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Hello and welcome back. In the previous lectures, we have looked at energy balance and

the first law for both closed and open systems. We have looked at internal energy and

enthalpy calculations for various processes that involve an ideal gas. We have looked at

use  in  the  specific  heat  capacity  for  these  calculations,  and how to  use  temperature

dependency of the specific heat capacity in these calculations. We have also looked at the

second law, the entropy calculations, the calculations for irreversible processes, and the

calculation for lost work.

What we will do today is try to extend our discussion as we noted earlier, the work and

heat requirements for a process involve calculation changes in enthalpy, internal energy,

entropy etcetera, but these calculations we have done earlier are for ideal gasses, now we

will try to extend them to real fluids. So, how does one determine these real fluids.
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Turns out that it  is fairly easy the trick is to be able to use measurable quantities to

determine  these  changes;  remember  that  was a  very  first  slide  we have used in  this

course. The idea of all these calculations is to be able to calculate something that cannot

be measured directly using and expressing it as in terms of quantities that I can go to a

lab and measure. 

So, what we will try to do is a try to extend the discussion of calculating the changes in

these thermodynamic properties based on measurable quantities such as PVT data, and

heat capacity right. And while we are at it, we are going to also look at a couple of other

thermodynamic quantities which are important in engineering calculations, and we are

going to call them as Gibbs free energy and Helmholtz free energy, G and A in addition

to what we have already done for internal energy, enthalpy and entropy.

So,  we  are  going  to  derive  a  few fundamental  property  relations  that  involve  these

thermodynamic properties, and then we will try to learn to use thermodynamic diagrams

and  thermodynamic  tables  for  engineering  calculations.  So,  then  the  essence  of  this

section in the course is to be able to express these changes in a various thermodynamic

quantities in terms of PVT data or relating them somehow to PVT data and heat capacity,

and try to use either tables or thermodynamic diagrams and calculate these changes for

various engineering applications. So, let us begin our discussion with the internal energy

change for a closed system.
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So, I have a closed system, and homogeneous systems right. So, for such a system, the

total change or the change in the total internal energy according to the first law is dQ

plus dW. And remember internal energy is a state property, so it does not matter whether

the process itself is reversible or irreversible. So, let me elaborate that in terms of this

equation what we mean is this d n U is going to be dQ for an irreversible process plus

dW for an irreversible process. And it will also be exactly equal to dQ for a reversible

process plus dW for a reversible process.

So, what we are saying is if I have a process which takes a system at state A to state B, if

this is an irreversible path, then I can construct an alternate reversible path right. I can

construct an alternate reversible path, and in both scenarios then so let us change this

colour to match for previous for the reversible path.

So,  this  is  dQ for  the  reversible  path  plus  dW for  the  reversible  path.  And because

internal energy itself is a state property, it is independent of the path I choose, and dQ

plus dW along both the paths is going to be exactly same which will give me d n U.

Now, this has a significance in the sense that because I can also use the reversible path

dQ and dW for calculating d U. What I can do is, remember how dQ is related to the

entropy change, it is T dS right, because it is along the reversible path.

So, I am going to replace dQ for the reversible path with T dS and dW for the reversible

path, remember dW along a reversible path is negative P dV. So, dW along reversible



path is negative P dV. So, d n U then in terms of entropy and volume changes is T dS

minus P dV right. Because this is a n this is actually going to be the total entropy and

total volume or in terms of the number of moles I can write it as T d of number of moles

multiplied with the moral value P d of number of moles multiplied with the molar value.

So, this is my fundamental property relation for change in internal energy in terms of

changes in entropy and volume. If for 1 mole, obviously, this equation reduces to d U is

T dS the mole of quantity S and P d V. If I use one mole of the system, then d U is going

to be T dS minus P dV for n moles it will be the total internal energy, so d n U is T d nS

minus P d n V. Now, I can replace U, we recall that H as U plus P V. Let us go to the next

slide.
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Let us write what we had earlier. Now, we will just deal with the molar quantities, we

can always write the total quantity is when the need arises, but for now what we derived

in the previous slide is d U is T dS minus P d V right. Since H is U plus P V this implies

d H is d of U plus P V. So, this will be d U plus P d V plus V dP. And then I can use the

expression for d U in terms of entropy and volume, what that resolves an as d H is going

to be T dS negative of P dV and positive of P dV cancel out plus V d P. So, d H is going

to be T dS plus V dP.

So, what we have done in this exercise is relate various thermodynamic quantities we

have  had  so  far;  internal  energy, entropy,  volume,  pressure  and  temperature  to  one



another or changes in these quantities to one another. Now, the way we have achieved it

is by using a reversible path as I showed to you earlier, if the path is reversible, then this

quality and this quantity are the heat and work changes during along the path. If they are

not reversible, if it the actual process does not occur along the reversible path, then T dS

and P dV do not correspond to heat and work changes. If it occurs along the reversible

path then T dS and P dV correspond to the heat and work changes along the path.

So, remember this irrespective of the path, it is always T dS minus P dV. When the path

is reversible each of those two terms represent heat and work requirements; when the

path is irreversible they do not send the heat and work for that particular process. And

then finally, I can transform the variable from U to H, and get d H as T dS plus V dP.

Now, at  the  beginning  of  this  lecture,  we said  we are  going to  introduce  two other

thermodynamic variables which are important just like enthalpy and internal energy, the

other two thermodynamic variables we introduce are important and the consequences of

using these variables become clearer as the progress with this course. Specially, Gibbs

free energy has a lot of importance for chemical engineering applications in terms of

vapor-liquid  equilibrium  calculations,  chemical  reaction  equilibrium  calculations

etcetera.

So,  this  is  a  good time to introduce  these  two variables  and then  carry on with  the

calculations involved in these two variables until we reach a point where we can start

using them for chemical  engineering  applications.  The first  variable  we are going to

introduce is what we call as Helmholtz free energy, a some of the books use F for this

free energy, we are going to use A, and it is defined as U minus T S. What this means is I

can take a derivative dA is going to be equal to d U minus T dS minus S d T. And since d

U from equation 1 above is T dS minus sd T sorry minus P d V minus T dS minus S d T.

What this means is dA is dA is this and this will get cancelled and dA will be minus P d

V minus S dT. So, this will be our fundamental property relation number 3 for today

right.

And finally, introduce another variable called as Gibbs free energy or G, remember all of

these are molar quantities I can always multiply them with the number of moles to get

the total quantity. G similar to A is defined as H minus T H the T S. So, we replace you

with H in this expression for G. So, G is going to be H minus T S or d G we can do a



similar exercise as above and get d G to be V d P minus S d T. And this will be our

equation number 4 for today. So, I have four fundamental property relations, one is for

dU, the second one for dH, the third one for dA, and the fourth one for dG. So, we call

these groupings right.
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So, let us some quickly write the four of them again, dU is T dS minus P d V; d H is T dS

plus V d P; dA is minus S d T minus P d V, and d G is minus S d T plus V dP. So, these

are the four fundamental property relations we derived. And notice that each one of these

transformations results in a flip of the term one flip for one of the terms on the right hand

side. For example, when I go from d U to dH, the T dS term remains the same, but dV

becomes dP and of course, there is a change in additional change in the sign right.

When I go from similarly dU to dA, the negative P dV term remains the same, but there

is a flip in dS to dT right and so on. And for the last one both the terms and a flipping

right, both dS becomes dT and dV becomes dP for the last one. This has a important

consequences it helps us to express a several quantities in terms of directly in terms of

measurable  properties.  So,  such  thermodynamic  transformations  or  mathematical

transformations  help  us  to  determine  quantities  that  cannot  be  directly  related  or

measured in the sense that they can be related to other measurable quantities. But before

we try to express those relations between quantities, that cannot be so directly measured

to quantities that can be directly measured. 



Let  us  quickly  revise  our  knowledge  on calculus  when using  these  equations.  Now,

remember all these four equations are for closed homogeneous systems. And what the

first equation also means for example, if I take this first equation d U as T dS minus P d

V, and if I pose the question, what is the change in internal energy with respect to volume

right. What is dou U over dou V the change in internal energy with respect to volume

that is very not very convenient to answer, but if I tell that I take this partial derivative

holding entropy constant, S constant, then it is pretty straight forward.

Because S is constant the first term in the above equation disappears and dou U by dou V

simply becomes right, because of this reason this term disappears, and dou U by dou V

simply becomes negative P. Similarly, if  I want to know what the change in internal

energy with respect to entropy is holding volume constant, I can do a similar exercise

and because I am holding the volume constant, the second term disappears. And when I

take the derivative of U with respect to S, it would be T.

In a similar fashion for the other three equations also, I can write these derivatives. For

example, for the second equation, derivative of H with respect to S at constant P will

result in T; derivative of H with respect to P at constant S will equal V. Similarly, if I take

the last equation for Gibbs free energy derivative of G with respect to P at constant T will

be V; and derivative of G with respect to V, I am sorry with respect to T at constant

pressure will equal negative S, derivative of G with respect to T at constant pressures so

the second term drops out here. And I have what I have left is negative of S and so on.

This is the first observation we can make using these four fundamental property relations

and because  these  derivatives  turn  out  to  be variables  which  are  nice  like  these  for

example, for the first one derivative of U with respect to V at constant S is negative P. If

I  take  this  partial  derivative  not  holding  S  constant,  but  holding  some  other

thermodynamic variable  constant,  then the resulting value or the quantity will  not be

such a nice thermodynamic quantity as pressure it might be I can always derived that

what it will be, but it may not be such a nice expression. Because these fundamental

property relations yield this partial derivatives ending up with these nice quantities we

call them as canonical groups.

So, meaning they formed simple groups which will result in partial  derivatives being

thermodynamic quantities which are straight forward. So, U, V and S form a canonical



group; H, S and P form a canonical group a T; and V form a canonical group; similarly G

T and P form a canonical group. And when I take partial derivative of one holding the

other  variable  constants,  it  is  results  in  the thermodynamic  quantity  which is  can be

straight forward related to a thermodynamic single thermodynamic variable. This is the

first consequence of these fundamental property relations.
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The second thing that is more important is through what is known as Maxwell’s relation.

Let  us  take  an  example,  let  us  take  the  example  for  Gibbs  free  energy  because  in

chemical engineering applications we are not using this quantity a lot more. G we said is

H minus T H T S, and the way we have written d G was V d P minus S d T. And then we

do the first derivatives like we have done earlier derivative of G with respect to P holding

T constant is volume derivative of G with respect to T holding the pressure constant is

negative S.

Now, when I say this quantity, if I pose the question, how does Gibbs free energy change

with temperature,  it  is entropy. Again entropy is not a quantity which I can measure

directly. So, is there a way to express this derivative in terms of quantity, I can measure it

terms out, we can do a little mathematical exercise to come up with that answer.

Now, what we do is take the second derivative. For example, to this expression here on

the left if I take the second derivative with respect to temperature, and because I am

taking the derivative with respect to temperature, it automatically means I am holding the



pressure constant, then this will be derivative of V over T that constant pressure. The

right hand side also I have to take derivative with respect to temperature and holding the

pressure constant. And for this expression here, I will again take the second derivative,

but this time with respect to pressure, so that I get derivative of G with respect to dou P

dou T, it will be negative derivative of S with respect to pressure at constant temperature.

Now, because of the condition for exactness of the second derivatives, I can equate these

two quantities  the second derivatives irrespective of the order of differentiation.  And

what that means, is derivative of S with respect to P at constant temperature negative of

that quantity is derivative of V with respect to temperature at constant pressure. So, the

whole idea of this exercise, then trying to take the second derivatives etcetera is to relate

how entropy changes with pressure dS dou S by dou P. When I hold the temperature

constant to properties or quantities I can measure.

So, look at the quantity is on the right hand side, it is a derivative of volume with respect

to temperature at constant pressure volume temperature pressure or all the quantities, I

can directly measure in a lab. On the left hand side, I have derivative of a quantity, I

cannot directly measure in a lab entropy right. So, however, I can relate these derivative

of entropy, two quantity I can measure as expressed on the right hand side. We call this

as a Maxwell’s relation. Now, in this exercise, we have use the fundamental property

relation  for  Gibbs  free  energy  right.  I  can  similarly  use  other  fundamental  property

relations  and I  can  get  this  is  one  fundamental  property  relation  for  one  Maxwell’s

relation.
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I can use other three to get three more Maxwell’s relations. Let us quickly run through

one more for the sake of clarity. Let us take let us take dU dU was T dS minus P d V on

one side we say that derivative of U with respect to S at constant volume is T. And on the

other side derivative of U with respect to volume at constant S is negative of P.

Now, I take the second derivatives derivative of U with respect to volume and entropy

there is derivative of T with respect to volume at constant entropy, because I am taking

the second derivative with respect to volume, it means entropy have constant, so that

would be derivative of T with respect to V at constant S. And on this side when I take the

second derivative, it will be with respect to S, the first one was with respect to volume.

And because I am taking the second derivative with respect to S it means I am holding

the volume constant derivative of P with respect to S at constant, constant volume.

Now, what this means is I can equate again applying the criteria for exactness, I can

equate the two second derivatives. And what I have done is negative derivative of P with

respect to S at constant volume is derivative of T with respect to volume at constant S.

And again on the left hand side I have something I cannot measure a derivative of P with

respect to S or I can invert it and call it as derivative of S with respect to P in which case

I can also invert the right hand side. 

So, for example, this would be derivative of S with respect to P at constant volume there

will be derivative of volume with respect to temperature at constant S. The left hand side



is a quantity I cannot measure, the right hand side is something I can measure in terms of

V and T. So, again the idea of deriving these Maxwell’s relations is to be able to express

quantities, I cannot measure in the lab directly, two quantities I can relate to with our P V

T properties or something else I can measured in the lab. So, this is the second Maxwell’s

relation. I can derive two more Maxwell’s relations similarly, one involving H and other

involving the Helmholtz free energy using the Helmholtz free energy.

So, I am quickly going to just write them down here. So, if you want to derive them, you

can and compare the result it would be constant as would be dou V by dou S at constant

P. And the last one is dou P dou T at constant volume is dou S dou V at constant T. Again

on one side you have an entropy term; on the other side it is either P V or T terms of we

can measure them in the lab. So, these are the four Maxwell’s relations and the four

fundamental property relations. Now, we will use this idea, and try to see how I can

derive an expression for d H in terms only in terms of quantities I can measure.
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Remember originally d H was in terms of dS. Now, we want to replace that and express

it in terms of measurable quantities right. For a homogeneous closed system H although

the canonical grouping says that d H is T dS plus V d P, I can write H as a function of

any two variables. So, what I will do is I will write H as a function of T and P, so that the

total derivative d H is going to be derivative of H with respect to T at constant pressure

times d T plus derivative of H with respect to P at constant temperature times dP right.



So, partial derivative times dT plus the second partial derivative times dP that would be

the total change in H or d H right. 

The first term is something which we readily identify. We are calling this guy as the

specific heat capacity C p d T right plus derivative of H with respect to P at constant

temperature dP. Derivative of H with respect to P at constant temperature is derivative of

H, if I use this relation derivative of H with respect to P, when I hold the temperature

constant because the temperature is (Refer Time: 28:54) constant, it can come out of the

derivative it will be derivative of S with respect to P at constant temperature plus V dou

P by dou P S V, so that the second term would be V.

So, derivative of H with respect to P at constant temperature is T derivative of S with

respect to P at constant temperature plus V. So, I will use that it will be C p dT plus plus

T derivative of S with respect to P at constant temperature plus v, so times dP. So, I have

replaced the derivative of H with respect to P with this term, which I can get from the

fundamental property relation for d H. And finally, in one of the Maxwell’s equation we

have derived earlier derivative of S with respect to P at constant temperature or may be

in the previous one, here derivative of S with respect to P at constant temperature is

negative derivative of V with respect to temperature at constant pressure.

So, I will use this Maxwell’s relation right, and I am going to replace this right from the I

am going to replace this with negative V over T at constant pressure. So, what done does

to my expression, then is it will be C p dT plus V minus T times negative V by sorry

derivative of V with respect to T at constant pressure times dP, this will be my expression

for a d H right.

Now, look at where we have started either the fundamental property relation where I had

T dS plus V d P or in terms of some two other variables where I had express where I had

express it in terms of T and P. Irrespective of where I have started things did not look

very promising when I went ahead. But then once I manipulate it I have perform the

mathematical manipulation, and I have use the Maxwell’s relation what I get on the right

hand  side  is  something  I  can  measure  directly  pressure,  volume,  temperature  all

measurable and the specific heat capacity C p.

So,  finally,  I  was  successful  in  expressing  the  change  in  enthalpy  only  in  terms  of

quantities I can measure C ps, volume, pressure, and temperature. So, the whole idea of



this exercise is to be able to express this thermodynamic quantity in terms of PVT and

the specific heat capacity which is what I have done here right. We still have a while to

go before we can it start using it for real fluids. We still do not know how the specific

heat capacity C p for real fluids can be calculated we know that there are tables for C p

for ideal gas like condition, but for real gases C p is still something which we need to

work on. This equation also will reduce to what we have seen earlier for an ideal gas

right.
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It has to, for example, the equation I had derived in the previous slide is the derivative of

H was C p dT plus V minus T derivative of V with respect to T at constant pressure times

dP. What happens in case of an ideal gas. For an ideal gas, we know that P V is R T right.

So, V is R T by P right, V is R T by P. So, derivative of V with respect to T right at

constant pressure, so I am holding the pressure constant both R and P are then constant

right. And when taking the derivative with respect to temperature, so it will be d T by d T

right  which is  1,  so this  is  R over P right.  So,  derivative  of volume with respect  to

temperature at constant pressure will be R over P for an ideal gas which means d H is

going to be C p d T plus V minus T times right this derivative here.

Now, I am going to replace it this value for an ideal gas which will be R over P right

times d P. Now, R T by P again for an ideal gas is volume. So, volume minus volume will

then result in 0. So, this will simply be C p d T. Remember what we said for an ideal gas



enthalpy is only a function of temperature. So, it does not matter whether the pressure

changes or not, d H will always be equal to C p dT for an ideal gas and that is what we

ended up using the expression we just derived.

So, whenever I derive these sort of expressions for the limiting cases, we need to get the

expressions which we have already derived for an ideal gas. If that does not happen, then

obviously, there is something wrong with our logic. But for now it works out dH happens

only to be a function of temperature which is which is a good sign.
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Now, I can work on similar expressions or I can derive similar expressions, what I will

do is give out a few expression, and now let you guys derive those dS will be C p by T d

T minus d V dT P dP this is with the change in entropy with changes in temperature and

pressure. Now, I can derive similar expressions for dU, dG when the need arises I know

the trick on how to handle these expressions. What happens to an ideal  gas again is

something I can look at for dS similar to what we have done for dA d H or the change in

enthalpy. Apart from ideal gases there is one other example which we want to discuss

about right.

So, let us write that expression previously we have for dH it was C p dT plus V minus T

derivative of V with respect to T at constant pressure dP. And we know how to reduce

these equations for ideal gases. Let us talk about one other scenario which is of interest

and pretty  easy to  handle what  happens in  case of  liquids,  what  happens in case of



liquids, when I use these equations right. To answer that question we take the help of two

quantities which we have already used earlier or a defined earlier. The first one is volume

expansivity which we defined as derivative of volume with respect to temperature at

constant pressure 1 over V of that, we call it as beta. And the other one is the isothermal

compressibility kappa which is negative 1 over V derivative of V with respect to P at

constant temperature.

So, if I use this expression, then dS for liquid will be C p by T d T the first term can be

left  in terms of the specific heat capacity. And the second term derivative of V with

respect to T at constant pressure, I can use beta times the volume dP. So, this will be dS.

And similarly if I want to write d H it will be C p d T plus V minus T times derivative of

V with respect to T at constant pressure is again beta times V times d P or a better way of

writing that is C p d T plus V 1 minus beta T dP that will be T H. So, for liquids I can use

the isothermal compressibility and volume expansivity we have defined earlier, and try to

come up with expressions for dS d H etcetera.

Similarly, dU is going to be C v d T plus beta over kappa tau minus P d V and so on. So,

depending on what data, I have at hand I could use one of these expressions. We have

derived a general expression which applies for all fluids, then we have we have seen how

to reduce those expressions for special cases of an ideal gas or for a liquid where I have

information  about  volume  expansivity  and  isothermal  compressibility.  For  a  more

extreme case of a completely incompressible liquid what happens is beta is going to be 0.

So, dS is going to be simply C p over T d T. And similarly over here, it will be C p dT

plus  V dP for  an incompressible  liquid.  So,  we can start  using  these  equations,  and

applied them to special cases and derive as the need arises. Let us quickly look at one

example on how to handle these equations or use them for liquids.
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What I have is water at 353 Kelvin and 1 bar the volume expansivity and isothermal

compressibility are given to us. The density is given. Now, if we compress at isothermal

into 1500 bar, we want to calculate the changes in H U and S, and then we are going to

calculate w and q for a reversible and an irreversible process. Let us see how we can do

this. It says calculate delta H, delta U and delta S. So, let us see if I can first write the

expressions for delta H and delta S. 

Delta H as we have seen for a liquid or let us write it as dH for a liquid was 1 minus beta

T V (Refer Time: 41:21), it was C p dT plus 1 minus beta T V dP. Now, this liquid is

compressed isothermally. So, the first term disappears. I do not need that, because there

is  no change in  temperature.  So,  dH is  simply 1 minus  beta  T V dP. Now, if  I  am

interested  in  calculating  delta  H,  then  delta  H  then  I  simply  need  to  integrate  this

equation 1 minus beta T V dP from the initial pressure to the final pressure P 1 S 1 bar

and P 2 S 1500 bar.

When I perform this integration, beta is constant or it is just one value is given for beta.

So, I am going to assume that it is constant, I can integrate this except what is the deal

with volume, how do I know, how what do I know about volume or how it changes with

pressure. It definitely changes with pressure, it is not given that the liquid is completely

incompressible. If it changes with pressure, then I can I need to know how it changes

with pressure and perform this integration, alternatively if the changes pretty small, then



I can use an average value over this pressure range that is what is given in the problem

statement. Assume V necessary for the calculations to be the average value of V within

the range from 1 to 1500 bar.

So, what we want to do is use an average value of V, and assume that it is constant and

bring it out of the integral. So that means, what I have done is delta H is 1 minus beta T

some sort of average value of for the volume times integral of P 1 to P 2 dP, or this will

be 1 minus beta T the average volume times P 2 minus P 1. So, I have everything else I

need to calculate this delta H. The only thing I need to do is calculate the average volume

right.
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So, let us see how we calculate the average volume. The average volume we are going to

say that it is average of the volume at the two ends 1 bar and 1500 bar. So, it is V 1 plus

V 2 over 2. V 1 is going to be the inverse of density at the condition one which is given

to me, so that happens to be 1 over 972 kg per meter cube, so that will be 1.0288 into 10

power  minus  3  meter  cube  per  kg.  This  is  the  specific  volume  at  condition  1.  For

condition 2, what we will do is use the definition for kappa; it is negative 1 over V dou V

by dou P at constant T right.

So, I can integrate this and end up with an expression which says ln of V 2 over V 1 is

negative  kappa P 2 minus  P 1 right.  I  know everything  in  their  V 2 is  going to  be

exponential of negative kappa P 2 minus P 1 times V 1 right. I know all the quantities on



the right hand side kappa is given P 1 P 2 are given and I have just calculated V one. So,

I can plug them in to get the volume at 1500 bar to be 0.96 o 1 10 power negative 3

meter cube per kg. And because now I know both V 1 and V 2 I can calculate the average

value for the volume to be 0.9945 10 power negative 3 meter cube per kg right.

And once I have the average volume, I can go back and calculate  the change in the

enthalpy, it is, this quantity right here 1 minus beta T the volume times the pressure. We

just need to be careful in using consistent units the pressure is in bar. So, we need to

convert it into Pascal’s to be to be able to use a S I units throughout. And it turns out the

value we get is 115.3 into 10 power 3 joules per kg. This will be the value for delta H.

And now beta I know the average volume I know P 1 and P 2, so we can get this value

for delta H.
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To calculate delta U, I can use seen I can use the expressions we derived earlier, but an

easier way in this scenario is simply to take it to be H minus P V or delta U is going to be

equal to delta H minus delta of P V. So, this will be delta H which we calculated earlier

115.3 10 cube minus P 2 V 2 minus P 1 V 2. So, this will be negative 115.3 sorry 115.3

10 power negative sorry it should be positive 3 right, I am sorry that is a positive 3 joules

per kg minus 1500 10 power 5 Pascal times the final volume which is 0.9601 10 power

minus 3 that is 1 bar is the initial pressure multiplied with the initial volume which was



1.0288 10 power negative 3. I can simplify this whole expression and what I have is

negative 28.57 10 cube, 10 cube joules per kg. This will be my delta, delta U.

And finally, delta S is going to be negative beta the average volume times P 2 minus P 1.

Again convert the pressures into Pascal’s and use SI units throughout to get delta S to be

95.5 joule per kg per Kelvin. So, once I find the average volume, the other calculations

are pretty straight forward to do. So, this is how I use the beta and kappa values to

calculate delta H, delta U and delta S. So, I am done with the first part. The next thing we

need to calculate is Q and W.
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What we will do is we will try to calculate Q for the reversible process it is simply T dS

or T delta S, because the process is isothermal. And I already know the value of delta S

temperature is 353 Kelvin times negative 95.5. So, this value turns out to be negative

33.73 times 10 cube joules per kg. Once I have Q, I can apply the first law and say that

W for the reversible process is going to be delta U minus Q for the reversible process.

Delta U was negative 28.57 times 10 cube, and this guy Q who was negative 33.73 times

10 cube. So, there will be 5.16 joules per kg so that is how I calculate Q and W for the

reversible process because I know the other quantities.

And finally, if  I want to calculate  the values for the irreversible process, I know the

efficiency is given to me, it is 0.7 right. So, W for the irreversible process, I need to do

more work. It will be W for the reversible process over the efficiency or it is going to be



5.16 10 power 3 over 0.7 which turns out to be 7.38 10 power 3 joules per kg. And the Q

for the irreversible process then comes from the first law; it will be delta U minus Q for

the irreversible plus sorry W for the irreversible process. Delta U does not change its

same irrespective of the nature of the process, it is 28.57 10 power minus 10 power 3

minus minus 7.38 10 power 3, so that is going to be negative 35.94 10 cube joules per

kg. 

So,  once  we  calculate  this  quantities,  delta  H,  delta  U,  delta  S,  etcetera,  the  other

quantities  the heat  and work requirements  for the process is  can be calculated  fairly

easily  and  that  is  the  essence  of  calculating  the  changes  in  various  thermodynamic

quantities, ultimately we want to transfer relate them to heat and work requirements for a

given process or heat and work produced from a given process. This is where we are

going to stop. Now, we would not go into heat and work calculations for the remainder

of this section, but our main focus then is going to be on calculating the changes in the

actual thermodynamic properties itself delta H, delta U, etcetera. And once we do that as

in this example we have seen we can related to Q and W alright.

So, we will stop therefore it now. When we come back in the next lecture what we will

look at is how to calculate these changes if the fluid is not either an ideal gas or a liquid,

how do I handle calculation of these changes, what we will do is we will try to use a

thermodynamic  tables  and  thermodynamic  diagrams  first  to  be  able  to  do  these

calculations. 

Thank you.


