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So, hello everyones. In the last lecture we were discussing the phase behavior of polymer

solutions.  So,  specifically  we  look  looked  at  the  conditions  under  which  polymer

solution can become unstable and phase separated into 2 different phases. We considered

the Gibbs energy versus composition diagram and on that diagram we marked the points

which correspond to the stable meta stable and unstable regimes.

Basically the regions demarcated by the binodal points there represent the regions of a

stability of homogenous solutions. The region between the binodal and spinodal points

they  represent  represent  the  metastable  region,  where  the  thermodynamically  the

favorable state would be a phase separated 2 phase state.

But for that to happen this a barrier that needs to be crossed and then phase separation

can take place through nucleation in growth. Further we also identified unstable region

which is the region between the 2 spinodal points and this region any tiny fluctuation can

result in the phase separation of a homogenous solution into 2 different phases.

So,  we  also  developed  mathematical  expression  starting  from  the  Flory  Huggins

equation.  For  the  spinodal  curve  as  well  as  for  the  critical  composition  the  critical

temperature and the critical Flory Huggins interaction parameter. Further we also briefly

started discussing the thermodynamics  of polymer blends.  So,  in this lecture we will

continue that  discussion on the thermodynamics  of polymer blends and we will  also

briefly talk about the thermodynamic and phase behavior of block copolymers.
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So, the content of this lecture is briefly summarized here we will start with the Flory

Huggins equation for polymer blends which we introduced in the previous lecture. Then

we will use this Flory Huggins equation to derive the expressions for a spinodal curve as

well as for critical point which is the approach will be similar to what we discussed in the

previous lecture for polymer solutions. We will also look at the case of asymmetric as

well as symmetric blend.

What these are and how the behaviors are be different. And finally, for polymer blends

we will look at the phase diagram a typical phase diagram for polymer blends and we

will  see that  it  has features  which are very similar  to what  we already observed for

polymer solution phase diagrams and towards the end of this lecture, we will briefly also

discuss the phase behavior of block copolymers  and we will  see that  it  shows some

interesting features.

So, as discussed in the last lecture the Flory Huggins equation for a polymer blend.
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It  is  very  similar  to  the  Flory  Huggins  equation  for  a  polymer  solution.  The  only

difference is the appearance of this term x 1 here and this x 1 is nothing but the number

of segments in the first polymer.

So, as we have already discussed polymer blends has a mixture of 2 different polymers.

And x 1 denotes the number of segments in polymer one x 2 denotes the number of

segments in polymer 2. So, the number of segments in polymer 1 x 1 that is the extra

term that appears here as compared to the equation for polymer solution. And the volume

fractions of the first and the second polymer the expressions for those also change a bit

because now both components are polymers. So, the number of segments of both the

polymers will come into the volume fraction expression.

So, we have phi 1 as x 1 n 1 by x 1 n 1 plus x 1 x 2 n 2 and similarly phi 2 as x 2 n 2

divided by x 1 n 1 plus x 2 n 2 if we take the delta gm and divide that by the total number

of lattice sites total number of segments present which is x 1 n 1 plus x 2 n 2 what we

can do is through this division reformulate the original Flory Huggins equation for a

polymer blend into a a form where the right hand side only contains the volume fraction

of the second polymer which is phi 2. So, this  again is something that we discussed

towards the end of the last lecture.

If you look at this expression the expression here, the first 2 terms here these 2 terms.

These represent the contribution from the combinatorial entropy change of mixing. And



we see that the difference from polymer solutions is here both these terms are actually

contained either x 1 or x 2 in the denominator. So, that both these terms are small in

magnitude  what;  that  means,  is  that  the entropy change of mixing is  quite  small  for

polymer blends and it turns out that it is actually the interaction term, which is a term

containing chi this last term here that is the term which dominates the thermodynamics

of polymer blends.

The entropy of mixing is small and that contribution does not significantly play a role in

deciding the thermodynamics of polymer blends. It is an interaction in term which is the

more important one 
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So, again if we start with this reformulated Flory Huggins equation, in where delta gm is

expressed in terms of phi 2 only and if we as before as discussed in the last lecture; if we

again try to look at the condition for stability. So, the condition for stability we know is

decided by the sign of the second derivative of this delta gm with respect to phi 2. So,

what we can do is differentiate this expression twice again then see the what expression

we get and how equating it to 0 can lead us to the expression for the spinodal curve.

So, differentiating it once we will give us the expression here, where the these 2 terms

here these 2 terms come from the differentiation of this term here and similarly these 2

terms come from the differentiation of this term here. And finally, this term comes to us



just by the multiplication of 1 minus phi to with phi 2. So, again we see that these can be

cancelled similarly the phi 2 here that can also be cancelled.

So,  we end up with  an  expression which  looks  something  like  this  and,  now if  we

differentiate  this  expression  one  more  time  because  we are  interested  in  the  second

derivative of the Gibbs free energy change that is the term who sign decides the stability

of the polymer blend. So, the stability will be decided by the second derivative and this

second derivative is obtained by just  differentiating this quantity  one more time with

respect to phi 2.

So, if we do that this term derivative of this with respect to phi 2 is 0 differentiation this

is respect to phi 2 will give us this term again if we differentiate 1 over x 2 with this 2

phi 2 that is also 0 because x 1 and x 2 are constants as far as change with respect to phi

2 is concerned and differentiating this will give this term and finally, differentiating this

will just give minus 2 chi term. So, the second derivative of the Gibbs free energy change

is just respect to the composition which here is represented by phi 2.

So, the expression for that second derivative is this and as we have discussed before if

this quantity is less than 0, then we know that the blend will be unstable and such a blend

will not actually remain in a mixed state it will phase separate into 2 different phases.
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Now let us look at a condition where the second derivative is actually 0. So, the second

derivative being 0, that is the condition for the spinodal point as we have discussed in the

previous lecture for polymer solutions.

So, for polymer blends also the same condition will apply and the second derivative

setting the second derivative to 0 that will provide us the location of the spinodal points.

And so, if we use the expression for the del square delta gm del phi 2 square that we

derived in the previous slide, we said that expression to 0 then from that by rearranging

the terms finally, what we get is the chi which is  a Flory Huggins polymer-polymer

interaction parameter because we are talking the blend now.

So, here this chi s, where the subscript s denotes again spinodal. So, chi s is given by half

of 1 over 1 minus phi 2 x 1 plus 1 over phi 2 x 2. So, this equation basically is the

equation of the spinodal curve. So, if we plot chi s as a function of phi 2 using this

equation that will give us the spinodal curve as predicted by Flory Huggins equation for

a given polymer  blend.  Now if  we assume that  chi  depends on temperature  using a

functionality of this form that is chi is equal to a plus b by T, then we can substitute that

expression for chi s which is a plus b by T. And again instead of t we are writing T s we

because we are dealing with the condition for spinodal.

So, that subscript s again denotes temperature denotes a spinodal condition and if we

rearrange  the  terms  again,  we  what  we  get  is  the  expression  for  temperature  this

temperature T s at the spindle condition as a function of phi 2. So, from this equation as

well  we can plot the spinodal curve where as phi 2 changes how the temperature is

changing that behavior can be obtained from this equation and then it can be plotted to

get the spinodal curve.
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Next again as similar to what we did for a polymer solution for polymer blends also. If

we want to determine the critical point the condition for that is the derivative of this chi s

with respect to phi 2 is 0 what that means, is that if we plot chi s as a function of phi 2,

then the critical point will correspond to the point where the curve will show a minimum.

So, the if we plot the spinodal curve then the minimum of that curve corresponds to the

critical point and that is what we are trying to mathematically determine using the this

condition here. So, applying this condition and we already have derived an expression

for chi s in the previous slide. So, if we differentiate that expression with respect to phi 2,

we get  this  expression here  and for  the  critical  composition  or  the  critical  point  the

condition is that this expression that is this derivative should be equal to 0.

So, setting it equal to 0 and again rearranging the terms what we get is phi 2 square over

1 minus phi 2 the whole square is equal to x 1 by x 2. And again in the next step we can

just take the square root on both sides and then finally, rearrange the terms one more time

take this term up here and this term up here. So, we get this expression and from this

finally, the expression for phi 2 at the critical point. So, this phi 2 c, which is the critical

composition or the value of phi 2 at critical point.

So, that is what we obtain and the expression for this critical composition is 1 over 1 plus

x 2 by x 1 raised to the power half. So, next now that we have an expression for this



critical  composition,  we  can  use  this  expression  to  obtain  expressions  for  critical

temperature as well as the critical value of the Flory Huggins interaction parameter.
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Earlier  we  have  already  derived  that  the  temperature  corresponding  to  the  spinodal

condition is this and the expression is given the right hand side here and since we have

we already know that at the critical point in the composition is given by an expression

like this we can substitute this phi 2 here at both the points where phi 2 appears on in this

expression, we can we substitute the expression for phi 2 c at both those points. Then

upon substitution we will  get an expression for the temperature and that temperature

basically is the critical temperature.

So, that is the temperature at the critical point and again upon simplifying. So, some

simple  rearrangement  of  their  terms  and then  further  taking some factor  outside  the

brackets that is this factor is common to both their terms here finally, the expression for

T c or the critical temperature we will get as something like this.

So,  we  see  that  this  expression  also  contains  the  number  of  segments  of  both  the

polymers is present in the blend as well as the parameters A and B, which relate the Flory

Huggins interaction parameter to the temperature. Next now that we have an expression

for critical temperature we can also obtain an expression for the critical value of chi.
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So, we already have in have derived an expression for chi s which corresponds to chi at

the spinodal points. And we know that the expression for the critical composition that is

the composition at which this curve shows a minimum that expression is already derived

to be this. So, again if you substitute the these this expression for phi 2 c at both these

points here then upon that substitution the chi, that we get that chi is a critical Flory

Huggins interaction parameter which is the value of chi at the critical composition 

So, again upon substitution and rearrangement the expression that we end up with is

something like this, this is a critical chi expression. For that for critic and we can further

simplify it by dividing both the terms numerator by x 2, and the final expression that we

get for critical chi is half multiplied by 1 over square root of x 2 plus 1 over square root

of x 1 whole raised to the power 2. So, this expression again is the expression for the

critical Flory Huggins interaction parameter. The expression of a critical temperature we

have already derived to be this in the previous slide.

So, now this these expressions apply to any blend which can be described by the Flory

Huggins equation.  Now if you consider special case where the blend that we have is

symmetric ok, we say that the blend is symmetric when both the polymers have the same

number of segments. So, both the polymers constituting the blend have equal number of

segments. So, what that means, is that x 1 and x 2 will be equal for a symmetric blend

and let us say that we represent x 1 and x 2 both has by a this common symbol x.



So now let us see what happens to the expression for the critical composition the critical

chi as well as the critical temperature for the special case of a symmetric blend. So, if we

substitute  x  2  equal  to  x  1  here  this  second term just  becomes  one.  So,  for  critical

composition the value that we get is just half. So, for a symmetric blend the critical point

always will correspond to a composition of 0.5 and what that implies is that minimum in

that in that curve at the minimum the spinodal curve will correspond to a composition of

phi 2 equal to 0.5.

Next if we consider the critical temperature T c. So, again in this expression if we set x 2

equal to x 1. So, this term becomes 1. So, we get 1 plus 1 2 and this is squared here. So,

2 square will get 4 in the numerator here and we have a 2 here in the denominator. So,

we will end up with a 2 by x 2 term. So, this x 2 we are since x 1 and x 2 are equal we

are representing both as x. So, this term will  simply become 2 by x. So, the critical

temperature that expression reduces to b over 2 by x minus a and finally, the critical chi

parameter.

So, again in the expression that we had here if you substitute x 1 and x 2 to be equal and

replace them by just x and take that out s common then in here inside the bracket we will

be left with 1 plus 1 which is 2 n it is squared. So, we will get 4 again and we have a

factor of 2 dividing it here.

So, we will end up with a factor of 2 in the numerator and this square root of x when it is

taken out since there is a square present here that will become just x in the denominator.

So, this xc simply reduces to 2 by x for the case of a symmetric blend. Now the larger the

value of x the smaller will  be the value of this  critical  chi parameter  and if we just

rearrange the terms here then this product of x time chi c.

So, this x time chi c where chi c is a critical clearing it is parameter that product is equal

to 2. So, what this tells us is that this product x times chi c at the critical point, the value

of this product is 2 for a symmetric polymer blend. Now that we have discussed the

equation for spinodal curve as well as the expressions for critical point, now let us again

try to look at the phase behavior as well as the delta g diagrams of this polymer blend

graphically as we did in the case of polymer solution.

So, that we get better understanding of this topic.
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So, let us consider an asymmetric blend first where x 2 is greater than x 1, which means

that the second polymer has the number of segments in the second polymer is larger than

the number of segments in the first polymer that is the second polymer is longer than the

first polymer or. So, for such a case if we let us say consider that polymer blend to be at a

temperature, where the delta G m versus phi 2 graph looks something like this it shows

again 2 convex regions and kind of concave region in the middle.

So, if we have an asymmetric blend of this type. So, as before for the case of a polymer

solution we can here also start by drawing a common tangent to the 2 portions of this

curve. So, the common tangent that is represented by a dashed line here that basically

will touch the curve at 2 different points.

And the 2 points at which this common tangent touches the curve correspond to the

binodal points as we have already discussed, when we are talking the polymer solution

case. So, polymer blends also a similar kind of construction can be used to identify the

binodal points.

Now, that we have the binodal points as before the regions marked by these arrows here

if you have a, the polymer composition in this these regions, then this line that forms will

be a stable blend or it will be a miscible blend; however, if the blend forms outside this

region.



So, if the blend is found in with a composition of the second polymer phi 2 in this region,

which is again the miscibility gap for this case. So, in this region the blend will not be

stable in the sense that it can it will have a tendency to phase separate into 2 different

phases.

So, again we are not going to discuss in too much detail because we have already had a

discussion  of  the  different  aspects  of  such a  diagram,  when we are  talk  in  polymer

solution, but again in this case also we can identify 2 points which correspond to the

condition of del square delta gm del phi 2 square equal to 0.

So, these 2 points where the second derivative delta gm becomes 0 these 2 points again

will correspond to the spinodal points for the polymer blend. And if we have a blend that

that has a composition lying between the spinodal points between these 2 points then that

blend will  be unstable  and will  tends to  spontaneously phase separate  and again the

region between the binodal and the spinodal.

So, these 2 regions here they correspond to the metastable state.
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If we consider an asymmetric blend which where the number of polymer segments is

smaller in the second polymer than the first polymer. So, first polymer has more number

of segments x 1 is larger than x 2 and if other things remain the same, then the phase or



the Gibbs free energy diagram has function of phi 2 that will appear to be just inverted

form of what we saw in the previous case.

So, in this case now the phase diagram or the free energy diagram actually will show

deeper  minima on the left  side and a shallower minimum at the right side,  which is

opposite to what we saw in the previous case where x 2 was larger than x 1 and again by

using a common tangent construction we can identify the binodal points and again one

thing to remember is that the binodal points need not correspond to the points at which

the this curve actually shows minimum.

So, the minimum might be somewhere here where the binodal point is somewhere here

similarly the minimum here might be somewhere here and binodal point is somewhere at

a slightly different location. So, if you have asymmetric system the binodal points will

not necessarily correspond to the points of minimum on the free energy versus phi 2

diagram. 
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So, next consider let us consider the case of a symmetric blend, where x 1 and x 2 are

equal and let us represent both x 1 and x 2 as x since the blend is symmetric, we see that

the delta  G m versus phi 2 that  diagram is  also symmetric  and if  we again  make a

common tangent do a common tangent construction what we see is that, the common

tangent in this case is horizontal the reason for that is the since a blend is symmetric the



free energy diagram is also symmetric.  And both the minima actually have the same

depth.

So, if we draw a common tangent which touches the curve at both these points then, that

common tangent will be horizontal. So, for a symmetric blend, the common tangent is

horizontal  and  mathematically.  If  we  consider  the  first  derivative  of  the  Gibbs  free

energy, which  is  an  expression,  that  we have  derived  previously  in  this  lecture.  So,

instead of x 2 and x 1 we can replace both of them by just x.

So, that is what we have done and the expression for this first derivative which will

correspond to the slope of this curve. So, that expression changes to or simplifies to this.

And now we see that these 2 terms since x 1 and x 2 are equal these 2 terms actually will

cancel each other. So, a simplified expression now becomes what shown here. So now,

that the common tangent is horizontal the binodal points that we have identified we will

coincide with the points at which the curve will display minima.

So, that makes things easier mathematically in the sense that at the binodals, now since

both  the  binodal  points  also  correspond  to  the  points  of  minima  on  this  curve.  So,

therefore, at the binodal points this one should be phi to be double prime. So, at the both

the binodal  points  the slope of  this  delta  G m versus  phi 2  curve which is  the first

derivative  that  will  be 0 at  both  the  binodal  points.  Then since we already have an

expression for this first derivative, we can set that equal to 0 and that will help us in

determining the equation for the binodal curve.
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So, for a symmetric blend again if we are setting the this expression which is the first

derivative of the Gibbs energy to be 0 that will give us the equation for the binodal curve

because the condition that the first derivative is 0 that condition is satisfied at both the

binodal  points.  So,  if  we  again  rearrange  the  terms  finally,  the  chi  parameter

corresponding to the binodal point that, chi parameter expression one can derive to be

this in going from here to here all we need to do is just rearrange the terms a bit.

So, if, if we consider this term here and if you are setting it equal to 0 then what we can

say is that l n phi 2 by x minus l n 1 minus phi 2 by x that will be equal to 2 phi 2 minus

1 times chi where we have taken this term on the other hand side. And then just let us we

will just take this on the other side as the denominator. So, that will give us an expression

for chi b and these 2 terms log a natural log terms can be combined because they have

the same denominator.

So, this x will come out as common in the denominator. And ln phi 2 minus l n 1 minus

phi 2 will give us this ratio l n phi 2 over 1 minus phi 2. So, that is how we can obtain

this  expression  for  chi  b  which  is  the  Flory  Huggins  interaction  parameter  at  the

corresponding to the binodal condition. And if we now again use the expression for chi

as a plus b by T, then the temperature for the binodal curve that expression can also be

obtained. So, we just substitute this here and that will give us this expression. And then



finally, we really arrange the terms and the expression for the temperature is what we

have obtained here.

So,  this  equation  or  equivalent  to  this  equation  these  2  equations  basically  are  the

equations  for  binodal  curve  for  a  symmetric  polymer  blend.  So,  if  we  plot  t  the

temperature or T b as a function of phi 2 using, this equation the curve that we will get

will be the binodal curve for our symmetric blend.

So now that we have identified the equations for binodal curve for the special case of a

symmetric blend let us now talk about the phase diagram a typical phase diagram of a

polymer blend.
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So, what we will see is that for a polymer blend also the phase diagram will contain

features which are very similar to what we see saw for a polymer solution. So, the phase

diagram that shown here this phase diagram is a generic case where we are considering a

polymer blend that basically shows both the upper critical solution temperature and a

lower critical solution temperature.

We can have polymer blends which show either one of these 2 or some can show both

these critical points. So, we are just discussing a general case where both these critical

points are present on the same phase diagram.



So, if we have a phase diagram shown here, which is a just a plot of temperature versus

phi 2. And we are just representing the binodal curves here which mark the mark the

boundary between the single phase and the 2 phase region or the single phase stable

region and the 2 phase region which can contain both metastable and unstable regions.

So, if we look at the phase diagram the single phase region is basically the region lying

outside the 2 binodal curves.

So, these 2 are the binodal curves here and here. And the region outside the binodal

curve correspond to the corresponds to the single phase region and the regions being

enveloped by the binodal curve these correspond to the 2 phase regions

So,  if  we  have  a  polymer  blend  at  a  certain  composition  and  temperature  which

corresponds to this point, then it will basically phase separate into 2 different phases one

having these 2 compositions ok. The 2 points here this point of maximum on this curve

and this point minimum this curve these 2 points are the critical points for this case and

because these 2 points are correspond to the maximum or minimum on the binodal curve.

So,  the lower point  is  what  is  called  the upper  (Refer  Time:  32:16) critical  solution

temperature.

So, this is the maximum temperature up to which a 2 phase region can be seen or phase

separation can be seen. So, above this upper critical solution temperature, the polymer

blend  will  become  miscible  throughout  the  composition  range,  but  if  we  keep  on

increasing the temperature for this particular case we can again hit the 2 phase region at a

much  higher  temperature.  And  that  the  minimum  of  this  curve  is  corresponds  to  a

temperature which is called the lower critical solution temperature or LCST.

So, this terminology was already introduced when we discuss polymer solution and the

same applies to polymer blends as well UCST and LCST. So, this lower critical solution

temperature again corresponds to temperature below which we will have the complete

miscibility  of  the  polymer  blend  throughout  the  composition  range.  And  above  this

temperature the polymer blend actually can become immiscible or can phase separate

over a certain composition range which is basically the miscibility gap.

So, here we have not we have only shown the binodals, but one should remember that

just like for the case of polymer solution, for polymer blends also if we try to draw the



spinodal curves the spinodal curve will lie inside the binodal curve and they will touch

the binodal curve at the minimum point.

So, the spinodals will also show a minimum at the same point as a binodal which is a

critical point LCST and for the lower curve also a spinodal can be drawn which will

show maximum at the same point as the maximum for the binodal which is the UCST

point and the region. So, this is the spinodal curve similarly this also we have drawn the

spinodal curve here and the region between the binodal and spinodal we have already

discussed before is the metastable region in the same applies a and inside the spinodal we

have the unstable region where spontaneous phase separation can occur in the presence

of the tiniest of fluctuations.
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Let us consider the case of phase diagram which shows an LCST for a polymer blend.

And let us see how the phase compositions can be determined. So, again we have a 2

phase region enveloped by the binodal curve here and the single phase region outside.

So, the 2 phase region one arm of the 2 phase region let us call that the alpha phase,

which will  be rich in polymer 1.  So,  this  corresponds to a lower volume fraction of

polymer 2 phi 2 will have values less than 0.5 on this side.

So, that will be rich in polymer one because polymer will have one will have a higher

volume fraction in that part of the phase diagram. And let us consider the other phase let

us call  it  the beta phase and this phase will  be rich in polymer 2 that is the volume



fraction of polymer 2 will be higher in the beta phase than that of polymer 1. So now, in

that we have identified these 2 phases let us see how let us first consider the LCST point,

which is the minimum of this curve and let us consider a point on this phase diagram

which lies inside the 2 phase region.

So, let us at some temperature T prime and some composition phi 2 naught we are at a

point on the phase diagram, which lies inside a 2 phase region. So, if you are inside that

2 phase region the phase separation will take place. And we will end up with 2 phases

one having a composition given by phi 2 alpha and the other having composition given

by phi 2 beta. So, they will correspond to the 2 point (Refer Time: 36:30) marked here.

So, in the 2 phase region if we let us say initially where in the single phase region and if

we  increase  the  temperature  up  to  this  point,  then  in  the  2  phase  region  that

homogeneous single phase of the polymer blend will split into 2 phases and the 2 phases

will have corresponding compositions one will be rich in a polymer 1 which is the alpha

phase the other will be rich in polymer 2 which is the beta phase. So now, let us see how

we can determine  the  phase composition  which  means some we can  determine  how

much of which phase alpha phase and beta phase will form.

So, clearly the length of this line here is phi 2 not minus phi 2 alpha and the length of this

line here is phi 2 beta minus phi 2 naught. That is obvious from the diagram. And let us

represent  the volume fraction of alpha phase by the symbol f  alpha and the volume

fraction of the beta phase by the symbol f beta. So, what can be shown is that is that the

ratio of f alpha and f beta that ratio is equal to the ratio of these 2 quantities here.

So, if we look at the phase diagram this, the numerator here is the length of this part and

the denominator here is the length of this  part.  So, using the phase diagram one can

actually identify the volume fractions of let us say the second polymer in the 2 phases

that are formed as well as the overall volume fraction of the entire 2 phase system. And

using these volume fractions the ratio of the fractions of the 2 phases either present as f

alpha and f beta they the ratio can be found.

So, if we just rearrange the terms and note that this f alpha plus f beta this sum is one,

then we will get this expression for relating phi 2 naught with phi 2 alpha and phi 2 beta.

Here phi 2 naught is again the overall composition, if you consider that 2 phase system

together and phi 2 alpha and phi 2 beta the volume fractions of the second polymer in the



alpha phase in the beta phase separately. F alpha and f beta as we have discussed is the

volume fraction of the entire alpha phase and the entire beta phase.

So, there since we have only 2 phases present then their some of their volume fractions

will be one which is shown here. So now, if from this what one can see is that f beta can

be written as 1 minus f alpha, and that we can substitute in place of this f beta here to get

this expression and if we rearrange the terms. So, that all the f alpha terms come on one

side only then we can obtain an expression for f alpha here. And the expression for f

alpha is this similarly f beta is 1 minus f alpha. So, using that the expression for f beta

can also be obtained.

So, what we see is that using the different compositions from the phase diagram, these 3

we can not only determine the ratio of the phases that are formed the 2 phases alpha and

beta,  but  we  can  also  find  the  individual  volume fractions  of  the  2  phases  that  are

formed. So, we can find the expression for f alpha f as well as f beta. With that we will

like to conclude the discussion of thermodynamics behavior and phase and diagrams of

polymer blends.

So, what we saw is that for polymer blends much of the theory is similar to what we

already discussed for polymer solution. The only difference is that in the case of polymer

blends both the components are polymers. So, both are long chain molecules and hence

the Flory Huggins theory gets or the Flory Huggins equation gets modified slightly, by

the inclusion of the number of segments of the other polymer as well.

And due to this what happens is that, the entropy change of mixing that for polymer

blends is quite small and does not play a significant role in the phase behavior. Instead

the  interaction  term  containing  the  Flory  Huggins  polymer-polymer  interaction

parameter.

That  is the term which plays a dominant  role in determining the thermodynamics of

mixing  or  de  mixing  of  polymer  blends.  The  other  thing  that  is  different  between

polymer solution and polymer blends is that polymer blends in many cases are actually

immiscible.

So, if we mix 2 polymers which are not very similar then mostly they will end up being

phase separated that is the will not mix with each other ; however, there are cases where



polymers are almost completely miscible with each other as well. Also if we have an

immiscible  polymer  blend  then  phase  separation  might  lead  to  the  formation  of  2

different phases in a given material.

So, although the 2 polymers are immiscible and strictly speaking have not formed blend,

but still such immiscible polymer blends are actually also have some applications.

So, even upon mixing if the polymer blends are not miscible,  thus material  that that

forms still can show some favorable properties and in fact, there are many cases in which

immiscible polymer blends are also used in applications further if we have 2 polymer

blends which are not very miscible with each other and which show phase separation,

then their compatibility with each other can be increased by the process of what is called

compatibilization, where a third component may be added which is a the compatiblizer

to this polymer blend.

And what this third component can do is go and sit at the interface and basically improve

the interfacial interaction between the 2 phases of this immiscible polymer blend.

So, here the compatiblizer that we add one example of compatiblizer material can be a

copolymer where one part of the copolymer basically is miscible in one of the polymers

of the polymer blend, whereas, the other part is miscible in the other polymer of the

polymer blend. So, if we have such a case, then what will happen is that at equilibrium

this block copolymer. So, we are talking block copolymer here. So, this block copolymer

one block, which is which prefers the one of the polymers of the blend will try to reside

in that phase whereas, the other block will reside in the other polymer phase of the blend

and that will improve the interfacial interaction.

So,  even  for  immiscible  polymer  blends  the  compatibility  can  be  improved  by  the

incorporation of compatiblizers. With that we will conclude the discussion of polymer

blends and we will just briefly discuss the thermodynamic behavior and phase behavior

of block copolymers next. 



(Refer Slide Time: 44:06)

So, a block copolymer if we have a block copolymer let us say as shown in this diagram,

here which consists of 2 blocks.

So, if we have a di block copolymer where one block is let us say is called block A and

the other block is called block B. Then if the blocks A and B are the repetitions in the

blocks say A and B if they are not chemically compatible with each other which means

that  if  they  are  not  interacting  favorably  with  each  other  then  they  will  the  such a

copolymer will also have a tendency to phase separate a however, unlike a blend in the

case of block copolymers the blocks of the copolymer are actually linked by the presence

of covalent bonds.

So, if we have a blend where that we the 2 polymers are not liking each other then the 2

the blend can basically phase separate easily into 2 different phases at the macroscopic

level. However, in the case of poly block copolymer since the 2 blocks which let us say

are not chemically compatible, these 2 blocks do not like each other, but since they are

covalently linked at a point, they are not free to just phase separate at the macroscopic

level.  So,  what  instead  happens  in  the  case  of  such  block  copolymers  is  that  the

macroscopic phase separation is does not occur because of the constraint of covalent

bonding between the blocks however, the micro phase separation can take place.

So, at a microscopic scale or even at the nanometer length scale the phase separation is

actually observed for block copolymers. So now, when phase separation occurs at the



microscopic scale, then spatial scale or the length scale over which structures are formed

in  such  phase  separated  material  that  length  scale  is  comparable  to  the  size  of  the

polymer chains that are present in the system.

So, the at  the when micro phase separation takes place,  the phase separated ordered

structures can form and we will look at some of the order structures very soon. So, these

phase separated structures that are formed their length scale will be determined by the

lengths of the polymer chains that come constitute the system.

Whereas, the morphologies. So, apart from the length scale of these order structures that

are formed the morphology of the order structures. So, whether we get kind of a lamellar

morphology or a cylindrical morphology or some other kind of morphology, what kind

of morphology will form that is governed by the composition of the constituent repeat

unit.

So, what we mean by the this is that, the relative amounts of A and B present inside the

block copolymer that will basically dictate what kind of morphology will be observed if

we if the block of copolymer phase separates at the microscopic level.

(Refer Slide Time: 47:13)

When we talk about phase separation block copolymers there are 2 factors which are

governing this phase separation behavior or the microscopic phase separation behavior.



So, first factor is the fact that the interaction between the 2 blocks is not favorable, the 2

blocks are not chemically compatible.

So, the interfacial area of contact between the micro phases are formed containing there

2 different blocks, that interfacial area should be minimum ok. So, the system attempts to

minimize  this  interfacial  area.  So,  as  to  reduce  the  number  of  unfavorable  contact

interactions; however, since the polymer is phase separating where one block forms part

of one phase and the other block forms part of another phase at the Nano scale level, this

kind of phase separation can lead to stretching of the polymer chain.

 So, this chain stretching actually is entropically unfavorable because stretching the chain

will reduce the entropy change associated with the process and which is not favorable for

mixing. So, there these 2 computing are opposite effects where the interaction basically

is unfavorable. So, that will try to minimize the interfacial contact area, but in doing. So,

the stretching of the polymer chain should not be such that the system loses too much

entropy.

So,  these  are  the  2  competing  factors  which  are  important  in  the  phase  separation

behavior of block copolymers. And from the point of view of the different parameter

system parameters that are important for the phase separation behavior and the structure

side of formed up on the phase separation. So, there are 3 parameters that are important

from that perspective. One is the amount of let us say amount of a block of one time that

type that is present in the system. So, if we have blocks of 2 type A and B.

And let us say if f A represents the volume fraction of the total blocks of type a, then and

that  that  composition which is represented by f A that will  be one factor which will

govern the phase behavior and the ordered structures that form upon phase separation.

Another important parameter is again the Flory Huggins interaction parameter and this

Flory Huggins interaction parameter chi is the interaction parameter between the A and B

blocks of the system.

And finally, the third parameter that is important is the overall degree of polymerization

of  the  system.  So,  how  long  the  polymer  chains  are?  So,  these  3  parameters  the

composition which is characterized by f A the volume fraction of instead of component a

we should may be using that terminology block A will be more appropriate here. So, the



copolymer composition will be an important factor the overall degree of polymeration x

and the Flory Huggins interaction parameter chi these are the important parameters.

Now  the  phase  separation  that  micro  phase  separation  that  takes  place  in  block

copolymers  that  is  typically  referred  to  as  order  disorder  kind  of  transition,  where

homogeneous molten di block copolymer can phase separate into heterogeneous micro

phases of different morphologies.

So, this order disorder transition that we have this is seen to occur at a critical value of

this product x times chi. So, this product x times chi the if the critical  value of at a

critical  value  of  around  10.5,  the  or  disorder  disorder  transition  from  molten

homogeneous  copolymer  phase  to  a  phase  separated  micro  phase  separated

heterogeneous  phase that  is  observed for  symmetric  di  block copolymer. And this  is

actually predicted by a theory which involves a mean field approximation.

So, if the value goes above this then micro phase separation is expected to take place and

if the value of this product is less than this critical value, then we will we will have an

homogeneous molten state of the polymer solution or the block copolymer. So, when we

say symmetric di block copolymer what we mean is that the di block copolymer has

equal numbers of or equal sizes of the A and B block. So, essentially f A is equal to 0.5 in

this case that is what the term symmetric here means.

(Refer Slide Time: 52:05)



Finally, if we try to look at the phase behavior of a block copolymers from using a some

kind of a phase diagram, then if we consider the Flory Huggins interaction parameter is

dependent on dependence on temperature to be given by this expression.

Which we have been using for other systems as well and for block copolymers also such

a dependences found to be the most common kind of dependence. For such a system for

such a dependence of chi on temperature, for block copolymers mostly this quantity or

parameter b is greater than 0. So, T increases for these systems an increase in T actually

leads to a decrease in chi. So, a decreasing chi will mean an increasing temperatures and

increasing chi means are decreasing temperatures.

For the case that we will discuss and the for the diagram that we will discuss next the

condition under which the diagram has been drawn is that the system is conformationally

symmetric. So, this actually should not be confused with the symmetric block copolymer

that we discussed in the previous slide, conformationally symmetric means that the size

of a let us say a given segment. So, let us say this block B that we have here and the

block A here. So, let us say the size of the segments that constitute this block B and the

size of segments that constitute block A.

So, the A and B blocks segment sizes are equal that is what this condition implies it has

nothing does not imply that the amount of A and B block is the same. A typical phase

diagram or something that is representative of a phase diagram for a block copolymer

system is what is shown here in it has been adapted from this textbook by young and

level.  So, here on the x axis we are plotting f A, which is the composition of or the

amount of volume fraction of the A block in the system, and on the y axis you see we are

plotting this product chi times x ok.

So, as we discuss in the previous slide the critical value of this chi times x is around 2

10.5 for a symmetric block copolymers. So, symmetric block copolymer will correspond

to this 0.5 composition, where f A is equal to f B and both are 0.5.

So, we see that at this composition the value of this chi times x is actually close to 10.5

in this plot as well and we can identify different regions in this phase diagram. So, the

region  here  region  in  close  by  this  the  black  curve  here.  So,  that  region  basically

corresponds to a micro phase separated system where lamellar kind of morphology is

observed.



Similarly the region on this phase diagram lying between the black curve and the red

curve on both sides. This corresponds to what is called a by continuous gyroid kind of

marpho morphology in the phase separated micro phase separated block copolymer. And

if we go further away from the symmetric condition which is f A equal to 0.5 if you go

further on either side, then other morphologies can be seen. So, next at higher f A values

as well as on the other side lower f A values also this cylindrical kind of morphology can

also be observed. And finally, between this blue and the green curve here on both sides.

The micro phase separated copolymer will can show sphere like morphology. So, and the

region that is outside the phase envelope that we have here, the region here this is this

represents the disordered state. So, in all the points outside the phase envelope that we

have drawn the system will be in a disordered the state which means it will basically be a

homogeneous single phase system at the macroscopic as well as a microscopic level.

Whereas, in the microscopic phase separated domains all the macroscopically the system

any phase separation might not be visible, but at the microscopic level which is at the

scale of 1 to 100 nanometers let us say, the distinctive ordered structures representing

phase separation will be can be observed. 

And.  typically  experimental  techniques  such  as  transmission  electron  microscopy  or

small  angle x ray scattering  these techniques  can reveal  these micro phase separated

morphological features in such block copolymers.

So, if. So, all the different morphological states that we have identified here, if we try to

visualize them then this diagram here, which has been taken from this article by Botiz

and Darling from materials  today, this  article  this  figure very nicely shows what  the

different kind of morphologies are which can be expected as we change this composition

of the A block which is changed by increasing this f A. So, if f A is a small which is

which let us say at small f A.

Let  us  say if  we are  in  this  region at  small  values  of  f  A then the be  the what  we

discussed earlier  is  that spheres will  spear like morphology will  form. So, what  will

happen is spherical domains spherical domains of a will form in a continuous phase from

white B.



So, the blue region here is the B and the spherical domains that we see that is A. And as

the value of f A is increased we will move from sphere to the cylindrical morphology

where the again a will form this cylinder hexagonal close pack cylindrical phase and B

will still remain as the continuous phase as shown by the blue part here.

And at if the composition of A is further increased a gyroid kind of by continuous gyroid

kind  of  morphology as  shown here  will  be  seen  and upon further  increase  lamellar

morphology will be seen where the 2 blocks A and B will arrange themselves in flat layer

by layer kind of morphology ok.

So, here the red layer represents again A and the blue layer represents B. And if we keep

increasing the composition of a further then again we will move back into the gyroid

kind of morphology, but the only difference is that now since the poly amount of the

block is higher now.

So, that A block that will form the continuous phase and the B will form the discrete

phase and similarly at again higher f A we will get going to the cylindrical morphology,

but now the cylinders will be of B, A will be the continuous phase. And finally, at higher

morphologies we will get A as a condensed phase again and spherical morphology of B.

So, we see that for the case of block copolymers many interesting order structures can be

observed at the microscopic level.

So, the phase behavior of block copolymers is actually quite interesting and leads to a

very nice and a variety of morphological structures of whose length scale typically is of

the range of a few nanometers to few tens of nanometers.

So,  again  the  type  specific  type  of  morphology  that  will  form  depends  on  the

composition. So, how much of the block copolymer is actually block of type A or how

much  is  block  of  type  B,  that  relative  composition  basically  dictates  the  type  of

morphology form. And as we discussed earlier the size of the polymer chains that are

present, that will dictate the length scales of the these ordered structures like sphere or

cylinder or laminar that are formed.

So, what we can conclude is that for block copolymers, macro phase separation has as

seen in the case of blends does not occur, because they are covalently bound the blocks

are covalently linked to each other, but if the blocks constant elements of the blocks do



not like each other they are not chemically compatible, then at the microscopic level or at

the of the order of a few nanometers the polymer will actually phase separate.

So, a microscopic phase separation will take place and interesting ordered morphologies

can  be  observed.  So,  with  that  we  conclude  our  discussion  of  thermodynamics  of

polymer  solutions  as  well  as  though  that  of  blends  and  block  copolymers  and  to

summarize what we have discussed is the description mathematical description of the

thermodynamic behavior of polymer solutions as well as blends using the Flory Huggins

equation we have also discussed the solubility parameter approach, which can give a

good estimate for the miscibility of a polymer in a solution and the solubility parameter

approach can also be applied to blends in a similar way. So, if 2 the polymers constituent

blend have similar solubility parameters they will be more miscible.

So,  apart  from that  we have  discussed  the  phase  separation  behavior  the  regions  of

stability  unstability  and  meta  stability  in  detail.  We have  also  talked  about  how  to

identify the binodal points the spinodal points as well as constructing the phase diagrams

and  identifying  the  critical  points  on  these  phase  diagrams.  And  for  the  case  of

copolymers  we  have  also  discussed  that  different  kinds  of  interesting  microscopic

morphologies can be observed upon phase separation at the microscopic level.

So, that is a summary of what we have discussed under the thermodynamics of polymer

solutions  and  blends  and  copolymers.  In  the  next  lecture  what  we  will  do  is  start

discussion on the different techniques that can be used to measure the molar mass of

polymers.

So, polymer molar mass as we will see is a very important characteristic of any polymer

sample. And it actually a lot of macroscopic properties depend on the polymer molar

mass. So, good knowledge of the polymer molar mass is important and in the next few

lectures, we will discuss different techniques that can be used to measure the different

types of average polymer molar masses that we have introduced in the very first lecture

of this course.

Thank you.


