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So hello, in the previous lecture we started a discussion on Thermodynamics of Polymer

Solutions. So, we discuss the case of an ideal solution and introduced the concept of

lattice approach to calculating entropy change of mixing and Gibbs energy change of

mixing.  And  then  we  started  discussing  the  thermodynamic  behavior  of  polymer

solutions. So, in particular we introduced the Flory Huggins theory as the as the main

theory that we will be discussing in this course for the describing the thermodynamic

behavior of polymer solutions.

So, we in the previous lecture we covered the portion the combinatorial entropy portion

of this Flory Huggins theory. So, in today’s lecture we will continue that discussion and

we will complete the development of this Flory Huggins theory and the Flory Huggins

equation for describing a polymer solution thermodynamics.

(Refer Slide Time: 01:27)

Regards the content of this lecture we will briefly summarize the discussion from the

previous  lecture  on  the  combinatorial  term.  And then  we will  develop  another  term

which is  referred  to  as  a  contact  term and then this  term basically  accounts  for  the



intermolecular interactions. So, if you remember in the previous lecture we when we

discussed the combinatorial entropy term there the interaction was assumed to be absent.

So,  initially  the  change  in  entropy  purely  due  to  the  different  confirmations  that  a

polymer or polymer chains can adapt that was considered and neglecting the effect of

interactions.

So, that led to the combinatorial entropy term which will have a contribution towards the

Gibbs energy of mixing. Today we will discuss another term which will account for the

presence  of  intermolecular  interactions  between  polymer  chains  and  the  solvent

molecules. That will refer to as a contact term and the, and while discussing this contact

term we will  also introduce  parameter  which is  called  the Flory Huggins interaction

parameter.

So, this parameter is an important measure of the solvent polymer interactions. So, we

will introduce this and then we will completely complete the development of the Flory

Huggins  equation  to  calculate  the  Gibbs  energy  change  of  mixing,  for  a  polymer

solution. And after that we will briefly introduce the concept of partial molar properties

specially focusing on chemical potential  because it  is an important property which is

related to other exponentially measurable quantities as well. So, we will discuss that and

we will see how the application of Flory Huggins theory leads to certain expressions for

the chemical potential as well as quantities like activity.

(Refer Slide Time: 03:15)



So, the nomenclature that we introduced in the previous lecture the same nomenclature

will follow today as well as and when some new term is introduced the corresponding

definition of that term will be provided whenever we encounter it. So, apart from all the

apart from all the terms that are listed here we may come across some other terms as well

during our discussion today. So, as and when such terms appear or such quantities appear

we will introduce them.

(Refer Slide Time: 03:43)

So,; before moving on with the discussion on Flory Huggins theory and development of

Flory Huggins equation, let us just briefly summarize what we discussed about the Flory

Huggins theory in the previous lecture.  So, some of the key assumptions involved in

Flory Huggins development of the Flory Huggins theory are the first one is that it is a

lattice based model.

So, the model itself is a lattice based model where the solvent molecules the polymer as

well as the polymer solution that forms all these three cases are considered to be on a

lattice.  And,  the  as  a  key  assumption  here  is  that  for  describing  the  arrangement  of

solvent molecules pure solvent molecules as well  as pure polymer molecules and the

polymer  solution  for  all  these  three  cases  the  same kind  of  lattice  is  used  in  Flory

Huggins theory. Apart from that we considered no volume change of mixing.

So, the fact that the same identical lattice is considered for the 2 components as well as

for the solution, that itself leads to the fact that there is no volume change of mixing



associated. So, volume change of mixing is assumed to be 0 in Flory Huggins theory

another at least during the derivation the assumption is that all polymer molecules that

are being considered have the same number of segments. So, all polymer molecules have

the same size and they are mono disperse. Towards the end of today’s lecture we will see

that even for poly disperse samples the equations can be applied with only very slight

modification; but the derivation that we will carry out that is initially only for mono

dispersed sample polymers with identical number of segments. The other assumption is

that within a polymer chain the self intersections are allowed.

So, if you have a different polymer chains then their segments need not intersect, but for

given  polymer  chains  intersection  between  different  segments  of  that  same  polymer

chain that is self intersections that are allowed. And, this is basically the way in which

the different configurations or confirmations of the system are counted for calculating

entropy change the, combinatorial entropy change. During that the way in so, in the last

lecture we discussed that one by one the polymer molecules I introduced in a in the

lattice. Until all the polymer molecules occupy and positions on the lattice and then the

solvent  molecules  are  filled  in.  And this  is  the approach is  to  calculate  the different

number  of  distinguishable  arrangements  possible  which  can  be used to  calculate  the

entropy and entropy change.

So, during that process of introducing the polymer molecules one by one and there and

for each polymer molecule introducing the segment one by one on the lattice. There the

self intersections between segments of the same polymer chain are neglected that is so

that is one of the one more assumption of this theory. And one of the other assumptions

is that the polymers segment and the solvent molecule have the same size. So, a given

polymer segment essentially is defined based on the fact that it should have the same size

the same volume as the as a solvent molecule.

So, after that finally, one of the key assumptions and limitations of this theory is the

mean field approximation which we also discussed in the previous lecture. Where when

you when the polymer chains are being introduced onto the lattice. It is assumed that

when a new segment or new polymer chain is being added to the lattice. The already

added polymer segments are uniformly distributed across the entire lattice.



So, that is what is called the mean field approximation.  And if we let us say have a

concentrated polymer solution then this assumption is not that bad it is ok, but if we have

a dilute solution in that case, the this assumption is quite limiting because, it is a very

poor assumption for high dilute solution. So, through these couple of cartoons just see

why this mean field approximation is not a good assumption for dilute solutions. So, so

for this concentrated solution that we have drawn here this rough carton. The one can see

the polymer chains are packed quite closely to each other and they are entangled with

each other as well.

So, here one can safely say that the segments that polymer segment distribution across

the entire volume of the solution that is shown that is relatively uniform. So, the making

a mean field approximation here we will not actually lead to; significant error whereas, if

we look at  the  dilute  solution  case here  what  we have is  polymer  chains  which  are

isolated and well separated from each other.

So, in the solution we have polymer chains occupying certain volumes, but much of the

volume of the solution is occupied by solvent molecules. So, in this case assuming that

the polymer segments are uniformly distributed throughout that is a poor assumption

because, if we consider let us say these regions of volume here. So, in these regions

actually there are no polymer molecules present so no polymer segments are present as

well. So, assuming that the polymer molecules are uniformly present that is a mean field

approximation is not a very good assumption for dilute solution case.



(Refer Slide Time: 09:28)

Next let us just briefly summarize the combinatorial term the combinatorial entropy term

that we discussed in the previous lecture and after we summarize. And that then we will

move on to the contact term and further on. So, in the previous lecture if you the first as a

first step we assume that the mixing is athermal, which means that there is no enthalpy

change of associated with the mixing of a polymer and the solvent. And this athermal

mixing is an initial assumption we will see that when we discuss the contact term.

There  this,  the  athermal  mixing  that  part  that  assumption  will  be  relaxed,  but  for

calculating the combinatorial entropy which is purely based on the different number of

confirmations  that  the  polymer  chains  can  adopt.  So,  for  calculating  that  term  this

assumption of no enthalpy changes of mixing essentially, no interactions that is made.

So, with athermal mixing assumption initially; we developed the combinatorial entropy

term to be what shown here. So, we saw that although the steps involved a; large number

of mathematical manipulations but finally, the expression that we get is quite simple. So,

the entropy change a combinatorial entropy change of mixing is just minus R n 1 l n phi

1 plus n 2 l n phi 2 where phi 2 and phi 2 the respective volume fractions of the solvent

and the polymer in the solution. 

So, in terms of the number of molecules of the solvent present which is N 1 and the

number of molecules  of  the polymer present  which is  N 2.  And also the  number of

segments per polymer chain which is this x. So, in terms of these one can define these



volume  fractions  and  this  volume  fractions  basically  are  what  appear  in  the

combinatorial  entropy term. If we contrast this with the expression for ideal solution

which we also developed initially  in the previous  lecture;  we see that thus do the 2

equations have very similar in form the only difference is that in the ideal solution case

the mole fractions appear here and here. Where is whereas, for the polymer solution case

in the case of a thermal mixing the volume fractions appear in these 2 places. 

So, that is a only difference, but as we will see this the difference itself actually you can

lead to large difference in the value of the entropy chain that is calculated using these 2

equations. So, one additional point here is that the expression that we will have here this

will reduce to the ideal solution expression which is here. In the limit when this X equal

to 1 which is  quite  obvious.  So,  when X is  equal  to  1 which  means the number of

segments in the polymer chain is 1. 

It means that the solute which the solute actually is now a simple molecule which has the

same identical size as a solvent. So, in that case of course, we will we should be able to

get  back  the  ideal  solution  expression  from  the  polymer  expression  that  we  have

developed here. And if you if you substitute X equal to 1 in the in these equations here,

you will see that the ideal solution expression for delta S is obtained.

(Refer Slide Time: 12:42)

So, let us just quickly have a look at this combinatorial entropy term a bit more; in terms

of some numbers and examples. Just to get a feel of how the presence of these volume



fractions  instead  of  mole  fractions  how that  leads  to  a  much  different  value  of  the

entropy change that will be there. So, one thing about the polymer chains or polymer

molecules as solute is that even if they are present in very low mole fraction. So, even if

the number of polymer molecules is small compared to the number of solvent molecules;

even then because of because the size of a poly molecule is very large compared to a

solvent molecule. 

The volume fractions of the poly molecule molecules or the polymer in the solution will

be significant or even though its mole fraction is small. So, let us consider an example

here so, let us say we have a system which contains 98 solvent molecules and 2 polymer

molecules just to make it a round number of 100. So, we have this system and let us say

that  each  polymer  molecule  which  is  a  chain  like  molecule  contains  100  connected

segments. So, in this case the N 1 is 98 N 2 is 2 and X which is the number of segments

where polymer molecule let us 100. 

Now let us see let us first calculate the mole fractions. So, the mole fraction X 1 which is

just N 1 by N 1 plus N 2, that comes out to be 0.98 for the solvent. And X 2 which is the

mole fraction for the polymer that of course, will be 1 minus X 1 which is 0.02. So, we

have binary mixture here so, X 1 plus X 2 the sum of mole fractions will be 1. So, X 2

will be 1 minus X 1 which is point 0 2. Next let us calculate the volume fractions so; the

volume fraction phi 1 is given by N 1 divided by N 1 plus x N 2. So, we see that because

the value of x is 100, because of that the volume fraction of solvent is now 0.33. Through

although the mole fraction is 0.98, the volume fraction we see is actually 0.33 only. And

so the volume fraction of the polymer which is phi 2 will be 1 minus phi 1which is 0.67.

So, again volume fraction also the sum of volume fractions will be 1. So, phi 2 will be 1

minus phi 1 for this  binary mixture.  And finally, let  us do the calculations  for ideal

entropy and then the combinatorial entropy that we get from Flory Huggins theory. So,

for the ideal entropy case if we do a calculation based on the equation for ideal entropy

change or entropy change for ideal solution. Then we get this number 9.8 K B for this

particular case where K B is the Boltzmann constant.

And, if we use this calculation for a polymer solution it will be an incorrect calculation it

will give an incorrect result as well. So, this for a polymer solution this is not the correct

result. For a polymer solution because the polymer chains are long and connected to each



other the correct expression to is the combinatorial entropy term derived for the Flory

Huggins theory. And if  we do the calculation  using that  equation the Flory Huggins

combinatorial entropy term, it comes out to be 109.45 K B, which is the correct which

will be the correct value for polymer solutions.

So, we see that the presence of volume fractions in this Flory Huggins expression for

combinatorial entropy. That actually leads to in this particular case an order of magnitude

increase in the actual entropy the change that is happening compared to what we will get

if we had an ideal solution; so, with that summary of what we covered in the last class an

example to illustrate the points.

(Refer Slide Time: 16:30)

Let us move on to the other contribution to this Flory in this Flory Huggins theory and

that is due to the intermolecular interactions. So, in the first part we calculate the entropy

change, which was purely combinatorial in the sense that the no effect of any interactions

was considered. And only because the polymer chains are long and connected and can

adopt  multiple  confirmations  only  due  to  this  reason  many  different  distrigutual

arrangements were possible. And due to that an entropy change or mixing was there,

which was the combinatorial term that we discussed previously.

Next now if we now so, that was a athermal mixing, now if we consider the effect of

intermolecular interactions as well. So, polymer solvent molecules they will of course

have intermolecular interactions and the interaction between the two need not be of the



same type. So, if we consider intermolecular interactions then in Flory Huggins theory

the  incorporation  of  this  effect  of  intermolecular  interaction  that  will  of  course,  be

through  an  enthalpy  change  of  mixing.  So,  if  you  have  intermolecular  interactions

present upon mixing one would expect enthalpy to change.

So, we will have a nonzero enthalpy change of mixing, but apart from that that will not

be the only effect of these intermolecular interactions. Apart from in non zero enthalpy

change of mixing; entropy change of mixing will also be affected by the presence of

intermolecular interactions. The reason for this is if we have intermolecular interactions

present that these interactions actually might lead to some kind of ordering or some kind

of reduction in the randomness of the arrangement of molecules.

So, the presence of interactions can result in some kind of ordering and that intern can

lead to an additional entropy change apart from the combinatorial entropy chain that we

already discussed previously. So, this ordering induced by interactions that is the other

effect. Now in this Flory Huggins theory we will consider both these effects together

through a single term,  which  is  the Gibbs energy change of  mixing through contact

interactions.

So, so we will  consider  this  contact  Gibbs free energy change of mixing delta  G m

contact and in this term both the effects the enthalpy change of mixing as well as the

entropy change due to some kind of ordering in the presence of interactions both these

effects will be captured in this delta G m contact term. So, the one assumption that we

are  making  here  is  that  the  interaction  the  inter  molecule  interaction  that  we  are

considering, they are limited only up to the distance of first neighbors of the molecules.

So, long range interactions we are neglecting. 

So, in any case in the absence of any charged, charges in the system the interactions that

are  present  to  be  of  the  Van  der  Waals  kind  of  non  bonding  interactions.  They  are

typically short range so; this is a reasonable assumption for such systems. If you have

long range interactions present then of course, this assumption is not a very good one,

but from our case we will consider only first neighbor interactions which is good enough

assumption for short range interactions.

So, let us talk about that different types of contacts that might be present when we form

this polymer solution which contains solvent molecules as well as polymer molecules



which  in  turn  are  composed  of  polymer  segments.  So,  we  can  have  solvent-solvent

contact, where two solvent molecules are close to each other and they are interacting

with each other. We can have segment-segment  contact  where two different  polymer

segments are close to each other and they are interacting with each other through non

model interactions.

So, here we are not considering two segments which are let us say directly bonded to

each  other  along  given  polymer  chain.  We  are  considering  segments  which  are

essentially  not  directly  bonded  to  each  other  and  interacting  through  non  bonded

interactions. So, we can have the segment-segment contact interactions apart from that

we can also have a solvent segment interaction. So, a given polymer segment might be

surrounded by solvent molecules. So, those interactions those contacts will lead to some

kind of interaction which will call the solvent segment interaction.

So, the Gibbs free energy associated with these three types of interactions let us represent

them by small g 1 1 small g 2 2 for the solvent-solvent and segment-segment contact

interactions. And for the solvent segment interaction let us say the corresponding Gibbs

free energy of this contact is g 1 2 and these all these quantities are for single contacts.

So, for a single solvent-solvent contact the corresponding Gibbs energy let us say g 11

for a single solvent segment contact let us say g 1 2 and so on.

(Refer Slide Time: 21:25)



Now, let us look at this the contacts in a bit more detail and what happens when this pure

solvent. And the pure polymer is mixed together what happens to the contacts how new

contacts  form an old  contacts  are  disrupted.  So,  for  the  formation  of  two  segments

solvent contacts so, two contacts points between solvent molecules and segment polymer

segment for a formation of two such contacts one solvent-solvent contact on an average

will break and one segment-segment contact will break. 

So, if we consider let us say a pure solvent and focus on two solvent molecules these 2.

And if  we  consider  again  a  pure  polymer  here  and  consider  the  contact  interaction

between 2 polymer segments represented by these orange circles here. So, initially in the

pure species will have the in the solvent we will have solvent-solvent interactions only in

the pure polymer will have only segment-segment interactions. Now, let us say and we

are focusing on one solvent-solvent interaction here and one polymer segment-segment

interaction here.

(Refer Slide Time: 22:44)

Now, let us say when we mix the two and atom positions gets rearranged and we get a

situation like this. So, here now if we see in this polymer solution that has now formed,

we have a form two contacts and both of these are segment solvent contact.  So, one

solvent-solvent contact got broken one segment-segment contact got broken and two new

solvent  segment  contacts  got  formed.  So,  that  is  based  on this  observation  one  can



basically  define  the  Gibbs  free  energy  change  for  the  formation  of  a  single  solvent

segment contact. So, that can be defined through the equation that is written here. 

So, this delta g 1 2 that is equal to g 1 2 minus half of g 1 1 plus g 2 2 and this factor half

comes because two solvent segment contacts form when one solvent-solvent and one

segment-segment contacts get broken. So, the corresponding Gibbs energy change will

be given by the expression here. Now let us say that the number of such solvent segment

contacts is p 1 2 in the entire solution that has formed. So, the total Gibbs energy change

the total contact Gibbs energy change of mixing will simply be given by the product of

this p 1 2 times this delta of this small g 1 2. 

So, this p 1 2 is a total number of solvent segment contacts present in the entire solution.

And the delta g 1 2 is the Gibbs energy change associated with the formation of a single

solvent  segment  contact.  So,  their  product will  actually  give the entire  Gibbs energy

change  a  contact  term  for  the  Gibbs  energy  change  of  mixing.  So,  we  have  this

expression here, now let us see if we can come up with an expression for this quantity p

1 2 which is a total number of segment solvent contacts in our polymer solution. So, to

for that let us start by considering a single polymer or focusing on a given polymer chain

in our lattice.

(Refer Slide Time: 24:57)

So, for a given polymer chain, if we count the number of lattice cells that are adjacent or

neighboring  to  this  polymer  chain.  Then that  counting  can be done in  the following



manner. So, we will have two terms, the first term here the term here this basically this

product corresponds to segments of polymer chain that are not at the chain ends.

So, all the polymer segments which are not chain ends so, if we have total x segments in

a given polymer molecule. Then in that case the number of segments which are not chain

ends will be x minus 2 because we are considering only linear polymers which will have

two chain ends. So, if we remove those two chain ends do not consider that for this term.

Then we will have x minus 2 segments and each of these x minus 2 segments will have z

minus 2 adjacent lattice cells to them.

Now, this z minus 2 comes because of the fact that for a given polymer segment which is

not a chain in it will be connected to two other polymer segments. So, if we have this one

polymer segment it will be connected in to next volume segment here and a previous

polymer segment. So, if the overall coordination of the lattice is z which means the total

number  of  nearest  neighbors  is  z  for  a  given  polymer  segment.  Then  two  of  those

positions are already occupied by the two segments that are bonded to to the segment

that we are considering.

So, if we subtract that 2 then z minus 2 number of cells lattice cells around this segment

are other adjacent cells. Which are available for occupation by solvent molecules as well

as segments from other polymer chains or distance more distance polymer segments in

the same chain as well. So, so this z minus 2 is because of that and x 2 is because we

have x minus 2 such segments plus we have another term accounting for the contribution

from the chain ends.  So, we have two chain ends because we are considering linear

polymers.

So, for each chain end, each chain end actually is connected only to one more segment

the previous segment along the chain ok. So, if we have this as the chain end this will be

connected to one segment here, but on the other side there would not be any connection.

So, if the overall coordination of the lattice is z, then z minus 1 adjacent sites will be

again available for occupation by other solving molecules or other segments.

And only this one segment which is to which this chain end is connected that cell is not

available. So, for chain ends the two chain ends will have for each of them will have z

minus 1 at adjacent lattice cells available. Now if we simplify this expression what we

get is this z minus 2 times x plus 2. Now if the x is the large so, for a for long polymer



chains typically the value of x will be quite large. So, for large x this 2 this plus 2 here

that can be neglected we can just say that the total number of lattice cells adjacent to a

given polymer molecule is just z minus 2 times x ok.

So, now proceeding from here now, if  we know that if  the total  number of polymer

molecules in the solution is N 2 so, if for a given polymer molecule we have z minus 2

times x number of adjacent lattice cells. Then for all the N 2 polymer molecules together,

the number of adjacent lattice cells that we can get is just N 2 multiplied by z minus 2

times x ok. So, now this gives a total number of adjacent cell for all polymer molecules,

our aim is to come up with the number for the contact interactions. And now how many

contact contacts are there solvent segment contacts are there. So, the if this is the.

Student: Ok.

Total number of adjacent cells for polymer molecules, then we need to next find out how

many of these cells are actually occupied by solvent molecules. And that number will

give us a total number of segments solvent contact present in the solution. So, to do that

again the mean field approximation is invoked in this Flory Huggins theory. So, mean

field approximation what here what its implying is that the overall volume fraction the

solvent in the entire solution, that same volume fraction can be used to calculate the

number of cells  adjacent  to given polymer molecules  which will  be occupied by the

solvents.

So, if you have a bunch of polymer molecules and we have identified the neighboring

cells or adjacent cells. Then some of them will be occupied by solvent molecules some

others  can  be  occupied  by  other  polymer  segments  as  well.  So,  using  mean  field

approximation what we say is that out of these adjacent cells the phi 1 fraction of these

adjacent cells will be occupied by solvent molecules only. So, that leads to an expression

for this quantity p 1 2 and if we then just try to simplify this expression further.

So, we have this N 2 times x times phi 1 these three terms appearing in the expression for

p 1 2. So, phi 1 we can write in this manner and then we can take this the N 1 out and the

x N 2 we can take here. So, just rearranging we get this expression and this quantity this

ratio  is  nothing,  but  phi  2.  So,  essentially  N 2 times  x times  phi  1 and that  can be

simplified to N 1 times phi 2. So, now, again based on this simplification the expression

for p 1 2 becomes z minus 2 N 1 times phi 2.
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So, once we have an expression for p 1 2 we can plug that back into the expression for

the contact Gibson energy change of mixing. So, the contact Gibson energy change of

mixing  it  is  given  by  this  expression  p  1  2  by  this.  So,  combining  these  two,  the

expression for the contact Gibson energy change of mixing is z minus 2 N 1 phi 2 times

this delta g 1 2 term. So, what in this theory what is done next is the details of the lattice

which are contained here so, this z is a lattice coordination numbers that contains details

are the lattice that is being used.

So, that term as well as this delta g 1 2, which is the Gibbs energy change associated with

the  formation  of  polymer  solvent  segment  contact.  So,  these  terms  are  basically

combined into a single parameter and that parameter is called the chi parameter or the

Flory Huggins polymer solvent interaction parameter. So, this parameter is defined in

this manner. So, z minus 2 times delta g 1 2 just divided by K B T. So, we see that both

the details of the lattice contained in the coordination number z, as well as the delta g 1 2

term. 

Both  of  these terms are subsumed or  combined to  in  this  Flory Huggins  interaction

parameter term which is also called the chi parameter. And this chi parameter basically is

a measure of the polymer solvent interactions. So, next now if once we have this chi

parameter defined if we substitute this in the expression for the contact Gibbs free energy

of mixing. Then we will get an expression like this so, delta G m contact is just R T times



n 1 phi 2 chi. So, let us just look at this chi parameter in little bit more detail here. So,

this chi parameter can in general be expressed as in the form of a plus b by T, where a

and b are independent of temperature. So, we see that this chi parameter is a temperature

dependent  dimensionless  quantity.  And the  temperature  dependence  normally  can  be

expressed as a plus b by T. 

The chi parameter if we see here it contains this delta g 1 2 term so in inside it the chi

parameter  contains  both an entropic  contribution  as  well  as an enthalpy contribution

because, the Gibbs free energy of course, will contain both these terms. So, one can also

think of chi parameter as consisting of an entropic contribution chi H plus an entropic

contribution  chi  S.  And it  can be shown based on the discussion that  we have been

having it can be shown that this chi H the enthalpy contribution. That is given by minus

T times this partial derivative del chi del T. And when applied to this formula that leads

to just b by T so the enthalpy term is the one which is temperature dependent and that

can be shown to be equivalent to b by T.

Similarly, the entropic term that will be given by the partial derivative of T times chi with

respect to temperature and that will simply be the parameter a from this expression. So,

we see that this the entropic term is actually does not come out to be a temperature

dependent term. It is a enthalpic term that is temperature dependent. Now, that we have

defined  the  Flory  Huggins  interaction  parameter  and  use  that  to  come  up  with  an

expression for the contact Gibbs energy change of mixing. And the fact that we have

already developed an expression for the combinatorial entropy change of mixing. Now,

we can combine both these terms to get in the overall that overall Gibbs free energy

change of mixing associated with the formation of polymer solutions.
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So,  the combinatorial  contribution  to  the  Gibbs free energy change that  will  just  be

minus T times the entropy change of the other combinatorial entropy change. So, that if

we substitute the expression for the combinatorial entropy change that we had developed

earlier. That if this expression out to be R T times n 1 l n phi 1 plus n 2 l n phi 2.

Similarly the other contribution due to the interaction or intermolecular interactions that

is this contact Gibbs energy change of mixing and that we just saw is R T n 1 phi 2 chi.

So, we combine these two to get the Gibbs energy change of mixing for polymer solution

and that expression by combining these two terms we can get this expression here. So, R

T you will see R T is common to both these so we can take this R T term outside. And

the final expression for the Flory Huggins equation for Gibbs energy change of mixing

that is given by R T n 1 l n phi 1 plus n 2 l n phi 2 plus n 1 phi 2 chi.

So, this is the expression the key expression for the Flory Huggins theory and that is that

gives the Gibbs free energy change of mixing. And this Gibbs free energy change of

mixing  is  a  very  important  quantity  for  describing  the  phase  behavior  of  solutions.

Because starting from here many other quantities can be calculated which are related to

phase behavior polymer solutions. So, let  us now that we have develop the complete

Flory Huggins  equation  let  us just  briefly  discuss some of the features  some of  this

equation as well as some of it is limitations.
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So,; Flory Huggins theory the good thing about it is that its relatively simple theory and

simple expression that we get here, but can still qualitatively describe a lot of different

kinds of behavior. So, the equilibrium thermodynamic properties of polymer solutions

the qualitative trends it can predict well.

Similarly, the phase separation behavior so if  we have a polymer solution where the

interactions are not good and phase separation occurs. So, that phase separation behavior

which again is connected to fractionation as well. So, these kind of behaviors are also

qualitatively well described by Flory Huggins theory. And swelling of network polymers

that  solves  something  Flory  Huggins  theory  describes  well  and  there  are  other

applications as well, but these are the important ones.

Next let us talk about some of the limitations of Flory Huggins theory. So, it is a simple

theory  and  so  of  course,  there  will  be  some  limitations.  So,  one  thing  one  of  this

limitation is that it predicts the qualitative trends well for a lot of different cases, but it

does  not  give  good  quantitative  agreement  will  experimental  data  in  general  while

calculating  the  combinatorial  entropy  term  in  this  theory.  The  self  intersection  of

polymer segments is actually allowed which is not a realistic assumption.

As we have discussed many times already the mean field approximation is the probably

the more important weaknesses of this theory. And it is a more apparent for the case of

dilute polymer solutions where the assumption of uniform presence of polymer segments



is actually not valid much. So, it is not satisfactory for dilute solutions. The chi parameter

that we have, that we have defined it is not the very simple parameter it is depends on

Gibbs free energy change of contact formations and contains entropic as well as enthalpy

contributions. So, it is not a simple parameter and in some cases it is actually also shown

to be dependent on the polymer volume fractional concentration.

So, so that is another limitation apart from this the fact that the same lattice is being used

for the solvent the polymer as well as the solution that is formed. So, that itself is a kind

of a limiting assumption. So, and it is something that need not be true for many cases.

So, these are some of the limitations of Flory Huggins theory, but that does not mean that

this theory is not very useful.

In fact, the point of time when this theory basically was develop this was a landmark

development in the field of polymer solution thermodynamics. And even now the theory

actually  gives  a  very good qualitative  description  of  various  strengths  related  to  the

behavior of polymer solutions. So, it is relatively simple, but quite good theory. And

even the most sophisticated theories that have been developed later on, many of them

actually used Flory Huggins theory as a starting point and then further refine it to get

better predictions and agreement with the data.
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So, now that we have develop the Flory Huggins equation and talked about the Flory

Huggins equation and the theory in some detail.  Let us see how we can extract some



useful thermodynamic quantities from the equations that we have developed till now. So,

before we move on let me introduce this concept of partial molar properties. So, those of

you who have take courses in chemical thermodynamics you will be well familiar with

the this term. So, partial molar property of a given component in a solution is basically

measure of a how much a given property will change or a given solution property will

change when a very small amount of a certain component is added to that solution.

So, let us say if we are talking about any property represented by Z ok. So, this Z that we

have  here  it  can  be  the  Gibbs  energy  the  enthalpy  the  volume  any  thermodynamic

property of interest. So, the corresponding partial molar property is given by Z i bar that

is a representation. And it is defined as the partial derivative of Z with respect to n i

which is the number of moles of this component i. Keeping the temperature pressure and

the number of moles of all other components in the system constant. So, it basically as I

just mentioned is a measure of how much a certain property changes when we add this

very small amount of a certain component to the solution or mixture.

So,  the  partial  molar  property  that  is  of  most  interest  towards  is  what  is  called  the

chemical  potential,  which we will  represent  by mu i.  And this  chemical  potential  is

nothing, but the partial molar Gibbs free energy. So, the change in Gibbs free energy as

of  a  given  solution  associated  with  the  addition  of  a  very  small  amount  of  certain

component. That change basically is what this is partial what this chemical potential of

that component signifies. So, since it is a partial molar Gibbs energy mathematically one

can define it like this. And from here another important expression that is of interest to us

is  basically  the relation  between this  chemical  potential  and activity  of a solution or

activity  of  a  given  component  in  a  solution.  So,  this  activity  is  related  to  chemical

potential through the expression here which states that mu i minus mu i naught is equal

to R T l n a i.

Here mu i is of course, the chemical potential of component i in the solution, a i is the

activity  of  component  i  in  the  solution,  mu  i  naught  is  the  chemical  potential  of

component i in its standard state. So, in general the standard state will be if we have a

liquid, then the standard state can be the particular component in it is pure state at the

same conditions as the solution is that. So, mu i naught is the standard state chemical

potential of component i. Now this mu i minus mu naught which is equal to R T l n a i.
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This is actually also a partial molar property and it is a partial  molar property of the

Gibbs energy change of mixing. So, this mu i minus mu i naught can be shown to be the

partial molar Gibbs energy change of mixing. And again mathematically we can define it

like this.  Now if we use the Flory Huggins equation that we have developed for the

Gibbs energy change of mixing for a polymer solution.

So, the equations that you have discussed till  now for the partial  molar property the

chemical potential  the activity. Those equations are general thermodynamic equations

valid  for  any kind  of  solution.  Now if  you consider  the  specific  case  of  a  polymer

solution, then the Gibbs energy change of mixing we can described by the Flory Huggins

equation here. So, if we substitute this expression here then we can come up with an

equation for the chemical potential of any component i.

So, let us focus on the solvent phase so for the polymer solution that we have we have a

binary mixture of a polymer and a solvent. So, let us first consider the solvent phase

which is component 1 so for that this mu i minus mu mu i naught if we can say i equal to

1 for the solvent. Then we get mu 1 minus mu 1 naught equal to this partial molar Gibbs

free energy of mixing. And we can substitute the Flory Huggins equation here and then

carry out the differentiation to obtain an expression.

So, in the next couple of slides just walk through this derivation step by step. So, so next

the mu i mu 1 minus mu 1 naught by R T this quantity here that basically if we split or



expand this partial derivative into multiple terms. Then if we are taking first the partial

derivative this term n 1 l n phi 1 with respect to del del n 1. Then using product rule we

will get these two terms. So, the partial derivative of this term actually leads to these two

terms here. Then the partial derivative of the this second term here, if we take the partial

derivative with respect to n 1. Then we will get only this one term, the reason for this is

in taking this partial derivative the n 2 is considered to be maintained constant.

So, while taking the derivative and 2 can be taken outside and only this l n phi 2 the

derivative l n phi 2 with respect to n 1 has to be taken. And in the third again we have n1

and phi 2 both of which will contribute to the partial derivative with respect to n 1. So,

again  using  product  rule  chi  we  are  assuming  to  be  this  Flory  Huggins  interaction

parameter chi will assumed to be independent of n 1. So, in that case by product rule

again we will get these two terms as a result of differentiation of this third term here.

Now, in the next slide again look at all the terms that we have in more detail.
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So, this is the expression that we got by expanding and take applying product rule and

taking  the  partial  derivative  with  respect  to  n 1  for  the  different  terms  in  the  Flory

Huggins equation. Next let us consider some of the derivatives that is still here part by

part or one by one. So, let us consider this term first so this term del l n phi 1 by del n 1

again that we can write in this form del n phi by del phi 1 multiplied by del phi 1 by l n n

1.



So, this derivative is nothing, but 1 by phi 1 that is the standard derivative formula for

when you are taking log the derivative of a log of something. And this second term will

remain here. Now, again let us look the second term this one in more detail. For that lets

to evaluate this term here, we first need to know how phi one are the volume fraction of a

solvent depends on n 1. So, phi 1 is defined as capital N 1 by capital N 1 plus x times

capital N 2 that is a volume fraction of the solvent.

And in terms of the number of moles we can just write phi 1 in this form. And that can be

done by just converting the number of molecules here to number of moles by applying

the Avogadro constant as the factor. And that Avogadro constant will cancel in both the

numerator and the denominator and you will just get this expression for phi 1.

So, now that we have this expression for phi 1, we can differentiate that with respect to n

1. And this derivative upon differentiation will lead to two terms and these two terms

actually can be combined into the single term here. So, we have this single term and we

see that this single term that we have can be further simplified. But before doing that lets

go back to the this term so this is a term that we actually need. So, this term is just 1 over

phi 1 multiplied by this derivative here.

So, that derivative is shown here which is this term so if you multiply this by 1 over phi

1. Then we will get this equation which will give the partial derivative of l n phi 1 with

respect to n 1. So, now, we know that phi 1, phi 1 itself is defined as n 1 by n 1 plus x n

2. If we substitute that here then upon simplification we just end up with this ratio phi 2

by n 1 that is that is a partial derivative of l n phi 1 with respect to n 1. So, we see that

after mathematical manipulations and simplification we get a quite simple expression for

this partial derivative ok.
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So, now let us consider the second term the second partial derivative which is del l n phi

2 by del n 1. So, for this again the similar approach as the what we did for the del l n phi

1 del n 1 term in the previous slide the same approach can be used. And finally, the

partial  derivative can be expressed as 1 over phi 2 del of phi 2 del n 1. So, next to

evaluate this partial derivative let us see how phi 2 depends on n 1. So, that again based

on a definition of phi 2 in terms of number of molecules the same can be converted to the

to number of moles and the expression that we get is this here. 

So,  now that we have this  expression for phi 2 we will  try to differentiate  that  with

respect to n1. And the partial derivative that we get here upon simplification is just phi 2

over minus of phi 2 over n 1 plus x n 2. Now, if this partial derivative expression is

substituted here then we will get an expression for this partial  derivative as well.  So,

substituting that so, we get 1 over phi 2 this partial derivative which is here so, upon

simplification the expression that we get is minus of 1 over n 1 plus x n 2.

And that is the expression for partial derivative of a natural log of phi 2 with respect to n

1. So, we will see that we have both these derivatives partial derivative that we have

these two terms for both of them we have define or come up with simplified expressions.

So, for this partial derivative we have this expression here and this partial derivative we

have this expression here.
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So, next if we consider again the complete expression we have three partial derivative

terms in this expression this as well as this one. And we have already come up with the

expression  simplified  expression  for  all  of  these  and  the  corresponding  simplified

expression for this one is here for this term here this expression and for the last partial

derivative we have this expression here. So, if you substitute all of these in the original

equation, this equation if you substitute all these three terms; we get this equation here

and again we will have we will need to simplify a bit.

So, from this equation which is obtained by substitution if we simplify so let us go again

term by term. So, this term of course, becomes just phi 2 because n 1 n 1 these will

cancel, l n phi 1 let us leave it as it is this term here. This actually this term becomes phi

2 by x, because if you look at this term here this is n 2 by n 1 plus x n 2 and we know

that phi 2 is x times n 2 by n 1 plus x n 2. So, this term can simply be represented as phi

2 by x 4th term again we will we are leaving as it is. And this last term here this ratio in

this term, this n 1 by n 1 plus x n 2 we know that this ratio is just a definition of phi 1.

So, last term becomes phi 1 times chi parameter times phi 2.

So, in the next step we can combine these two terms because phi 2 is common. So, these

2 by combining become phi it becomes phi 2 1 minus 1 by x 1 here. This l n phi 1 is the l

n phi 1 that we have here and the last term again from these two terms this phi 2 chi can

be taken common outside. So, we get 1 minus phi 1 this one here. Now this 1 minus phi



1 it is a binary mixture, so, 1 minus phi 1 will be simply be phi 2. So, the final expression

where this 1 minus phi 1 this is nothing but phi 2 so, based on that the final expression

that we get for mu 1 minus mu 1 naught is R T l n phi 1 plus phi 2 times 1 minus 1 by x

plus chi times phi 2 square.
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So, for that is the expression that we have developed for the solvent using Flory Huggins

against  theory or Flory Huggins equation.  And we know that  this  chemical  potential

difference is related to the activity. So, this l n a1 we know is just given by mu1 minus

mu1 naught by R T; so,  the l  n of the activity  of solvent  that  will  be given by this

expression her.

Now the activity of any component a1 can also be represented as product of it is mole

fraction X1 and what is called the activity coefficient gamma 1. So, this gamma i these

are referred to activity coefficient and these are basically quantities which connect the

activity to the mole fraction. So, any activity a i is simply gamma i times x i. So, we see

that both the activity as well as activity coefficients can be obtained from this whole

expression here for the solvent. Similarly we can do a similar kind of a derivation for the

polymer as well  which we have not shown but doing that similar  kind of derivation

following similar steps one can get for the polymer this expression.

And  again  the  activity  and  activity  coefficient  can  be  obtained  from  the  chemical

potential difference and that comes out to be what shown here. And if one wishes to just



consider the chemical potential or chemical potential on per segment basis. So, this is for

entire  polymer  molecules  if  you  are  considering  let  us  say  chemical  potential  per

segment, then we can just consider this and divide that by the number of segments x per

molecule.

So, that will give us an expression like this, on a per segment basis. So, one last point to

discuss here before concluding is that all the expressions that we have here it is fine, if

you have a mono dispersed polymer sample.  So,  if  we have polymers  where all  the

chains  of  the  same  length  have  the  same  number  of  segments  for  that  all  these

expressions  are  fine,  but  usually  we will  have  poly  dispersed  samples.  So,  for  poly

dispersed  samples  there  is  not  much  modification  that  needs  to  be  done  in  these

equations. The only thing is that the number of segments x poly disperse samples where

the chain lengths multiple different chain lengths of polymers are present. So, for such

samples the number average value of this number of segments x has to be taken ok.

So, this number average x let us represent that by x n bar that is simply defined as sigma

x i n i by sigma n i where i cycles or i is the index which runs through over all the

different sizes of polymer chains that are present in a poly dispersed sample ok. So, so if

that is the case then sigma n i in the denominator that we have here that sigma n i is

nothing, but just n 2. So, the summation of all the polymers numbers of polymer chains

of different means that some all done here we do not have number of polymer chains

here we have the number of moles.

But, all the number of moles, that summation will simply be equal to the total number of

moles of the polymer present in the solution ok. So, we see that for a poly disperse

sample  wherever  the  number  of  segment  x  appears  in  any  equation.  Whereas  the

definition of volume fraction or the Flory Huggins equation for Gibbs energy change of

mixing or for chemical  potential  or activity  everywhere if  we replace this  x by it  is

number  average  value.  Then  we can  apply  the  same equations  for  a  poly  dispersed

samples as well whether polymer chain lengths can be different.

So, we will conclude today’s lecture here. So, what we have discussed in the last couple

of lectures basically is a description of polymer solutions using a lattice based theory and

the  theory  is  referred  to  as  a  Flory  Huggins  theory.  So,  using  that  we  developed

expressions for combinatorial  entropy change of mixing as well  as the Gibbs energy



change of mixing, because of the presence of interactions, we combined these two to get

the overall Flory Huggins equations.

In that Flory Huggins equation we have applied to calculate the chemical potential and

activity of a solvent and polymer in the solution. So, in the next lecture we will continue

our  discussion  of  thermodynamics  of  polymer  solutions.  We will  look  at  the  phase

behavior of polymer solutions as well as the solubility of polymers in different solvents.

So, what kind of parameters can be defined to quantify or determine how soluble a given

polymer is in a certain solvent? 

So, these kind of discussions we will carry forward in the next lecture. 


