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Lecture – 14
Residual property relations from EoS

Hello and welcome back. In the previous lecture we were looking at Virial Equation of

State.

(Refer Slide Time: 00:42)

We  started  with  Gibbs  free  energy  as  a  generating  function  to  derive  all  the

thermodynamic properties, such as this one where the Gibbs free energy change with

respect to temperature is same as the enthalpy or it is related to enthalpy. And once we

have enthalpy and Gibbs free energy I can derive entropy, etcetera. 



(Refer Slide Time: 00:59)

And we have also express the residual properties in terms of the compressibility factor,

temperature  and pressure.  Using Gibbs free  energy as  the  residual  as  the  generating

function we can express all the residual properties in terms of these quantities, and once

we have done that we have applied to a particular equation of state yesterday we looked

at virial equation of state. 

(Refer Slide Time: 01:20)

So, either using 2 or 3 virial coefficients that is the most number of virial coefficients we

generally use in a process industry, we can define the compressibility factor. And we



have  derived  the  relation  for  the  residual  properties  in  terms  of  the  second  virial

coefficient only when there are two terms in the virial equation of state and tried to solve

a problem based on that in the last class. Today, what we will do is try to extend this

discussion for virial question of state what happens if I have both the second and the

third virial coefficient, how do I express these residual properties and then we will move

on to other equations of state in particular what are known as cubic equations of state. 

So, let us first start our discussion Virial equation of state involving both the second and

the third virial coefficients. 

(Refer Slide Time: 02:14)

When we have both  the second and third virial  coefficients  then  the compressibility

factor Z is as we discussed yesterday, return in terms of 1 plus B over V plus C over V

square, right. Now, contrast this with the form we had only when there is two where

there is only the second virial coefficient. So, Z is 1 plus BP over RT, I could also write it

as Z is 1 plus B over V. 

We chose this form because it’s more convenient when I know temperature and pressure,

I can calculate the compressibility factor and hence the volume. But the moment we have

both the second and third virial coefficients as we discussed yesterday we only tend to

use  this  form of  the  expression.  So,  we want  to  change this  integration  in  terms  of

volume or density rather than pressure. And let us see how we do that quickly with one



example first and then we will just generalize it and try to write the expressions for other

thermodynamic properties.

So, my goal then is to take this equation here G R by RT is integral 0 to P Z minus 1 dP

over P and somehow convert it in terms of volume. The way we do that is using the

definition for compressibility factor. Recall that compressibility factor Z is PV over RT

which implies P is Z RT over V. So, if I take a logarithm on both sides log P will be log

of Z RT minus log of V.

Now, I am going to take a derivative the left-hand side will be dP over P the right-hand

side this  is  that  let  us  write  restrict  it  to  constant  temperature,  so the temperature  is

constant. So, RT is constant it can come out, RT. Then all I have left RT d Z or rather let

us just write the whole thing out that is easier to write without confusing ourselves its d

of Z RT over Z RT minus d of V over V and because temperature is constant RT can

come out. So, what I have left then is dP over P is RT d Z over Z RT minus dV over V.

So, I can cancel these out T terms. So, dP over P than turns out to be d Z over Z minus

dV over V.

So, I can take this expression right here and put it back here in that equation for Z R over

RT. Let us see what happens. G R over RT is integral 0 to P Z minus 1 dP over P and I

am go a replace that with d Z over Z minus dV over V right, minus dV over V.

Now, limit as P goes to 0 volume will go to infinity as pressure goes to 0 the molar

volume goes to infinity, right. So, keeping that in mind let us see what happens to this

integral for G R over RT. 



(Refer Slide Time: 05:50)

So, what I have is G R over RT right, is integral P going to 0, the volume going to

infinity the gas will be an ideal gas. So, it will be compressibility factor goes to 1 right, Z

minus  1  d  Z  over  Z  minus  dV  over  V. The  other  end  is  at  a  pressure  of  P  the

corresponding volume and compressibility factors are simply V and Z whatever those

numbers are. But at the lower pressure limit the volume goes to infinity it becomes an

ideal gas. So, compressibility factor goes to 1.

Now, I have to do this integration and it turns out that this is a pretty straightforward

integration, I can do integral Z going from 1 to Z, Z minus 1 d Z over Z minus integral

volume going from infinity to V Z minus 1 dV over V. I have just separated those two

parts, and the first one is essentially Z minus 1 minus ln right. So, if you think about it let

us write it explicitly maybe that will have it is integral of 1 to Z, Z minus 1 by Z is 1

minus 1 over Z d Z, right, minus integral of infinity to V Z minus 1 over V dV. 

Now, if you think about it the first integral it is d Z integral of 1 to Z d Z minus integral

of 1 to Z d Z over Z minus integral infinity to V Z minus 1 by V dV. Or the first term is Z

minus 1; the second term is ln Z minus ln 1 minus the integral infinity to V right, Z

minus 1 by V dV. So, this is Z minus 1 minus ln Z minus integral of infinity to V Z

minus 1 by V dV. 

So, what we have done in that sense is change the variable that it needs to be integrated

we have changed it from P to V. Some textbooks it is the integral is confusing in terms of



infinity, if it is for some people then it might help to think of it in terms of density rather

than volume. I can write the same equation is Z minus 1 minus ln Z minus or rather plus

integral of 0 to rho Z minus 1 d rho over rho. So, this is noting that V is 1 over rho, right.

So, we can when the volume goes to infinity then the density goes to 0 and so the limits

are from 0 to the density rho Z minus 1 d rho by rho. Either of these two forms whether I

write it in volume or density it is a little bit more helpful rather than writing in terms of

pressure.

(Refer Slide Time: 09:43)

So, we will take this idea forward right, we are going a take this idea forward and write

all the three expressions just to summarize the following forms of residual properties are

helpful.  Z minus 1 ln Z integral  0 to the density Z minus 1 d rho by rho. We have

obtained this simply by replacing V is one over rho in the previous expression for G R.

We can take a derivative of this expression with respect to temperature and we are going

to end up with an equation for H R by RT turns out to be minus T integral of 0 to density

dou Z dou T at constant density d rho over rho plus Z minus 1. And S R over R turns out

to be ln Z minus T times integral 0 to rho dou Z over dou T at constant density d rho over

rho minus integral 0 to rho Z minus 1 d rho over rho.

So, all the three forms of these equation if you see, all the three equations if you see on

the  right-hand  side  it  is  just  the  compressibility  factor,  densities  and  temperatures

derivatives and integrals of these quantities all of which can be measured in the lab and



the left-hand side it is the residual property. So, if I have a volume explicit equation of

state the right-hand side can be easily obtained and then I can use that form of expression

to calculate the residual properties, right.

Now, keeping this in mind if I have now we were talking about, the virial equation of

state with both the second and the third virial coefficients this is the form we have. So,

the compressibility factor is going to be 1 plus B rho plus C rho squared since we are

talking in terms of densities in these expressions, right, and I can take the derivative of

this at constant density do derive the expressions for G R by RT etcetera using the above

relations and what we will end up with are the following equations. 

(Refer Slide Time: 12:04)

Let us just write them down in a separate slide G R over RT is going to be 2 B times the

density plus 3 by 2 C density squared minus ln Z, right. H R over RT is temperature B

over T minus dB by dT rho plus C over T minus half d C by dT. 

Again, as earlier both the second and third virial coefficients are going to be functions of

temperature we need that functionality, so that I can get the derivatives dB over dT as we

did yesterday and dC over dT for the third virial coefficient. And once I have both G R

and H R is pretty easy to obtain S R over R. It is going to be ln Z minus T times B over T

plus dB dT times rho plus half C over T plus d C dT times rho squared. 



These are the three equations for G R, H R and S R. Other thermodynamic quantities can

be  similarly  obtained  again  in  both  these  expressions  we  have  the  derivatives  with

respect to temperature for B and C in addition to B and C itself. So, once I know B C,

and their derivatives at various conditions I should be able to calculate the all the residual

properties  and hence changes for any process when there is three terms in the virial

equation of state.

Now, in real life as we have discussed yesterday virial equation of state is applicable

only  if  there  are  if  it  is  at  low  to  moderate  pressures  and  well  below  the  critical

conditions. So, with that we end the discussion for today. 

Thank you. 


