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Hello. So, in the last couple of lectures, we have been looking at the Thermodynamics of

Polymer Solutions. Specially, we have discussed the lattice model of Flory Huggins and

how it can be applied to develop expression for the Gibb’s free energy change of mixing

of polymer solutions and we saw that this Gibb’s free energy change of mixing.

This expression actually contains contributions of 2 different types; one is due to the

combinatorial entropy, which is primarily because of the multiple different confirmations

that the polymer chain can adopt and the other term in this Gibb’s free energy change of

mixing appears due to the contact interaction which is primarily the intermolecular effect

of intermolecular interactions between the polymer molecules and the solvent molecules.

So, the final expression for the Gibb’s an free energy change of mixing that can contain

both these terms and from the we also introduced the parameter called the Flory Huggins

interaction parameter of the chi parameter which is a measure of the polymer solvent

interaction and this parameter also appears in the expression for the Gibb’s free energy

change of mixing and the parameter the chi parameter itself incorporates the effect of the

lattice, type of lattice that is chosen for the development of the Flory Huggins theory as

well as the contact Gibb’s free energy change.

So,  starting from the Gibb’s free  energy change of  mixing,  from the  Flory Huggins

theory,  we  developed  expressions  for  the  chemical  potential  as  well  as  activity  of

polymer solutions. So, what will be the chemical potential or activity of the solvent as

well as the polymer? In a given polymer solution, we developed that by considering the

Flory Huggins equation for the delta g of mixing. So, we will continue that discussion

today and in today’s lecture, we will focus on dilute solutions.
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So, the content for today’s lectures will be divided into 3 parts; for the first part, will

focus primarily on the behavior of dilute solutions. So, earlier while discussing Flory

Huggins theory, we talked about the fact  that  it  contains  or it  involves a  mean field

approximation which is not a good assumption for dilute solutions. But, even though that

is assumption is not a good one, we will see that applying Flory Huggins theory to dilute

solution  at  least  gives  some  qualitative  information  that  that  is  predicted  by  more

sophisticated theories as well as that something, which is observed experimentally as

well.

So, we will after discussing that the behavior of dilute solutions within the framework of

Flory Huggins theory, we will move on to discussing a special condition under which the

polymer solutions which are inherently non ideal, but under this special conditions, this

polymer solution solutions behave ideally.

So, this condition is called theta condition. So, we will briefly talk about concept of theta

conditions and towards the end of this lecture, we will introduce and briefly discuss the

concept  of solubility  parameter,  which is  useful  while  trying to  get  measure of how

soluble  a  given  polymer  is  in  a  solvent.  So,  despite  it  is  limitations,  the  solubility

parameter approach is actually useful one.
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So, let  us begin by starting off with the application of Flory Huggins theory to your

dilute  solution.  So,  again  as  discussed,  the  Flory  Huggins  theory  is  the  assumptions

involved are not particularly suited for dilute solutions. But, we will just see we will just

try to apply Flory Huggins theory nonetheless and see what results and how good the

result is in or how applicable the result is compared to the real situation.

So, in the previous lecture, we developed this equation for the chemical potential of the

solvent  in  a  polymer  solution.  So,  this  term mu 1 minus  mu 1 naught  which  is  the

chemical  potential  of the solvent  in the solution minus the chemical  potential  of the

solvent in it is standard set, which can be the pure solvent. So, this quantity based on the

Flory Huggins theory is given by this expression here. So, we will refer to this difference

in chemical potential; let us say as the relative chemical potential.

So,  for  the  solvent,  the  relative  chemical  potential  expression  was  developed  in  the

previous lecture using the Flory Huggins theory.

So, starting off with this expression, now we also discussed in the previous lecture that

this relative chemical potential of the solvent mu 1 minus mu 1 naught that is related to

the activity of the solvent through this expression. So, the relative chemical potential is

equal to R T times ln a 1 and the activity of the solvent itself can be expressed as a

product of the mole fraction the solvent and what is called the activity coefficient of the



solvent which is represented by gamma 1 here. So, these are some of the things that we

developed and discussed in the previous lecture.

So, expanding this log term, we will get these 2 terms here; R T ln X 1 plus R T ln

gamma 1. So, now the mu 1 minus mu 1 naught the relative chemical potential for the

solvent that we can split into 2 parts on one can be an ideal contribution which will

correspond to the chemical potential difference. That we will see in an ideal solution and

along with this, since the solution is not a actually ideal. So, along with this another term

will be there which is called the excess term.

So, this excess chemical potential difference is basically the excess contribution above

the ideal contribution to the chemical potential difference. So, the first term is something

that we will see in an ideal solution and in any real solution, we will see non zero second

term as well.

So, comparing the expressions this the first term the for an ideal solution it is well known

that this chemical potential difference or relative chemical potential is just given by R T

times ln X 1. So, based on these observations what we can say is that, for the excess

chemical potential that is defined as R T times ln gamma 1. 
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So, we have these 2 expressions for the ideal and the excess components of the overall

chemical potential difference and let us just look at the expression for the overall actual



chemical potential difference and the ideal term in that chemical potential difference. So,

let us look at these 2 terms in a bit more detail in both these terms that we have this ln

terms appearing so, ln of phi 1 here and ln of X 1 here.

So, before we move on this one expansion or Taylor series kind of expansion, that we

will be applying in the next few steps. So, let us just look at that it is mathematically

result or expansion. So, what that the expansion or the result states that the natural log of

1 plus p, where p is any variable whose value lies between minus 1 and plus 1. 

So, for such a case, expanded form of ln 1 plus p will be p minus p square by 2 plus p

cube by 3 minus p to the power 4 by 4 plus p to the power 5 by 5 and so on. So, it is an

infinite series and that is how the log of 1 plus p can be represented. So now, let us look

at this term here and this term.

So, the the ln phi 1 term in the in the first case and ln X 1 term for the ideal term so, if

we consider the ln phi 1 term, this term that is what we are considering here. So, ln phi 1

we can always write at as ln 1 minus phi 2 because phi 1 plus phi 2 will be 1. These are

volume fractions and we have binary mixture. So, the sum will be 1.

So, ln phi 1 we can always write as ln 1 minus phi 2 and this ln 1 minus phi 2 we can

expand using the formula that  we have just  discussed.  So, upon expanding this  ln 1

minus phi 2, we get this infinite series here. So, oh this expansion we have carried out by

just substituting p is equal to minus phi 2 here. So, in this equation, if we substitute p

equal to minus phi 2, then we get this result here.

Similarly, for this ln X 1 term, for this term again X 1 can be written as 1 minus X 2. So,

from there, again by applying this same formula and instead of p, if we replace p by

minus X 2 here then, we will get this infinite series representation of this term ln X 1. So

now, that we have express these 2 the ln or natural log terms in terms of 2 infinite series.

Next, let us consider the case of a dilute solution.

So, everything that we have done till now, all the steps till now apply to any kind of in

solution. We have not involved any assumption or we have not invoked any assumption

with regards to how dilute or how concentrated the solution is. So, next let us apply the

condition that a psi as a solution is very dilute. So, for a very dilute solution, what we can

see is that this the mole fraction of the polymer X 2.



So, the mole fraction of the solute or the polymer X 2 that will be much less than one and

also the number of molecules N 1 of the solvent that will be much larger than the number

of segments of polymer polymers present.

So, here N 2 is the number of molecules of polymers present and x is the number of

segments in 1 polymer molecule. So, the dilute solution condition basically means that,

the number of solvent molecules is much larger than that the total number of polymer

segments present in the solution and also, it of course, also implies as a mole fraction of

the polymer is much smaller  than 1.  So,  using these 2 assumptions,  we can actually

simplify the expression for the volume fraction phi 2 of the polymer in the solution.

So, the volume fraction of phi 2 which is defined like this. So, here since this term X 2

times  and x times  N 2 which is  the  number of  segments  in  the  solution  number of

polymer segments. So, since that is much smaller than N 1, so what we can do is, we can

neglect this term from the denominator and we approximately get phi 2 as x times N 2 by

N 1. Similarly, for the mole fraction X 2 that is defined as N 2 by N 1 plus N 2 and again

this since x times N 2 is much smaller than N 1.

So, of course, N 2 itself will also be much smaller than N 1 and so, we can neglect this

term N 2 with respect to N 1 and we get X 2 as approximately N 2 by N 1. So now, if we

look at the again the expression for phi 2 here, this ratio N 2 by N 1 here that we can just

express as phi 2 by x. So, if we do that, then this N 2 by N 1 we can write as phi 2 by x.

So, the expression for X 2 becomes just phi 2 by x.

So, we see that the mole fraction X 2 the mole fraction X 2 is much smaller than the

volume fraction phi 2 because, for a typical polymer molecule, the number of segments x

will be quite high in the order of 100s or even 1000s or even more.

So, X 2 typically will be much smaller than the mole fraction volume fraction phi 2 and

based on the fact that we have a dilute solution, here what we can do is the expansion

that  we had develop for  ln  phi 1.  We can truncate  that  up to  the first  2 terms only

because, if since that solution is dilute even the volume fraction of the polymer in the

solution will be quite small.

So, let us consider only the first 2 terms in the volume fraction in that expansion. So,

only up to the second power and higher order terms, we are neglecting in this case. So,



any term containing phi 2 q phi 2 to the power 4 and so, they will be very small because

of the dilute nature of the solution and we are neglecting those terms for the case of ln X

1 we are truncating this series only after the first term.

So, we are not even considering the square and the cube and other terms, the reason we

are truncating this only after the first term. Whereas, here we are considering 2 terms is

that  X 2 itself  will  be much smaller  than phi 2.  So,  one can think of X 2 as being

comparable to the term phi 2 square and X 2 square will be comparable to then phi 2 to

the power 4 or of that order.

So, that will be negligible in with regards to the terms that we will be considering. So,

since X 2 is much smaller than phi 2, we are considering only one term in this expansion

and we know that X 2 is equal to phi 2 by x from here. So, this ln X 1 we can express as

minus of phi 2 by x. So now, the now that we have developed the expressions for these 2

natural log terms here, let us try to see what happens or what expressions we get once we

substitute those expressions.
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So, again we have written down the equations for the chemical potentials of the actual

solution and the ideal term contribution. And, let us just substitute the expression for ln

phi  1  and ln  X 1 that  we have developed just  now with  the assumption  of  a  dilute

solution which is why we have truncated these terms these 2 2 N 1 terms respectively.



So, if we substitute these expressions for ln phi 1 here ln X 1, we can substitute here. So,

let us see what happens when we substitute the ln X 1 here first. So, this ideal term

actually becomes minus R T ln sorry minus R T phi 2 by x this term.

So, the ideal term chemical potential difference becomes minus R T phi 2 by x. Next, if

we are considering this substitution of ln phi 1 term in the expression for mu 1 minus mu

1 naught, then we get this expression here and these 2 basically, these 2 terms come from

the ln phi 1 expansion and what we see is that, this minus phi 2 here and the plus phi 2.

Here, these will get cancelled.

So, 2 terms get cancelled and once simplification this is the expression that we get. So,

here this phi 2 by x comes from this term and the phi 2 square. There are 2 phi 2 square

terms; one is this one, one is this one. These 2 we can combine in the single term here.

So, we get the chemical potential differences R T times minus phi 2 by x plus chi minus

half phi 2 square. So, again if we can expand or multiply throughout by R T, so we get

the expression that shown here and let us now compare this with the ideal and excess

contributions.

So, we already know that this mu minus mu naught will have an ideal and an excess

contribution. Already the ideal contribution expression we have developed here for an

ideal for a dilute solution and for the actual chemical potential difference the expression

shown here. That is what has been developed for a dilute solution.

So, if we combine these 2 and realizing the fact that this chemical potential contains an

ideal and an excess contribution. So, combining all these equations, what we get is that

the excess contribution to this chemical potential difference that is just equal to R T times

chi minus half phi 2 square. So, that is the expression here and this is the expression that

is of interest for us with regards in dilute solution. If we are trying to apply the Flory

Huggins theory to describe it is behavior. 
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So,  this  is  the  expression  that  we  have  just  develop  for  the  excess  contribution  to

chemical potential difference for a dilute polymer solution within the framework of Flory

Huggins theory. So, if you look at this equation on the right hand side, we can actually

consider 2 different terms. So, this we can write as one term is R T chi phi 2 square

minus R T phi 2 square by 2. So, these are the 2 terms that are present here.

So,  the term the  first  term the  this  term this  term containing  the  chi  parameter  that

basically  accounts for if  we trace our derivation steps all  the way back to the Flory

Huggins equation, then this chi parameter the term here that contains the chi parameter

that is basically comes about due to the contact interaction terms or the contact terms

which arise due to intermolecular interactions and the second term here which is this R T

phi 2 square by 2. That term basically appears because of the combinatorial entropy that

change that we had calculated earlier.

So, the second term which is always negative this term arises due to entropic effects and

this  the  first  term which  need  not  which  is  mostly  positive  it  can  be  negative  also

depending on the  sign of  the chi  parameter. So,  the that  term basically  captures  the

contact term or the intermolecular effect of intermolecular interactions. So, now under

certain special conditions, these 2 terms can actually balance each other in a polymer

solution.



So, if for the equation that we have derived if we have a condition there chi parameter is

half.  So, under this condition,  what will happen is that the excess chemical potential

difference will become 0 ok. And the chemical potential difference will just be equal to

what? The chemical potential difference will have in an ideal solution. 

So, the excess part is 0 and the chemical potential difference is just equal to what we get

for an ideal solution. So, under these special conditions where the polymer actually the

polymer solution although the polymer solution, we know is not truly speaking in ideal

solution  because  of  the large  difference  in  the  size between the  size of  the  polymer

molecule and the solvent molecule.

So, it is not an ideal solution strictly speaking, but under the special conditions where

these 2 factors basically cancel each other the effect of entropic contribution and the

contact or intermolecular interaction contribution to the chemical (Refer Time: 21:03)

when these 2 cancel each other under some special conditions which for the equation,

that we have derived corresponds to the value of half or chi parameter.

So,  under  these  conditions,  the  excess  chemical  potential  becomes  0.  The  chemical

potential difference for this polymer solution becomes equal to that for an ideal solution

and the polymer solution tends to behave like an ideal solution in this case.

So, such condition is referred to as a theta condition where the polymer solution behaves

ideally  and  this  solution  where  we  observe  this  theta  condition  where  the  polymer

solution is behaving ideally. So, such a solution is referred to as a theta solution. So, in

our previous discussion of a real polymer chain behavior, when we were discussing the

behavior of real polymer chains in solution. So, if you have a good solvent, then the

chain expands pure solvent the chain will tend to contract because, it does not like the

interacting with the solvent molecules.

So,  there we discussed there also we discussed the  special  case  where the excluded

volume repulsions of the polymer segments basically get balance by the solvent segment

repulsions.  So,  so  that  the  polymer  chains  adopt  their  ideal  sizes  or  unperturbed

dimensions so, that was a discussion on the theta condition or theta solution from the

point of view of a polymer chain dimensions and the interactions and here the same



concept  of  theta  solution  is  being  discussed  from  the  point  of  view  of  polymer

thermodynamics.

So, this theta condition we just discussed is a special condition where the polymer tends

to behave ideally and for a given polymer solvent system, normally the theta condition

will  be  observed at  a  particular  temperature.  So,  the  temperature  which  for  a  given

polymer solvent system the temperature which corresponds to theta condition that temp

or the temperature at which the theta condition will occur that temperature is referred to

as a theta temperature.

So, theta temperature one can actually express this the excess mu 1 minus mu 1 naught in

terms of theta temperature the theta temperature we are representing by the symbol theta

here. So, in terms of the theta temperature also, one can express the mu 1 minus mu 1

naught excess term and that is what is shown here and here this psi is referred to as what

is called the entropy parameter,.

So,  if  we  again  look  at  these  2  equation,  this  equation  where  the  excess  chemical

potential  difference  is  being  expressed  in  terms  of  the  chi  parameter  Flory  Huggins

interaction parameter and this equation where the excess chemical potential difference is

being expressed in terms of the theta temperature.

So, if you look at the these 2 expressions, then for the first expression, this one we can

say is that if the value of chi is less than half. So, if the value of chi is less than half, then

this excess term will be negative, ok. So, if the value of chi is less than of the excess term

will  be  negative  and  the  as  such  a  condition  where  the  excess  chemical  potential

difference is negative that basically favours mixing, ok. So, the more negative this excess

chemical  potential  value is  the more favorable  the dissolution  of the  polymer in  the

solvent will be.

So, so, that what that implies is the lesser the value of chi with respect to half.  This

number half is the better will be the mixing. On the other hand, if have we just saw that if

chi is half then we get the theta condition where, it behaves the solution behaves ideally

if the value of chi is more than half.

Then, in that case the excess chemical potential difference. This term basically becomes

positive and the larger the value of chi the more positive. It will become an the less



favorable the mixing will be. Similarly, if we look at the other equation in terms of the

theta temperature for the excess chemical potential  difference,  there the value of this

theta temperature with respect to T.

So, whatever the temperature we are at and what is the theta temperature of the particular

solution or polymer solvent system is. So, that will basically dictate whether the mu 1

minus mu 1 naught excess will be negative or positive. So, let us take a look at that. So,

if let us consider the case when T is actually less than theta. So, we are we have our

polymer  solvent  system of  the  solution  at  a  temperature  which  is  below it  is  theta

temperature. So, if T is below theta, then in that case this ratio theta by T that will of

course, be greater than 1.

So, this implies that theta by T will be greater than 1. So, if theta by T is greater than 1,

then depending on the sign of this entropy parameter, if this if this psi is positive, if non

units also consider as psi. So, if psi is also greater than 0 which means it is positive. So,

for this such a case excess chemical potential difference actually will come out to be

positive so, that will that is something which will not favor mixing.

So, if this entropic parameter is positive, then under that condition, if we are below the

theta temperature the lower the temperature is compared to the theta temperature the less

favorable the mixing will  be similarly again,  let  us consider psi is greater than 0, so

positive entropy parameter.

Now, if  we consider  the case where  temperature  of  the  solution  is  above it  is  theta

temperature, ok. So, in that case the ratio theta by T that ratio basically is now less than 1

and this ratio being less than 1. This term the bracketed term becomes negative and since

psi is or the entropy parameter that we are considering is also positive.

So, overall this mu 1 minus mu 1 naught excess this term becomes negative in this case.

So, if we have a if you have the solution at a temperature above it is theta temperature,

then provided the entropy parameter is positive we will basically be favoring mixing will

basically be favored because, the excess chemical potential difference will be negative.

But, if we consider the case where psi is negative. So, psi for many polymer solvent

systems is actually positive, but for some cases it is also negative.



So, if this entropy parameter psi if this psi is negative. So, if this psi that we have here if

it is less than 0, then whatever discussion that we had just now the reverse of that will

apply. So, if the psi is negative, then have. If there we are at a temperature above the

theta temperature, then that will actually not favor mixing and if we are at a temperature

below the theta temperature, for that system mixing will be favored provided entropy

parameter is negative.
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So, we till now, we have; what we have done is applied the Flory Huggins theory for the

case  of  a  dilute  solution  and  try  to  develop  an  expression  for  the  excess  chemical

potential difference and explore different scenarios. So, what happens when the value of

chi is above half or below half or equal to half or what happens when the temperature is

above the theta temperature below the theta temperature?.

So,  we  have  explored  all  these  different  conditions,  but  at  the  beginning,  we  also

discussed that the Flory Huggins theory is not a very good theory for dilute solutions.

Because of the one of the assumptions involved is that of mean field approximation, such

a  mean field  approximation  can  only apply  accurately  to  a  system which  where  the

polymer segments are uniformly distributed and that will correspond to a concentrated

solution.

So, that does not apply well to a dilute solution and that is why it is said that Flory

Huggins theory is not a good theory to describe dilute polymer solutions, but even with



that  limitation,  we  have  what  we  have  derive  the  expressions  relating  the  excess

chemical potential to the Flory Huggins interaction parameter or the theta temperature.

So, the qualitative form of those expressions, are actually found to be consistent with

similar  expressions  derived  using  more  sophisticated  theories.  Such  as  those  using

excluded volume in interactions or explicitly or those were the fact that the mean field

approximation will not work in dilute solutions.

So, theories which incorporate such effects as well, those theories also predict functional

forms of this mu 1 minus mu 1 naught so, that functional dependence that they predict

that is similar to what is predicted by the Flory Huggins theory.

So, Flory Huggins theory for dilute solution of course, the quantitate prediction will be

quite poor, but the qualitative trends or the dependence of chemical potential on the chi

parameter or the theta temperatures at the that dependence that the Flory Huggins theory

predicts is basically consistent with the predictions of more advanced theories as well.
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Let  us  now  consider  some  typical  polymer  solvent  systems  and  what  the  theta

temperatures  are.  So,  if  we  consider,  let  us  say  polyethylene  biphenyl  the  theta

temperature is 125 degree Celsius which means that, at this temperature the solution will

tend to behave ideally and for polyvinyl alcohol and water the theta temperature is 97



and so on. So, we have listed a few polymers a few solvents and corresponding theta

temperatures for those polymer solvent systems.

So, the theta temperature that we see here, it is specific to the polymer solvent system

and for a given polymer, if we change the solvent, then a theta temperature of course,

naturally will change as well. Let us say for PMMA that we have shown here. Here, we

are considering pentyl acetate as the solvent and the theta temperature that we have is 41.

If instead PMMA polymer in butyl acetate solvent is considered, then for such solutions

the theta  temperature is  actually  much lower it  is,  actually  close to minus 20 degree

Celsius.

So, different types of solvents I can lead to different values of theta temperature for the

same polymer. One more point to be made here is that, if we look at all the entries here,

some are in blue color and couple of them are in red color. All the blue color entries

basically correspond to the condition where this entropy parameters psi is greater than 0

and the 2 red entries  the polyvinyl  alcohol  in  water  and the polyacrylic  acid  in  1 4

Dioxan.

So, these 2 entries  basically  correspond to solutions  where this  entropy parameter  is

actually negative. So, for these 2 particular solutions of Pb in water and polyacrylic acid

in 1 4 Dioxan, if we are above the theta temperature, then basically the mixing mixing is

not favored.

And, if we are below the lower, we are compared to the theta temperature mixing will be

favored. Because, psi is negative for these for all the other systems shown in blue here

the psi is positive. So, if we are above the theta temperature, then the mixing polymer

solvent mixing will be favored.
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Next, very quickly let us just look at the phase behavior of polymer solutions. So, we

will start this discussion by this expression for chi parameter which is which gives a

dependence  of this  chi  parameter  on temperature.  So,  the phase behavior  the  typical

phase diagram in for polymer solutions are in general, any liquid solutions it is common

to draw a phase diagram where the y axis is the temperature and the x axis is some kind

of measure of compositions.

So,  in  some cases,  temperature  versus  mole  fraction  graphs,  are  drawn for  polymer

solutions. It is more common to draw a temperature versus a volume fraction kind of

curve that kind of curve is referred to as a phase, phase diagram for polymer solutions.

So now, we start with this chi parameter expression and we consider first this case where

let us say, this parameter b is greater than 0.

So, if b is greater than 0, what it means is that, this chi parameter will decrease with

temperature right. B is positive, then the larger the value of temperature. We have here

the smaller will this ratio become and the smaller this ratio becomes smaller the value of

chi will become.

So,  chi  in  this  case  will  decrease  as  temperature  increases.  So,  if  we  draw  the

temperature on the y axis and in the x axis, if we have the polymer volume fraction, then

for a case like this where the chi is decreasing with increasing temperature typical phase



diagram will a representative phase diagram can look like this. The curve shown here

basically marks the boundary between the 2 phase region and the one phase region.

So, this region that we have here this is the 2 phase region and here we have outside this

phase boundary, we have one phase really. So, when we say 2 phase region, this is a

region where actually  the polymers solution is not a single phase. It  has split  into 2

phases; one rich in the polymer and the other rich in the solvent. So, let us see why for

this kind of a condition this kind of a phase diagram is observed.

So, if we consider this phase diagram here, then under this condition we see say that chi

is decreasing with as temperature increases. So, as we are going up in temperature, the

value of this chi parameter is decreasing. So, the lower the value of the chi parameter

becomes the more favorable the mixing will become. So, we saw earlier that the if the

chi parameter is below half, then the lower the chi parameter value becomes the more

negative. The excess chemical potential difference becomes and more favorable mixing

will become.

So, as temperature is increasing chi is decreasing. So, that is basically favoring mixing.

So, at some certain low temperature, if we have a 2 phase mixture in this region as the

temperature is increased basically that chi parameter will decrease and mixing will be

favored and above a certain temperature the polymer solvent will become completely

miscible and then we will get a 1 phase region.

So, the one phase region here basically represents a region where the polymer solvent are

uniformly mixed and the 2 phase region is a region, where the miscibility has become

poor. And ultimately, they have split into 2 different phases; one which is rich in the

polymer and the other which is rich in the solvent let us consider the other case where if

we have a chi parameter for which this quantity b is less than 0.

So, for certain polymer solvent systems, we may have a case where the this parameter b

is  less  than  0.  So,  in  this  case,  what  will  happen is  this  chi  parameter  actually  will

increase as temperature is increased right.

So, if b is negative and if we increase the temperature, then this the b by T term the

absolute value b by T term of course, will decrease, but since b is negative the overall

value of chi actually will increase in this case.



So, in this case if we again try to draw temperature versus volume faction kind of phase

diagram for our polymer solution, then the kind of phase behavior that might be expected

main ok. It looks something like this where the again we have 2 phase and one phase

regions and the curve that we have that is basically the phase boundary separating the 2

phase region from the one phase region.

So, this curve that separates the 2 regions that is typically referred to a binodal curve. So,

in b, both the diagrams the curve that we have that is that is called a binodal curve. So

now, in this second case here what is happening is as temperature is. So, let us say we are

in at some point here on the phase diagram at some volume fraction of the polymer and

at some temperature.

So, we are at this point on the phase diagram and let us say; now we start increasing the

temperature. So, as temperature increases, chi also increases in this case. We again saw

in the previous slides, that as the value of chi becomes larger than half, then the large

more  the  value  of  chi  increases  the  more  positive  the  excess  chemical  potential

difference becomes and hence the less favorable of the mixing will be.

So, in the at low temperatures in this case, we have a 1 phase region which means at the

polymer solvent are very well mixed and they form a single phase system and as the

temperature is increased, we will reach a point where the value of chi has increased so

much  that  the  polymer  solvent  that  one  phase  system basically  splits  into  2  phases

because, the miscibility of the polymer in the solvent has decreased due to the increase in

the value of chi.

So, this reduction miscibility ultimately will result in the splitting of the single uniform

polymer solution into 2 different phases where again one phase will contain the polymer

in higher high concentration and the other phase will primarily consist of the solvent

molecules with the only few polymer molecules.

So,  that  this  is  the  just  a  very preliminary  kind of  description  of  phase  behavior  of

polymer solution and how it relates to the chi parameter. In the one of the next lectures,

we will look at the phase behavior and specially phase separation of polymer solutions in

a bit more detail. But today, what we will do is next, we will focus on another important

concept  in  related to the miscibility  or solubility  of polymers in  solvents  and that  is

called the solubility parameter.



So,  this  solubility  parameter  basically  is  parameter  that  was  proposed  originally  by

Hildebrand for a liquid solutions or liquid mixtures. So, initially it was not proposed for

polymer solutions, but just for solutions of simple liquids (Refer Time: 41:48). It is found

to  apply  well  for  polymer  solutions  as  well.  So,  a  it  is  a  useful  kind  of  solubility

parameter approach as we will see is a useful approach to get a feel of how soluble a

given polymer is in a certain solvent, ok.

So, if we have a polymer, anyway if we are trying to figure out, which solvent will

dissolve at the best, then we can calculate the solubility parameters and based on that, we

can comment on which solvent will be the best for dissolving this particular polymer.

And,  this  can  essentially  be used to  screen out  certain  solvents  which this  approach

predicts  to  be  not  good for  the  particular  polymer.  Another  application  of  solubility

parameter  approach can be to  figure  out  for  a  given network polymer  what  kind  of

solvents will lead to the maximum amount of swelling and what kind of solvent will

actually lead to minimal swelling.

So,  in  applications  where  an  network  polymer  like  an  elastomeric  rubber.  If  that  is

exposed to a certain solvent, then if we have some knowledge of how much swelling will

occur in the presence of a certain solvent, that basically will help in from the application

perspective. 

(Refer Slide Time: 43:08)



So, the solubility parameter approach or the solubility parameter was first proposed as

(Refer  Time:  43:14)  just  discussed  by  Hildebrand.  It  was  introduced  to  define  the

enthalpy change of mixing of liquid solutions or liquid mixtures.

So, for our case, the kind of terminology that we are using that would correspond to that

delta H of mixing the contact delta H of mixing or the contact enthalpy of mixing. So,

the  delta  H  of  mixing  the  contact  term  resulting  for  intermolecular  interactions

Hildebrand proposed that it is given by an expression like this.

So, this contact enthalpy of mixing Hildebrand proposed that, this contact enthalpy of

mixing basically can be expressed in terms of the volume of the mixture solution formed

as well as the respective volume fractions phi 1 phi 2 of the 2 components and the square

of the difference of these 2 parameters which are referred to as a solubility parameter of

the 2 components.

So, again, as we have been the convention that we have been using is that subscript one

denotes the solvent substitute denotes the solute or the polymer. So, here also delta 1 is

the solubility  parameter  of  the solvent  and delta  2  is  the  solubility  parameter  of the

solute. So, one thing to note here is that this delta H m contact that this Hildebrand’s

approach gives it will always be positive because, everything on the right hand side here

every term is positive.

So, it can only describe systems where the delta H of mixing or enthalpy change of

mixing is positive and that is fine for a lot of systems. But, there are many systems where

the  enthalpy  change  of  mixing  actually  is  negative.  Especially,  for  systems  where

hydrogen bonding and such directional effects are interactions are prevalent.

So, that the delta H of mixing actually can be negative so, this approach actually does not

describe such solutions properly. So, the solubility parameter that appears in the delta H

term here delta H term in the Hildebrand expression that solubility parameter is basically

define as shown here. So, it is defined as the square root of the ratio of the, what is called

the energy of change of vaporization divided by the molar volume of the mixture or the

solution that is formed.

So, this energy change of vaporization, if the vapor is assumed to be ideal, the energy

change  of  vaporization  that  can  be  expressed  in  terms  of  the  molar  enthalpy  of



vaporization delta H v minus R T. So, this corresponds to the numerator corresponds to

the energy change of vaporization or energy change associated with the vaporization

process and the denominator V is just the molar volume.

So, square root  of this  ratio  gives the,  is  how the solubility  parameter  is  defined by

Hildebrand and the square of this. So, the square of the solubility parameter delta square

that  is  referred  to  as  what  is  called  the  Cohesive  Energy Density  or  CED.  So,  this

cohesive  energy  density  again  as  a  name  suggests,  it  is  measure  of  the  strength  of

interaction  in  our  solution  a  per  unit  volume.  So,  it  is  a  measure  of  the  interaction

strength density ok. That is why, it is refer to as cohesive energy density and it is just

square of the solubility parameter.

(Refer Slide Time: 46:56)

So, the definition that we just discussed for solubility parameter it involves the molar

volume as well as the enthalpy of vaporization, right.

So, the enthalpy of vaporization for liquids consisting of simple molecules, the enthalpy

vaporization is something that is readily measurable. So, for simple solvents like let us

say acetone or ethanol or toluene, the enthalpy of vaporization can be measured and it is

well known and widely reported in various handbooks. But, if we try to apply that same

formula to determine the solubility parameter of a polymer, then we run into problems

because polymers will typically be non-volatile materials.



So, measuring or estimating enthalpy of vaporization is normally not possible. So, in

general, for any non-volatile material the previous formula, which is a definition of the

solubility parameter does not apply very well. So, for the polymers, a an approach that is

commonly adopted to get a measure of the solubility parameter  is what is called the

additivity  approach  in  this  approach  the  solubility  parameter  is  defined  using  the

expression that shown here.

So, delta is given by the density of the polymer multiplied by summation of number of

groups of a certain time multiplied by what is called the group molar attraction constants

F  i  and whole  thing  divided by the  molar  mass  of  a  repeat  unit.  So,  this  additivity

approach basically assumes that the overall behavior of these molecules can be described

by  considering  the  contributions  from  the  individual  sub  groups  are  small;  smaller

groups of molecules that constitute the bigger molecule.

So, these smaller groups they took their contribution can be added together to get the

effect for the entire molecule. So, that is the philosophy behind this additivity approach

and for a polymer molecules determining that delta of using additivity approaches seem

to give reasonably good results for a many polymers although, further refinements to this

approach have been done by others especially by Van Krevelen.

So, this additivity approach in many cases gives good estimates, but more refined and

more sophisticated approaches starting from this kind of an approach are also available.

If we consider this additivity approach, this F here which refers to as the group molar

which is referred to as the group molar attraction constant F is these the values of these

group  molar  attraction  constants  are  listed  for  a  wide  range  of  groups.  These  are

available in standard handbooks and such values can be used from such sources and

through the use of such value the delta or the solubility parameter for polymers can be

obtained.

The small f i here is the as we just discuss a number of groups of a particular type present

in a given repeat unit.



(Refer Slide Time: 50:15)

 

So, the group molar  attraction  constants  the listings  are  available  here representative

table  for  some  typical  groups  that  are  found  in  many  polymer  systems.  A polymer

molecules that listing is provided here. It is adapted from a book by Manas Chanda and

that book itself  also takes these values from the work of a high and small  and other

researchers.

So, here we see that for different kinds of groups the value of this F the molar group

molar attraction constant these are there and this is just a representative list for some

common  groups  for  many  other  groups  such  the  values  of  f  are  actually  listed  in

literature. So, these f values are readily available and next, what we can do is just try to

work an example and see how this approach can be applied to calculate the solubility

parameter of a typical polymer molecule.

So, let us consider the example of P E T which is polyethylene terephthalate, which is a

very common aromatic polyester. It is has wide range of application in textile industry in

packaging. So, bottles for many soda, soft drinks. They are made up of P E T many

fabrics are made up of polyester fibers. So, P E T is a widely used polyester and the

density of amorphous P E T is around 1.38 gram per centimeter cube.

So, that is what that that is a value that will take for rho p in this formula. So, we also

want to find out the molar mass of a repeat unit of our polymers. So, for that let us draw

the chemical structure of P E T. So, the P E T basically consists of this repeating shown



here and this repeating it is repeated many times along the length of the chain to get the

entire polymer molecules.

So, the m naught the parameter m naught here that will just be the molar mass of this

repeat unit. Next, the group molar attraction constants F i and the corresponding numbers

of such groups small f i those we have tried to list in this table here for this particular

repeat unit. So, we see that there are 2 COO groups and the COO groups from the table

that we just saw the COO group. The F i value is 326.58 and in our repeat unit they are 2

actually to such COO groups.

So, apart from the one that is here we have, another one which is this part here. So, 2

COO groups are here. So, we have 2 small f i is 2 and Ch 2 group also there are 2 Ch 2

groups.

So, that is what we have here. If you consider this aromatic 6 membered ring here, it

contains 4 1 2 3 4 Ch groups which are incorporated here and these 2 are actually just C

groups. So, C in an aromatic ring that is what these 2 are and finally, because we have a

6 membered ring, an additional term actually comes in when we have 6 membered rings

and that value is also taken in here.

So now that we have all these values of F i and small f i we can what we can do is carry

out this summation. So, in each case, multiply the number of groups present times the

group molar attraction constant for that group and sum take the sum for all the groups

present.  So,  we  will  get  2  multiplied  by  326.58  plus  2  multiplied  by  131.5  plus  4

multiplied by 117.12 plus 2 multiplied by 98.92 plus 1 multiplied by this 23.44.

So, if we add all the terms of we get 1557.44 and this is the unit that we are working with

because, that that is the unit in which this F i is reported next, the molar mass of the

repeat unit. So, we see that there are actually if you consider carbon atoms first, there are

2 carbon atoms here one here one here. So, 4 plus 6 carbon atoms in the 6 membered

ring present. So, we have 10 carbon atoms and if we approximate the molar mass of

carbon to be 12 gram per mole.

So, you get 10 times 12 plus we have a 4 oxygen atoms. We have one oxygen atom; here

is one here one here one here. So, 4 oxygen atoms are present and each if we consider

the molar mass to be 16, then that is 6 4 times 16 and we have 8 hydrogen atoms. So, 4



hydrogen  atoms  are  present  here  and  4  molar  present  at  the  4  positions  in  the  6

membered ring. So, 8 hydrogen atoms.

So,  total  molar  mass  comes  out  to  be  192  gram  per  mole  and  the  delta  solubility

parameter by substituting all the values in the formula for solubility parameter using the

additive approach finally comes out to be around 11 calorie per centimeter cube to the

power half.

So, this value is actually comparable to what is reported for P E T. It is slightly higher,

but it is still in reasonable agreement. So, this additivity approaches something that can

be used to estimate the solubility parameter of polymers.

(Refer Slide Time: 56:15)

Now, let us see how this solubility parameter is useful in predicting the predicting the

solubility of a polymer in a solvent. So, if we recall the expression for the delta H of

mixing, the Hildebrand expression which was V m multiplied by phi 1 phi 2 multiplied

by delta 1 minus delta 2 square.

So, the minimum value that that expression can have is 0. It cannot be negative and if

and that minimum value will be attained when delta 1 is equal to delta 2. So, normally a

polymer  and solvent  are  said  to  be  highly  miscible  or  a  polymer  said to  be  readily

dissolve in a solvent if the solubility parameter values are comparable or close.



So, larger the difference between the solubility parameter of the polymer and the solvent

the  correspondingly  the larger  will  be the enthalpy  change of  mixing larger  positive

value will then enthalpy change of mixing have and that will basically not favor mixing.

So, if you consider an example where we have consider poly styrene as a polymer. It is

solubility parameter is around 9.1. If you consider 4 solvents water ethanol cyclohexane

toluene.  So,  based  on  a  comparison,  what  we  can  say  is  see  is  that  toluene  has  a

solubility parameter which is closest to this 9.1 value for polystyrene. So, this solubility

parameter approach will suggest that toluene is the best solution for polystyrene amongst

the ones that are listed here.

So, if we if we just were trying to compare the solubility behavior of polystyrene in

cyclohexane and toluene and if we use the solubility parameter approach of Hildebrand,

then would have we would have in fine and since toluene is closer to polystyrene in

terms of the delta value, we can say that toluene is better solvent for polystyrene. But,

this Hildebrand solidity parameter approach is actually not applicable to these 2 solvents

because, these 2 solvents are quite polar and so, presence of hydrogen bonding as well.

So, for these 2 solvents, one can one should basically avoid the direct use of solubility

parameter  approach  of  Hildebrand  to  predict  solubility  apart  from that  the  fact  that

hydrogen  bonding  and  those  things  can  also  happen  that  also  has  to  be  taken  into

account.  So,  for  this  case,  since  polystyrene  is  pretty  much  a  kind  of  hydrophobic

polymeric materials so, anyways these 2 will not be very good solvents, but in general,

solubility parameter approach we should not use indiscriminately for cases where polar

interactions or hydrogen hydrogen bonding is dominant, ok.

Now, this solubility parameter that we have discussed just now it can also be related to

the Flory Huggins interaction parameter. So, solubility parameter is we just saw is it can

describe the solubility of a polymer in a solvent and Flory Huggins interaction parameter.

We earlier saw that it describes a polymer solvent interaction as well.

So, it is natural that the 2 should be connected and the relation between the enthalpy

component of the Flory Huggins interaction parameter and the solubility parameter is

this expression here. Here, V 1 is the molar volume of the solvent delta 1 is the molar or

the solubility parameter of the solvent delta 2 is the solubility parameter of the polymer.



So, again to reiterate a polymer will be highly soluble in a given solvent if it is solubility

parameter is close to the solubility parameter of that solvent and if the delta 1 minus

delta 2, this difference is large. Then the solubility will become relatively poorer. Finally,

just to conclude, just we will discuss a couple of limitations of this Hildebrand solubility

parameter approach for estimating the solubility of polymers in solvents.

So, we saw that the delta H of mixing expression that that is a foundation of this theory

or this approach that basically does not predict a negative delta H of mixing. It can only

predict positive delta H of mixing or 0 delta H of mixing.

So,  for  solutions  where  the  enthalpy  change  of  mixing  is  negative,  specially  where

hydrogen bonding in such or such interactions are present. For such cases, this approach

is not advisable and for the same reason, any in any system where either the polymer or

the  solvent  or  both  have  a  strong  polar  interactions  or  hydrogen  bonding  kind  of

interactions.  Then,  Hildebrand  Hildebrand  solubility  parameter  approach  should  not;

should be avoided because of the limit inherent limitations there.

So, for systems where we have polar interactions or hydrogen bonding actually, other

more complex solubility parameters have been proposed; one such parameter is that by

Hansen. So, Hansen has proposed at not one, but 3 solubility parameters for any given

solvent or polymer and the solubility parameter basically contains a dispersion term a

polar interaction term and hydrogen bonding term.

So, all those are explicitly accounted for in this course, we will not go into further detail

of the Hansen solubility parameter approach. But, it is something which one can employ

if one is dealing with polar systems.

So, we will conclude today’s lecture and in summary what we discussed today is how the

Flory Huggins theory if applied to a dilute polymer solution, how it quantitatively of

course, is not expected to give any good results because it is not a good theory for dilute

solutions. But, how qualitatively it actually predicts certain trends which is consistent

with an in agreement with the predictions of more sophisticated theories as well. And in

particular, we found that at certain special conditions.

So, for a given polymers solvent  system at certain special  temperatures,  the polymer

solution can start behaving ideally such conditions referred to as theta condition and the



corresponding temperature  is  referred to as a theta  temperature.  And finally, we also

discussed the solubility parameter approach which is useful to get an estimate of how

soluble a given polymer will be in set of solvents or in a particular solvent.

So, we will continued the discussion on polymer thermodynamics in 1 or 2 more lectures

and they will look at the phase behavior in more detail.  Especially, from the point of

view of a phase separation and we will also after that briefly discuss the thermodynamics

of polymer blends and copolymers.


