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Thermodynamic Property Calculation using Cubic EoS

Hello and welcome back. Today we are going to look at Cubic Equations of State and if

you recall our goal was to be able to do changes in property or the changes in various

thermodynamic  properties  involving  equation  of  state.  We involve  equation  of  state

because not all fluids behave as an ideal gas.

(Refer Slide Time: 00:49)

And if we have non-ideal gases then we introduced the concept of residual properties

that would allow us to account for that non-ideality. One of the ways we have looked at

is using virial equation of state involving both the second and the third virial coefficients.

If we only have the second virial coefficient we have written equation of state as P V

over R T is 1 plus B P by R T. And, if we want to involve both the second and the third

virial coefficients then we write it in a pressure explicit form such as 1 plus B by V plus

C by V square.

So, one of them is explicit  in volume and the other one is explicit  in pressure. And,

depending on which form we use it is convenient to express the residual properties in

different ways. For example, if I have the pressure explicit form of equation of state such



as this one then recall that we have written G R over R T that residual Gibbs free energy

as z minus 1 minus l n z plus integral of 0 to rho z minus 1 d rho over rho. We can take

this as our generating function and generate all the other residual properties based on this

expression.

Similarly we had another form of an equivalent expression for volume explicit equation

of state if there is only the second virial coefficient. Now, the virial equation of state are

suitable only in particular ranges of the fluid particular temperature and pressure ranges

for the fluid and it is suitable only for the gas phase. The other equation of state that is

commonly used is what is known as a cubic equation of state. 

(Refer Slide Time: 02:35)

To understand and appreciate this cubic equation of state, let us start looking at a typical

PVT behavior of a fluid alright. Let us quickly go back and summarize the typical PVT

behavior of a fluid.  As you can see I have a typical  PVT behavior of a fluid in this

particular figure. On the x axis I have the molar volume V and on the y axis I have the

pressure P and the red curves are isotherms drawn at different temperatures. The blue

curve is the vapour dome as it is called or it represents the two phase region, if you recall

our discussion from the thermodynamic diagrams.

There are certain regions in this curve where the temperature is greater than the critical

temperature then the fluid is going to exist only in a single phase. At temperatures below

the critical temperature the fluid there are certain portions of the curve where, the fluid



will exist only as a liquid or only in the vapor phase. And in between or underneath the

dome whenever we fall underneath the dome then the fluid will exist in the two phases.

When we say it exists in two phases there is going to be a mixture of liquid and vapour

that will be in equilibrium at that particular condition. 

Now, let us consider a scenario when the temperature is below the critical temperature.

Let us take an example of a piston and a cylinder assembly and let us say I have only the

liquid phase region. I start of at this point J which corresponds to this I am only in the

liquid  phase  region.  As I  withdraw this  piston  up I  am lowering  the  pressure,  I  am

increasing the volume. I will reach a state where I will hit this point K. And at this point

K I hit the vapour dome or the first bubble of vapor forms most of it is still liquid, but

there is just that one bubble of vapor that is formed when I hit this dome. 

Now, if I withdraw this piston more then obviously, I am increasing the total volume of

the  system.  But,  once  I  hit  the vapor  dome the  system is  going to  be at  a  constant

pressure  and  constant  temperature  until  it  reaches  this  liquid,  the  saturated  liquid

condition. So, this point K corresponds to saturated vapor and this point L corresponds to

saturated liquid. And I withdraw the piston after K there will be a vapor and a liquid

phase that coexist. And, as I keep withdrawing this the amount of vapor phase inside the

piston cylinder  assembly is going to increase and the amount  of liquid inside it  will

decrease. Until it reaches this point L where, most of it is going to be vapor except that

one drop of liquid; except that one drop of liquid everything is going to be in the vapor

phase right. So, that is the other extreme. 

So, between this K and L even though I am withdrawing the piston all that happens is

that  the  relative  amounts  of  the  vapor  and the  liquid  in  inside  the  assembly;  piston

cylinder assembly are going to change. After this point L, if I withdraw the piston even

more than it will be only completely vapor and, then I go to the right of the dome and

that would be only again a single phase in this case a single vapor phase right. 

So, this is how a typical fluid behaves when it passes through a two phase region. As you

can see the densities or the molar volumes of the vapor and the liquid phases and K and

L are widely different. If I increase the temperature and go through this point, let us draw

it in a different colour, go through this point well I can see that can I; let us use that guy

right.



I  can  increase  that,  I  will  go  through this  and as  you can  see  the  difference  in  the

densities of the liquid and the vapor phases are much closer to one another than they

were  when  the  temperature  was  lower  at  the  red  curve  here  right.  This  difference

between the liquid and the vapor densities are of the on the red curve are much further

away than they are for the purple curve. 

I  can  keep  increasing  the  temperature  until  I  reach  such  a  condition  where  the

temperature  where  the  difference  between  the  vapor  and  liquid  densities  is  almost

negligible. They are they are exactly identical and at that particular temperature where

the liquid and vapor densities  passing through the two phase region are going to be

identical is going to be equal to what we call as the critical temperature.

That condition where both the densities of the liquid and vapor are going to be equal is

called as the critical point. Above critical point of course, I will only have the single

phase, I cannot make a liquid in this region. The other interesting thing to note in this

isotherm is that within the liquid phase region right within this region here, when I am in

the liquid phase region the isotherm is  very very steep indicating  that  the change in

pressure is not going to change volume as much as it did in case of a liquid. 

Now, in case of a vapor now in case of a vapor if I change the pressure right; if I change

the pressure if I increase the pressure the volume is changing significantly here. But, here

even if I change the pressure by quite a bit the change in volume is pretty small. So, the

isotherm is very steep; this is indicative of the fact that liquids are fairly incompressible

right.

So, the change in volume is going to be pretty small compared to change in pressure.

This region where T is greater than T c in reality is actually the gas phase region. And,

the region where T is below T c is the vapor phase region although we use these two

terms synonymously; vapor usually corresponds to the temperatures below the critical

temperature. Temperatures above critical temperature are known as the gas phase regions

and if both T and P are greater than T c and P c then we call that as a supercritical region.

So, this is a typical three PVT behavior of a fluid. And, a cubic equation of state actually

captures  most  of  this  behavior  as  you  can  see  for  temperatures  below  the  critical

temperature; if I take any pressure there are 3 volumes for any given temperature and

pressure right V 1 V 2 and V 3 for this particular point. 
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So, this is well represented by what is known as a cubic equation of state. So, we are

talking  about  a  cubic  polynomial  which  is  cubic in  volume that  represents  the  PVT

behavior. One of the famous cubic equations of state early on is given by van der Waals;

its expression as most of you are familiar with is P equals RT by V minus b minus a by V

square. So, this b term corresponds to the original development of the van der Waals

equation goes as such, the V term corresponds to the non-zero size of the molecules

right.

They have a finite size and a term is to account for interactions among the molecules.

The ideal gas assumes that there are no interactions and all molecules are do not have

any size which of course, is not true. So, a term accounts for those interactions, well the

b term accounts for the finite size of the molecules. And, this is the expression given by

van der Waals for PVT behavior of such fluid. And as you can see this expression is

cubic in volume right. If I actually expanded and write it as a cubic then this equation

you can easily rewrite this equation reads like this, minus b P minus R T times V squared

plus a V minus a b equal to 0.

So, these are the coefficients for the cubic equation in terms of volume right this, this,

this  and this  usually these cubic equations of state are much better  handled with the

compressibility factor z as you can recall z is P V over R T. So, I can rewrite this whole

expression in terms of z and it would read z is z over z minus b beta minus beta times q



over z right where, beta is actually related to b as b P over R T and q is and q is related to

both a and b as q is a by b RT. So, once we make these two substitutions and rewrite the

van der Waals equation of state it will give us an equation which reads as such.

And in this is of course, a cubic in the compressibility factor z as well plus z squared

minus 1 minus beta plus beta times q times z minus q times beta squared is 0. This is the

cubic  in  volume we and cubic in  the compressibility  factor  z.  So,  depending on the

convenience  we  can  use  one  of  the  two  equations  right.  So,  when  we  solve  these

equations we get either three real roots or 1 real root. 

Now, if you look at this there are certain regions in the curve where we have three real

roots, there are certain regions in the curve where we have one real root alone. And in

this region there will be three real roots right and in fact, at T equal to T c we have three

equal and real roots. So, depending on the coefficients we will end up in either a region

where, we have only one real root or a region where all the three roots are equal or a

region where we have three real unequal roads and, van der Waals equation can pretty

much capture that type of a behavior.

(Refer Slide Time: 14:20)

Now, the next thing we want to talk about are the two constants in the van der Waals

equation of state; if you look at the two constants P is R T by V minus b minus a by V

squared. Now, if you look at these two constants right these two constants a and our

parameters as they are called. This is parameters for van der Waals equation of state,



used the  way usually  we get  them is  by  taking  the  critical  point;  mathematically  it

corresponds to the inflection point in the isotherm right.

So, by inflection point we mean the first and the second derivatives. The first and the

second  derivatives  are  going  to  be  at  constant  temperature  with  respect  to  volume

derivatives of pressure with respect to volume are going to be 0 which means we can,

this occurs at the critical point of course. And, we can use the equation of state with these

two criteria to get corresponding expressions for a and b. It turns out that a would be 27

over 64 R squared T c squared over P c. And, b is 1 over 8 R T c over P c. This is how we

usually get the constants for or the parameters for an equation of state.

(Refer Slide Time: 15:52)

Let us try to then use these ideas for van der Waals equation of state and solve one quick

example. We want to find the molar volume for n pentane using van der Waals equation

of state at 450 Kelvin and 2 bar and then at 350 Kelvin and 3.396 bar. So, to be able to

do that if you recall the equation of state involves two parameters a and b which we want

to calculate first 27 by 64 R T c over P c and b is 1 over 8 R T c R square T square by P c

and R T c by P c. When I calculate these two parameters and to be able to do that what

we  need,  then  are  the  corresponding  critical  constants  or  the  corresponding  critical

constants.

So, I used a handbook and taking these two critical constants from the handbook. The

critical pressure is 33.6 bar and the critical temperature for pentane happens to be 469.8



Kelvin from my reference. So, if I use these two values along with the appropriate value

for R so, my units are going to be as such. So, I am going to use a value of R in bar c c

per mole per Kelvin so, it is 83.4 bar c c per mole Kelvin. So, if I use these units my

molar volume is going to be in c c per mole; you can make appropriate conversions as

then need be. For now, let us use these units and the value I have for a using these units

is 19155 371 and 145.3; these are the values I get using T c and P c for n pentane. So,

this will be in c c per mole and this will be in units of bar and then centimetre to the

power 6 over mole square.

So, once I have these two numbers, I can now actually go back and use the equation of

state. What I will do is I will try to use the compressibility factor form, I had earlier I am

going to use this form z cube plus z square into negative 1 negative beta beta q z minus q

beta square equal to 0. I will try to use that form to solve for the compressibility factor z

first and then we will try to get the molar volume. So, if I want to do that I first need to

calculate beta and q; let me write that expression in z first z cube z squared negative 1

negative beta plus beta q z minus q beta square equal to 0. Now, I want to use this

equation which means I want to calculate q and beta. 

Now, remember beta is b P over R T so it depends on the actual condition, temperature

and pressure conditions. So, it is going to be 145.3 times P is 2 bar over 83.14 and the

temperature is 450 Kelvin. And, this works out to be 0.007768 and the q is a by b R T

right. So, that would be 3.5235 according to my calculations. So, once we have q and

beta I can put the expression here for both q and beta. And, rewrite this cubic equation

then becomes z cube minus 1.0078 z squared plus 0.027372 z minus 0.00021 equal to 0. 

Now, if I solve this cubic you can use any convenient software I have used MATLAB,

but you can use any convenient software to get the roots of this polynomial. It turns out

you get only one real root and that root happens to be 0.9803. This is the compressibility

factor recall that the compressibility factor for an ideal gas is 1. So, this compressibility

factor essentially means that we were pretty close to adjust to percent off from the ideal

gas  behavior. If  you actually  want  to  calculate  the  volume it  will  be  z  R T over  P

remember R T over P is the volume for the ideal gas. 

So, it is actually z times V ig V ig itself is the molar volume of an ideal gas under the

same conditions, but I have for V ig is 18.71 litres per mole. And, because of the value of



z to be 0.98 what you get for V is 0.9803 multiplied with 18.71. So, that is 18.34 litres

per mole. It turns out that the experimental value is a little away from what is predicted

by van der Waals equation of state the experimental value is 18.25 litres per mole. So

obviously, this correction after van using van der Waals equation of state is a much better

value than what we would have had if you use an ideal gas law.

So, this is much closer to reality. This is part a for part b I can do a similar exercise. The

values of a and b are not going to change, the value of beta is going to change because

pressure and temperature are changing. So, the value I have for beta for part b is this

much and q what I calculate is 5302. Now, if I put these values of beta and q in this

equation right here, then the cubic equation I get for these conditions in z is going to be

1.01696 z squared plus 0.076825 z minus 0.0013 is equals 0. And, again turns out if I use

the software to get these and get to the solution turns out I have three roots in z 9374

0.0251 and 0.0555.

And, corresponding to these three roots remember molar volume is R T over P. For this

case, the molar volume we can calculate and once we calculate the molar volume you

have the final volumes as z R T by P. So, this one I have this value to be I have it to be

8.03 and 0.21 litres per mole; well last one is 0.21 and this one is 0.48 litres per mole.

Turns out that the experimental values corresponding experimental values are 7.84 and

0.13. This is from the experiments.

So, the van der Waals equation of state again predicts three real roots and this is in a two

phase region. So, we get the three real roots and the lowest root or the smallest root

corresponds to the liquid volume and the largest root corresponds to the vapor volume.

And, you can see they are pretty close to what is predicted by experiment the van der

Waals  equation of state creates  a much better  experimental  value with respect to the

vapor root than with respect to the liquid root. And, we have an additional third root

which is in the middle of the two liquid and the vapor roots. And, this rule does not have

any physical  significance  as  you have seen earlier  it  corresponds to metastable  state

right.

As you have seen here this is the third root we get when we have the cubic that yields us

three roots, this is the third root. And, this third root is a metastable state which is very

difficult to realize in experiments, but it is of no practical significance. So, were only



interested in the two roots that are extreme one the largest root which corresponds to the

vapor volume, the smallest root that corresponds to the liquid volume right. So, this is

how  you  can  use  van  der  Waals  equation  of  state  to  predict  the  PVT behavior  of

substances calculate the volume etcetera. 

(Refer Slide Time: 25:08)

Now,  as  you  have  seen  earlier  the  van  der  Waals  equation  of  state  improves  the

prediction  over  the ideal  gas behavior. But,  still  there  are  there is  some discrepancy

between  what  it  predicts  and what  the  real  experiments  yield.  This  is  partly  due  to

assuming that all fluids are going to behave in the same way. And, to be able to better

understand  that  let  us  talk  about  what  is  known  as  a  two  parameter  theorem  of

corresponding states.

The underlying assumption in this two parameter theorem of corresponding states is that

at the same reduced conditions and by the reduced conditions we mean how far away we

are from the critical  conditions.  So,  to  be able  to define how far away we are from

critical conditions, we are going to define two variables T r the reduced temperature and

P  r  the  reduced  pressure  which  is  the  ratio  of  the  actual  temperature  to  critical

temperature, actual pressure to critical pressure. This is called as the reduced temperature

and this is called as the reduced pressure right.

So, the two parameter theorem of corresponding stage simply says that at the same T r

and P r all fluids behave in the same way, which means their molar volumes are going to



be similar. The other thermodynamic properties are going to be similar of course, in real

life this is not true. What was found is that this behavior is predicted well with T r and P r

only for simple fluids. And, by simple fluids we mean fluids which are fairly spherical,

right they are fairly non-polar. 

So, fluids such as argon, it is a noble gas and its fairly spherical molecule xenon, neon

things such as these may be assumed to be simple fluids. And, for simple fluids the two

parameter theorems of corresponding states seems to pretty well; the simple fluids pretty

much obey this two parameter theorem of corresponding states. On the other hand fluids

are also known to have fair  bit  of polarity such as water and there are not spherical

molecules; they might be linear molecules such as CO 2 etcetera. So, these fluids do not

follow the two parameter theorem of corresponding states strictly.

(Refer Slide Time: 27:52)

And additional parameter has been introduced to calculate to characterize such fluids to

account for their polarity, to account for the difference in their sizes etcetera. And, the

way we do we introduce this third parameter in the theorem of corresponding states is by

introducing what is known as acentric factor denoted by the Greek letter omega. This

acentric  factor  simply  turns  out  to  be  the  difference  in  the  now, remember  the  two

parameter theorem of corresponding states says that at the same T r and P r all fluids

have to behave similarly which means their molar volumes also have to be same etcetera.



Now, if it is a saturated fluid then given a T r all fluids should have the same P r which

actually turns out to be not true for polar fluids for non-simple fluids even if the T r is

same then P r is not same. For simple fluids right at same T r the reduced vapor pressure

or the reduced saturation pressure is almost same. However, this is not true for non-

simple fluids. And this difference between the vapor pressures of simple fluids and non-

simple fluids is used as a measure of non-simplicity right. 

So, we call that as the acentric factor we take the difference in the vapor pressures and

this needs to be taken at a convenient T r right. So, we take it at a T r of 0.7 and it turns

out at this T r of 0.7 the logarithm of P r sat for simple fluids is negative 1. So, that is

where we get negative 1 here and then the logarithm of P r sat for non-simple fluids and

this difference is what we call as omega right. So, we call this omega as the acentric

factor and now at same T r and P r; if two fluids have same omega then they behave

similarly. This is how we read the three parameter theorem of corresponding states. 

So, not just having T r and P r to be same is enough. We also need to ensure that the

fluids have same values of acentric factor then they are going to behave similarly; if not

obviously, they are going to behave differently. 

(Refer Slide Time: 31:04)

Now, the van der Waals equation of state does not involve acentric  factor. So, when

people  developed other  equations  of state  they  have tried to  bring in  the  concept  of

acentric factor. And, in general a cubic equation of state may be written in this form. It is



similar to van der Waals equation of state, if you look at it P is R T by mean minus b

minus a by something V squared term. It is a quadratic expression in V, but then there

might be additional terms; for van der Waals equation of state this term is 0, this term is

0. So, it is simply a by V squared right and also a is a constant for van der Waals equation

of state.

But, for a general cubic equation of state a does not have to be constant; it might be a

function of temperature. And, the quadratic term there might be additional terms after the

quadratic term instead of V square as you see here we have additional term in terms of V

and a constant in the denominator over here for a general cubic equation of state. This is

summarized in this table,  we have sigma and epsilon values which are 0 for van der

Waals equation of state which may not be 0 for other cubic equations of state. There are

several cubic equations of state we have just focusing on three or four important ones for

chemical industry which are more popular right. Then the additional thing in here is that

the  parameter  a  for  the  cubic  equation  of  state  itself  might  actually  depend  on

temperature.

For  van der  Waals  it  is  independent  for  other  cubic  equations  of  state,  it  might  be

dependent on temperature as well as this alpha term as you see here which may depend

on the acentric factor omega which we have just introduced right. So, we can take this

table as a working template depending on what cubic equation of state we want to use.

We can reduce the form of the cubic equation of state calculate the other parameters and

try to write what we are interested in. For example, if I have to simplify use this template

and write an expression for this is saw a Redlich Kwong equation of state, RK is Redlich

Kwong, SRK is Soave Redlich Kwong equation of state right and this is Peng Robinson

equation of state etcetera.

Now, if I want to write the expression for Soave Redlich Kwong equation of state it

would read as P is R T by V minus b minus a by notice that sigma is 1 epsilon is 0. So, it

will be V V plus b that would be expression cubic equation of state expression and b is

going to be omega. For SRK the value of omega is 0.08664 R T c over P c and a is phi

which is 0.42748 alpha R squared T c squared over P c. And, the alpha itself is given by

this expression in terms of the reduced temperature and the acentric factor. So, the alpha

itself for this particular equation of state is given by this expression. 



So,  once  I  have  the  acentric  factor  and  the  temperature  and  hence  the  reduced

temperature  I  can  calculate  alpha  go  back and  plug it  in  here  to  calculate  a,  b  and

whatever is needed out of the equation of state alright. So, let us see how we can use this

particular type of equations of state; we will just solve one or two quick examples based

on these ideas.

(Refer Slide Time: 34:49)

So, we want to find the molar volume for n pentane using SRK equation of state at 350

Kelvin and 3.396 bar; similar to what we have done in the previous problem, but this

time we are going to use a different equation of state alright. So, to be able to do that the

first thing we want is to be able to identify the equation we want to solve. Let say it is

similar to the cubic expression in the compressibility factor for van der Waals equation; I

want to solve the cubic expression for the SRK equation of state. For any generic cubic

equation of state the cubic in z it turns out is going to be z cube plus z squared epsilon

plus sigma times beta minus 1 minus beta plus z times beta q minus epsilon minus sigma

minus the constant term beta square q minus epsilon sigma beta minus epsilon sigma. 

This equals 0, this is a simplified version for a generic cubic equation of state. Now, for

SRK equation of state remember that we said epsilon is 0 sigma is 1 for SRK. So, we can

plug that in and this reduces to z cube plus epsilon and sigma are 0 and 1 right plus z

squared into minus 1 plus z times beta q minus 1 minus beta q minus 1 minus beta minus

beta squared q equal to 0. This would be for SRK equation of state, this would be for any



equation of state. So, with just simplified the expression in the cubic expression in the

compressibility  factor. Now, we want  to  solve  this  cubic  expression  in  terms  of  the

compressibility factor.

But, the first thing I want to do is find out what the values of the parameters for this

equation of state are going to be right. And, remember we said that I am interested in the

critical parameters for n pentane. I am going to go back to the handbook and find out

what the critical parameters are, we have already looked at the two of them. T c was

469.8 Kelvin P c was 33.6 bar and the other parameter I need is the acentric factor or

omega for this guy and pentane it turns out to be 0.252. Now, once I have these values I

can first go and calculate the reduced conditions T r which is T over T c. So, that is 350

over 469.8 which turns out to be 0.745.

And, the reduced pressure which is P over P c right P over P c that turns out to be 3.396

over 33.6 which is 0.1011. Once I have the reduced temperature and pressure I can go

back and calculate alpha which is 1 plus 0.48 plus 1.574 omega. Now, we remember this

is the expression for alpha for SRK equation of state 1 minus T r to the power half whole

squared;  I  know  omega  I  know  T  r.  So,  I  should  be  able  to  calculate  this  alpha

straightforward in the straightforward manner 2509. And because now, I have alpha I can

calculate a which happens to be 0.42748 alpha R squared T c squared over P c which is

24280603. And, b happens to be 0.08664 R T c over P c which happens to be 100.72.

And, once I have a and b I can calculate beta which is b P over R T which is 0.005384 in

this case and q which is a by b R T which is 5.343. Now, once I have all these numbers I

have beta, I have q that is all I need; once I have beta and q I can go back and put in this

equation to get the final cubic expression in terms of z. And, it turns out that expression

is z cube minus 1.01175 z squared plus 0.097387 z minus 0.00114 is 0.
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So, this is the cubic in z I want to solve using SRK equation of state; at this condition

right also z values I get are 0.9057 0.0137 and 0.0925. And, the corresponding values for

volume I get are 7.76 and 0.12. Remember this is closer to 1 so, this is the gas phase

volume litres per mole. This is the gas phase volume or the vapor phase volume and this

one is the smallest of the roots. So, this will give me the liquid phase volume. This is the

intermediate root which has no physical significance for now.

So, we have solved the molar volumes for n pentane at a given temperature and pressure

using SRK equation of state. Now, if you recall in one of the earlier problems we have

used a van der Waals equation of state. The temperature is 350 Kelvin and the pressure is

3.396 bar and I have this happens to be in a two phase region. The experimental values

for n pentane at these conditions is 6.84 7.84 and 0.13. The van der Waals equation of

state values I am sorry this is the vapor phase and this is the liquid phase right. This is the

vapor phase and this is the liquid phase volume V in litres per mole. 

Now, if you recall ideal gas predicts only the vapor phase volume; obviously, and the

ideal gas prediction is 8.57 about a good 10 percent off from the reality. When I used van

der Waals equation of state I can predict both the vapor and the liquid phase volumes.

And, the values I predicted were 8.03 and 0.21. The vapor phase volume improved and I

can also predict a liquid volume, but still the liquid phase volume is fair bit off from

experiments vapor phase volume is getting. Or, I can if I used SRK equation of state



actually  the  prediction  is  much  better  right.  I  also  have  remember  I  also  have  an

additional parameter in terms of the acentric factor.

The prediction improved in this case and I predict 7.76 much closer to the experimental

value and 0.12 again much closer to the experimental value. So, in this case the SRK

equation of state does much better. Now, remember there is no single equation of state

that can predict behavior of all the fluids. One has to match what the equation of state

predicts with what the experimental behavior is to be able to say that, within this region

this  particular  equation  of  state  is  going  to  predict  the  behavior  better  etcetera.  In

summary what we have done today is looked at a cubic equation of state. And, how I can

calculate both the vapor and liquid volumes for using this particular cubic equation of

state, that is all for today. 

Thank you.


