special case of 1, when the size of the system is 1 right and

the second equation however, is an outcome of this whole exercise. It says that the total

molar property M is equal to summation of the partial molar properties weighted with the

respective mole fractions x m M m bar. 

So, you weight all the partial molar properties with their respective mole fractions add

them  that  will  give  the  total  molar  property  for  the  mixture.  This  is  an  important

outcome. So, when we mix the components the partial molar volumes are not additive

right, but then what are additive is the partial molar volumes. If we know the partial

molar  volume,  then  we can  say  that  the  total  volume for  the  molar  volume for  the

mixture is going to be x 1 v 1 bar plus x 2 v 2 bar. For a special case v 1 bar might be

same as v 1; v 2 bar might be same as v 2 etcetera, but irrespective of whether it is true

or not, this particular expression is always true for a binary mixture.

Not just volume for any molar property M not just for binary mixture, but for even multi

component  mixtures,  M will  always be equal  to sigma x i  M i bar and we call  this

relation as Summability. We are summing the partial molar properties with respective or

weighted with their respective mole fractions and we call this as Summability relation.

So, that is the take home message for todays lecture. We will hold on to that and when

we come back in the next class, we will talk more about solution thermodynamics.

Thank you.


