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Lecture – 17
Thermodynamic Property Calculations using Cubic EoS Pitzer Correlations and

Thermodynamic Tables

Hello and welcome back. In the previous lectures we were looking at thermodynamic

property calculations or changes in thermodynamic properties for over a process. 
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And we looked at calculation of these changes for ideal gases. And then we introduced

the concept of residual properties which are corrections over the ideal gas. And we have

looked  at  how  to  calculate  these  residual  properties  like  residual  enthalpy,  residual

entropy, residual Gibbs free energy using virial equation of state. We have looked at how

to calculate them using second and third virial coefficients; one of them is going to be

explicit in pressure, the other one is going to be in explicit in volume. We have looked at

both versions for calculation or for residual properties. We also looked at the temperature

dependency of B and c; the second and third virial coefficients and how that effects or

how that is introduced into these calculations.

And finally, we have introduced the cubic equation of state. And using cubic equation of

state we have calculated the compressibility factor and the molar volume of a fluid. What



we will do in this lecture today is extend these ideas and concepts to calculate other

thermodynamic variables such as residual Gibbs, free energy residual enthalpy, residual

entropy etcetera using the cubic equation of state. Later on in this video we are also

going to talk about using what are known as Pitzer correlations, and one of the more

famous Pitzer correlations are Lee-Kesler tables.

So, we are going a look at Lee-Kesler tables and how they are used in calculation of

various thermodynamic variables. 
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To  begin  with  let  us  quickly  summarize  what  we  did  earlier  in  terms  of  some

mathematical expressions. We looked at expressions for the Gibbs free energy and we

said we are going to use Gibbs free energy as the generating function. We have looked at

expressions  for  residual  Gibbs  free  energy in  both  the  pressure  and volume explicit

forms. One of them applicable for the cubic equation of state, more applicable for the

cubic equation of state is going to be this one it is easier to handle these expressions. And

based on this generating function we have also derived the enthalpy and entropy. 

So, if you look at the right-hand side there is the compressibility factor and then integrals

in terms of density.
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In the generic form if you recall we have expressed the cubic equation of state we have

this expression. This is a general cubic equation of state. The expression for a epsilon

and sigma determine; what type of cubic equation of state we have we looked at four

different a cubic equations, early earlier right. 

So, we are going to these definitions for a and b is something we looked at earlier. In

addition we derive a few other parameters: beta which is going to be dependent on both

temperature and pressure in addition to B and q which will depend on a temperature

pressure and the  parameter  a  itself.  Once we have beta  and q we calculate  I  which

essentially corresponds to the integral we were doing earlier as in case of van der Waals

we were integrating it with respect to density. So, that I stands for the integral value. 

And it is different depending on what values of sigma and epsilon we have. And if you

look at the table in certain scenarios sigma and epsilon are same, in certain scenario

sigma and epsilon are different. Therefore, each case we have different expression for I,

right. It is given in terms of the compressibility factor Z and beta in addition to sigma

and epsilon.
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Once we calculate all of this right, then we can go back and use these variables we have

calculated to write the expressions out for various residual properties. In particular for G

R over RT; we have already calculated the compressibility factor the term beta q and I.

So, I can plug those in there to get G R over RT. 

Similarly  for  H  R  over RT and S  R over RT there  is  a  derivative  term  of  the

compressibility  factor  with  respect  to  temperature  and the  derivative  with  respect  to

temperature brings in this additional term square root of T r over alpha. And if you look

at the previous slide this alpha right when we take the derivative for van der Waals a was

not a function of temperature, but for other equations of state like these two it will be a

function of temperature. And for these equations of state we take the derivative when we

do the integration after taking that derivative we end up with these terms square root of T

r over alpha and zeta; which again is given in the expressions here, right. For SRK and

Peng-Robinson equation of state for others of course. We do not have the value for zeta,

it they are not dependent on temperature. 

So, keeping these in mind we essentially we do not have to use these expressions, you

can start  out from the equation of state  derive like we have done for van der Waals

equation of state we will. Still end up with the same result, but it is convenient to have

handy expressions such as these as long as we remember where they came from. And



once  we  have  these  expressions  it  is  pretty  straightforward  to  use  them  in  our

calculations. 
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So, what we want to do is: now let us look at an example Going to find the residual

enthalpy of propane at 280 Kelvin and 5.8 bar using Peng-Robinson equation of state. If

you  look  at  this,  if  you  want  to  find  the  residual  enthalpy  I  need  to  calculate  the

compressibility factor Z alpha T r q I etcetera.

So, let us first go back to what Peng-Robinson equation of state is, this is at right. And

then for Peng-Robinson I am interested in sigma and epsilon values, they are not same.

So if I when I am calculating I i am going to use this expression for I because sigma and

epsilon are not same and other equations are they are same for all equations of state. And

of course, for calculating alpha I want a value for zeta which will come from here; in

case of Peng-Robinson.

In these scheme of things the first thing then I want to find our P c and T c. So, I am

going to look up a data handbook or your textbook for propane the critical temperature is

369.8  Kelvin  critical  pressure  is  42.48  bar.  And  hence  we  calculate  the  reduced

temperature and reduce pressure P over P c which in this case turns out to be 5.8173 over

42.48 which is 0.1369. And similarly T r is T over T c which turns out to be 0.7572. 



Once I  have  these  two values  and also  the  value  of  omega  the  eccentric  factor  for

propane from the tables in this case its 0.152. Once I have these values I can calculate

zeta which is for Peng-Robinson it is 0.37464 plus 1.54226 omega minus 0.26992 omega

square. And this value turns out to be 0.6028. 

And once I have omega I can calculate alpha which is 1 plus zeta 1 minus T r to the

power half whole squared.

So, I know zeta I know the reduced temperature, so I can plug the numbers in to get the

value for alpha; in this case this value turns out to be 1.1627 right. I have alpha, I have

zeta, the other things I need for in this calculation are beta which is omega it is omega P r

over T r or B P over RT whichever one is convenient depending on what we have. In this

case let us just go with omega P r over T r both are equivalent expressions P r over T r.

And for P Peng-Robinson omega is 0.0778, P r is 0.136 and T r is 0. 7572. 

So, this beta; then turns out to be 0.01407. Similarly q is psi alpha by omega T r. And I

have all the numbers I need if I plug these numbers n I will end up with a numerical

value  of  9.02.  I  have  beta  and  q.  The next  thing  to  find  is  the  actual  value  of  the

compressibility factor itself. And in one of the previous lectures when we looked at using

cubic equations of state for finding the compressibility factor or the molar volume, we

have written the expression in terms of a cubic polynomial in a Z. 

So, let us write that down again. Its Z cube plus Z squared epsilon plus sigma times beta

minus 1 minus beta plus Z times beta q minus epsilon minus sigma minus epsilon plus

sigma minus epsilon sigma. And finally, the constant term which is beta square q minus

epsilon sigma beta minus epsilon sigma is equals 0. 

Now I have everything I need to get the coefficients of this polynomial in Z, I can put

these terms here and turns out that the polynomial I am going to end up with is 0. 98593

Z square plus 0.09825 Z minus 1.5861 10 power negative 3, this equal 0. 
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These are the coefficients for the polynomial. I can solve this polynomial and it turns out

this polynomial we will give me three roots a vapor root which is 0.8758 and a liquid

root which is 0.0201. These are the vapor and the liquid roots I have for this particular

polynomial. Based on these roots I can calculate the molar volume, for the vapor it is

going to be Z for the vapor RT over P. Now recall that RT over P is the molar volume for

the ideal gas so this is the vapor molar volume right. 

And this number turns out to be 3.4968 liters per mole. And the liquid molar volume is

going to be Z liquid RT over P which is 0.849 liters per mole. These compare well with

the experimental  values.  But  for this  particular  problem what we are interested  in is

actually the integral I and then calculating H R over RT. We in fact,  do not have to

calculate the liquid and vapor molar volumes I have just calculated them to refresh your

memory on how we have use these to calculate molar volumes. But, what we can do is

actually take that and now calculate I.

The question is which value of the compressibility factor do I use. The expression for I is

1 by sigma minus epsilon l ln Z plus sigma beta Z plus epsilon beta. So, which value of Z

will  I  use to  calculate  I.  Turns out  that  we can use the vapor  value  to  calculate  the

residual enthalpy for the vapor phase and the liquid value to calculate residual enthalpy

for the liquid phase. So, what we will do then is let us say we want to calculate the

residual enthalpy for the vapor phase. 



So, we will use the expression for I and replace Z with Z for the vapor. So, that what we

end up is calculating I for the vapor phase which in turn will be used in calculating the

residual enthalpy for the vapor. So, I am going to plug in this value of Z for the vapor

phase epsilon sigma epsilon and beta to calculate I. If you recall this was 1 plus square

root of 2 minus 1 minus square root of 2 right ln of 0.8758 that was the vapor Z plus 1

plus square root of 2 beta 0.01407 over 0.8758 plus 1 minus square root of 2 0.01407

again for beta. Now if I simplify this numerical expression: what I end up is a value for I

vapor in this case it is 0.0158. 

And once I have I vapor, I can go back and calculate H R by RT remembering that this is

the calculation for the vapor phase. If I want it for the liquid phase I can do a similar

exercise,  but involve the liquid compressibility  factor. H R by RT is Z minus 1 plus

negative of zeta square root of T r over alpha minus 1 times qi. And if I plug in all the

numbers I have what I end up with is negative 0.3364. This is H R over RT, I can use it

to calculate H R I just have to multiply this number with R in Joules per mole per Kelvin

if that is the units I will be using times T the temperature I have is 280 Kelvin. So, what I

will end up is in Joules per mole 783 Joules per mole. 

I can do a similar exercise use the expressions for G R over RT right. As in this slide, I

can use the expressions for G R over RT or S R over R and then calculate the other

thermodynamic residual values if need be, but this would be the general procedure. Just

for your reference the values I have for G R are negative 275 Joules per mole and S R is

negative 1.815 Joules per mole Kelvin right.

So,  this  is  how  I  will  use  a  cubic  equation  of  state  and  calculate  various  residual

properties. We have looked at how we can derive the expressions given a cubic equation

of  state  or  use  the  generic  expression  the  one  that  is  readily  available  for  the  four

different cubic equations we looked so far.

So,  this  ends  our  discussion  on  using  cubic  equation  of  state  for  residual  property

calculations. What we will do next is look at what are known as Pitzer correlations. If

you recall,  when  we introduced  the  cubic  equations  of  state  we said  two parameter

theorem of corresponding states does not hold well for fluids that are not simple; simple

fluids be spiracle, non-polar etcetera. But we used a quantity called as eccentric factor

and included it in our cubic equation of state and we said.
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Fluids that are at the same reduced temperature,  reduced pressure and have the same

value  of  eccentric  factor  behaved similarly. And we call  this  as  the  three  parameter

theory of corresponding states right.

So, Pitzer has taken this idea, and what he has done is looked at the behavior of the

compressibility factor Z versus the eccentric factor omega. And it turns out in most cases

Z is fairly linear function of omega. So, what fits our proposed is Z can be expressed as a

linear function of omega Z is Z naught plus omega Z 1. And these two parameters is Z

naught and Z 1 are going to be functions of the reduced conditions both T r and P r.

So, in this sense omega Z will be a linear function of omega, whereas T r and P r will

affect  both  the  values  of  Z  naught  and  Z  1.  That  is  how  all  the  three  parameters

contribute to the total compressibility factor Z. 

One of the famous tables that have been proposed based on this concept are known as

Lee-Kesler tables. 
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Taken  this  from  one  of  your  textbooks,  I  have  taken  this  table  from  one  of  your

textbooks. And if you see at these tables the values of both to Z naught we talked about

and Z 1 are listed as a function of pressure; the reduced pressure I should say. It changes

horizontally like that and the reduced temperature changes vertically like that. Similarly

both Z 1; sorry Z 1 also is expressed as a function of reduced temperature and reduced

pressure. These are tables for Z naught and Z 1 right.

So, given a reduced condition T r and P r right for example, T r is 0.97, P r is 0.2 I can

locate what the value of Z naught is going to be at 0.97 and 0.2. Similarly I can locate

what the value of Z 1 is going to be at the same reduced conditions. Once I have these

two numbers then it turns out Z is going to be Z naught plus omega Z 1. So, if I have

omega I can readily calculate 27 plus omega times negative 0.0208 that will be the value

of Z. 

And if you look at this expression for Z a majority of the contribution still comes from Z

naught, which is the case for a simple fluid omega is 0 this is Z naught comes from the

simple fluid contribution. And Z 1 is a correction over the simple fluid contribution its

much  smaller  than  this  value  omega  is  usually  around  0.1  0.2  at  most.  So,  the

contribution  of  the  second  term  is  pretty  small  compared  to  that  of  the  first  term

nevertheless it is a correction over the simple fluid correlation. That is how it is corrected

using the three parameters T r P r and omega.



Now these like I said are known as Lee-Kesler tables what we will do is quickly learn to

use these tables for two different scenarios and then we will look at calculation of other

thermodynamic properties using these Lee-Kesler tables. What we want to do is calculate

the molar volume of propane vapor at 280 Kelvin and 4 bar right. At 280 Kelvin and 4

bar remember we have to use the reduced conditions. 
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So, the first thing we will be needing is T c P c and omega. For propane omega is 0.152,

P c is 42.48 bar, and T c is 369.8 Kelvin. Once I have these values I can calculate T r and

P r : T r in this case turns out to be 0.7572, this is t over T c and P r is 0.09416; this is P

over P c. Once I have T r P r and omega I can actually go back to the tables and look for

the value I am after.

So, 0.7572 is my T r and if I look at this table let us pick that 0.7572.



(Refer Slide Time: 23:24)

So, it’s going to be this is 0.75; this is 0.8, so it is going to be in between these two rows.

And the T r value we calculated, maybe I should just write those T r and P r from there

here it might just be easier to work with, but anyway. And the T r for this problem we

have is 0.7572 and P r is 0.09416. So, it is going to be in between these two values here

on the vertical and between 0.05 for P r and 0.1 for P r right. So, it is going to be between

these four numbers somewhere in between them, right. 

So, I have to do a linear interpolation. And in this case I do not have the numbers for the

exact T r or for P r. So, what I will end up doing is what we call as a double linear

interpolation. So, we are going to do a linear interpolation on the pressures first and then

on the temperatures or we can do it vice versa right.

So, what we will do is write these numbers T r is going like this 0.75 and 0.8; I have it at

0.75 and 0.8 I am interested in 0.7572. I have it at a pressure of 0.05 I also have it at a

pressure of 0.1, but what I am interested in is at a pressure of 0.09416, right. So, let us

first fill in the details we have at the four conditions. 0.75 and 0.05 I have it as 0.9598;

these are values for Z naught and for 0.1 it is 0.9165. At 0.8 and 0.05 this value is 0.9669

and this value here is 0.9319. What we will do is; do a linear interpolation between 0.05

and 0.01 to get at 0.8, but then at this P r; T r is still point 8, but at this P r which means I

just need to do a regular linear interpolation between these two values and that gives me

a value of 0.9360. 



 Similarly I will interpolate between these two values to get at a condition of 0.7 for T r

and 0.09416 for P r. And if I do that linear interpolation between these two numbers what

I  will  get  is  0.9216. So now, I  have it  at  a  pressure at  the required desired reduced

pressure, but at two different T r. So, I need to do a regular linear interpolation between

these two numbers again to get it at the T r I am interested in 0.7572. And if I do that

between these two numbers to get it at this condition, it turns out to be 0.9236 right. So,

this  is  the  number  I  am  after  0.9236.  So,  what  we  have  done  is  a  double  linear

interpolation to get this number, right.

So, that is how we do a double linear  interpolation if  I have a table to get it  at  the

condition I am interested in at T r and P r of these two values, right. Similarly I can do a

double linear interpolation for Z 1 between the pressures that are in the table. If we go

back to the table for Z 1 again, it is the same reduced temperatures and reduced pressure.

So, I am looking at a double linear interpolation between these four quantities between

those four quantities.

And if  I  do  the  double  linear  interpolation  for  the  desired  reduced  temperature  and

pressure what I have is a value of negative 0.0662. And once I have Z naught and Z 1

from the Lee-Kesler tables I can calculate Z it is Z naught plus omega Z 1. So, its going

to be 0.9236 plus 0.152 times 0.066 to negative of that. And that will give me 0.9136.

And if I were to calculate V using this it will be Z RT over P again remember RT over P

is the ideal gas value, Z is the compressibility factor and if I simplify what I have is

5.317  liters  per  mole.  And  it  turns  out  experimentally  measured  value  for  these

conditions is 5.338 liters per mole. 

So, pretty close comparison using the tables right. So, that is how I am going to use Lee-

Kesler table to calculate molar volume and compressibility factor.
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Let us look at another example. Find the molar volume of propane at 277.35 Kelvin and

16.992 bar. We still want to use the Lee-Kesler tables. We will do a similar exercise as

we have done earlier and quickly calculate T r which is T over T c. And in this case it is

277.35  over  369.8  turns  out  to  be  0.75.  Luckily  we  do  not  have  to  do  a  linear

interpolation in this case at least it looks like so far. This is P over P c which is 16.992

over P c is 42.48. So, I have a value of 0.4. 

Now remember omega for propane is 0.152. 
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So, let us look at the table 0.75; the value is we listed or 0.75 for reduced temperature

and 0.44 reduced pressure. Let me see where I can find these numbers. 0.75 for reduced

temperature and 0.44 reduced pressure; 0.75 and 0.44. 

Now if you look at the tables closely they are marked differently than rest of the tables.

Everything in the table, right this part, this part, this part, this part, this part, this part, this

part, right. Everything about this yellow line I have marked is actually in (Refer Time:

30:55) compared to rest of the table and actually that is to indicate that we are looking at

the liquid phase as opposed to the vapor phase in rest of the table.

So, wherever you find these leak as flow tables you are going to find a region of T r and

P r where the Z naught and Z 1 values are marked differently than rest of the table. And

wherever you find this region this corresponds to the liquid phase region right. And for

our particular scenario we are looking at what we marked for T r of 0.75 and P r of 0.4

we are in the liquid phase region. And we can look at the values of Z they are very small

corresponding to the low liquid volumes and Z naught we have is 0.067, and Z 1 we have

is negative 0.0282. 

If I calculate Z here its 0.0627 and the volume is Z RT over P still its going to be 0.0851

liters per mole.  And the experimentally measured value is 0.0839. Again pretty close

even for the liquid phase calculations at least in this case.

So, these tables in that sense can be used in the liquid phase region also, but one needs to

be careful. So, that is how I can use Lee-Kesler tables to calculate the molar volume and

compressibility factor. In fact, not just for molar volume or compressibility factor Lee-

Kesler tables have been developed for enthalpy, entropy, and once we have enthalpy, and

entropy we can calculate all the other thermodynamic variables from there. 
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So,  the  expressions  are  a  little  different  for  entropy  and enthalpy  for.  For  example,

enthalpy is written in terms of not H R, but rather H R by RT C. So, the total enthalpy

residual enthalpy contribution over RT c comes from two terms: H R naught term and an

H R 1 term. Still linear function of omega, but then unlike Z we have the denominator in

this case which is RT C. 

Similarly and the tables themselves you will find the tables for H R naught by RT C

directly and the tables for H R 1 by RT C once you have the two tables you can combine

them using eccentric factor and we will end up with the value of H R naught by RT C. If

you are interested in H R we just need to multiply it with RT C. 

Similarly for S R over R it will be S R naught over R; again you will find a table for S R

naught over R; and then you will find another table for S R 1 over R multiplied with

omega add them to get the value of S R over R. Once we have S R over  R we can

calculate S R right

So, similar to tables like the compressibility factor Lee-Kesler tables exist for residual

enthalpies as well as residual entropies, they can be directly used to calculate the residual

values. In that sense they are convenient. But then, we need to do a linear interpolation or

a double linear interpolation as need be. Dealing with elaborate equations Lee-Kesler

tables in that sense are handy. In fact, as we have seen earlier the contribution of the

second term in these Lee-Kesler tables is pretty well it depends on the condition, but it is



smaller compared to that of the first term. So, for a very quick first-hand calculation one

can in fact get away looking at values of Z naught or H R naught or S R naught etcetera

for the simple fluids that will give a quick estimate. 

So, with that we end todays lecture. We have looked at calculation of residual properties

so far using a variety of methods. We looked at virial equation of state, we looked at

cubic equations of state, the general cubic equation of state, we looked at thermodynamic

tables thermodynamic diagrams and finally the Lee-Kesler table. 

Thank you.


