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So, in the last couple of lectures we have been discussing the conformation of isolated

polymer  chains  primarily, we have  looked at  the  different  models  for  ideal  polymer

chains describing the conformation end to end distance and other dimensional properties

of a such chains. We also, towards the end of the previous lecture briefly discussed the

behavior of real polymer chains in solutions.

So, in today’s lecture we will be carrying forward our discussion of polymer solutions

further and today we will specifically focus on the study of Thermodynamics of Polymer

Solutions. So, studying the thermodynamic behavior of polymer solutions is important,

because it can help in the prediction of phase behavior of polymer solutions. A polymer

solutions are widely encountered in many applications and it is a, the prediction of phase

behavior is important in many applications as well.

Further,  knowledge  of  thermodynamics  of  polymer  solution  can  actually  help  in  a

establishing or determining whether given polymer is soluble in a given solvent or to

what  degree are  given polymer dissolves in  a solvent.  Apart  from that  miscibility  in

polymer blends is also something where the studying the thermodynamics of polymer

solutions in blends is important. So, let us look at the content of today’s lecture what we

will be going through in the present lecture.
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So, we will actually begin by a discussion of thermodynamics of ideal solutions. So,

before we move on to studying the thermodynamic behavior of real solutions and theory

describing  that,  we will  first  start  off  by talking  about  the  thermodynamics  of  ideal

solutions. And specifically we will look at the how the expressions for entropy change of

mixing or Gibbs energy change of mixing can be obtained. Then we will move on to the

study of thermodynamics of polymer solutions and there we will focus on a particular

theory which came about in the early 1940s.

But, it is the beauty of this theory is that it is a relatively simple theory, but it is still able

to capture many of the qualitative features the displayed by polymer solutions. So, we

will for study this theory which is known as Flory Huggins theory. So, we will study the

thermodynamic  behavior  of  polymer  solutions  within  the  framework  of  this  Flory

Huggins theory.

And in this lecture we will only partly be covering this theory and in the next lecture we

will  we  will  complete  the  discussion  on  this  theory.  So,  in  today’s  lecture  we  will

specifically  focus  on  using  the  Flory  Huggins  theory  to  determine  what  is  called  a

combinatorial  term  and  calculation  of  certain  quantities,  as  well  as  calculation  of  a

particular component of the entropy change of mixing. So, we have a few symbols here

which might not be very clear right now, but by the time this lectures I hope that all the

symbols and the meanings will be clear.
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So, before we move on let us just briefly look at the nomenclature that is relevant for

today’s lecture. So many of these symbols we have already discussed in the very first

lecture on in introduction to polymers, there is some new symbols specifically symbols

related to a thermodynamic quantities. So, symbol for enthalpy the standard symbol is h;

so H i will represent of a particular component i; similarly, S i for entropy of i, G i for the

Gibbs free energy of component i in any mixture.

Further we are talking polymer solutions which are actually mixtures. So, we will be

focusing on quantities like enthalpy change of mixing which will be represented by delta

H m delta S m will represent the entropy change of mixing. And delta G m will represent

the Gibbs energy free energy change of mixing. T of course, will stand for temperature.

This symbol x will be using this symbol to denote the number of segments in a given

polymer chain or polymer molecule.

So, again when we discuss the Flory Huggins theory the what is meant by a segment of a

polymer  molecule  that  will  become  clear.  Apart  from  that  the  Avogadro  constant

Boltzmann constant, Universal gas constant these are the standard constant that we will

come across during our discussion today.
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So, let us begin. Before moving on to studying the behavior of polymer solutions let us

begin by the simplest case which is that of an ideal solution. So, let us see how one can

basically derive the basic equations for change in entropy and Gibbs free energy change

of mixing for ideal solutions. So an ideal solution; and the definition of ideal solution can

be a solution where the components being mixed are or of the same size; pretty much the

same size and the interactions are also almost identical.

So, what we mean by identical interactions is that the interaction. Let us consider for

example, a binary solution or a binary mixture where we have two components. Let us

say the component 1 is the solvent component, two is the solute and then we mix the two

to form the solution. Then in an ideal solution the interaction between molecules of type

one will be similar to the interactions between molecules of type b or type 2. And the

cross interactions between molecule of type 1 and molecule of type 2 that also will be

similar to the like interactions between 1 1 or 2 2 molecules. So, all the interactions will

have similar strength. So, an ideal solution basically again is where the interactions are

similar and sizes are also similar.

So, from thermodynamic point of view: an ideal solution is defined by a solution whose

formation  actually  does not  lead to  a change in change in enthalpy and a change in

volume as  well.  So,  both  the  enthalpy  change of  mixing  and the  volume change of

mixing denoted by delta V m here. So, both of these quantities are actually 0 for an ideal



solution.  So, since the sizes are identical  when the components are mixed then sizes

being identical and the there being no difference in interactions, their volume also does

not change. And since the interactions are similar the enthalpy also does not change upon

mixing. 

So, the definition of Gibbs energy change of mixing is just delta H of mixing minus T

times delta S of mixing that is the standard definition an of any Gibbs energy change or

Gibbs free energy change. So, for ideal solution since the since the enthalpy change of

mixing is 0. The Gibbs energy change can simply be expressed in terms of the entropy

change of mixing multiplied  by minus T. So now, this  Gibbs free energy change of

mixing is an important  quantity and the thermodynamics of ideal  solution as well as

polymer solution in both the cases what we will try to do is come up with an expression

for this Gibbs free energy change of mixing. Because, once we have an expression for

this many other quantities like the chemical potential  or the activity coefficients such

quantities can be determined starting from here. So, it is an important quantity and our

aim here is to establish relations for the Gibbs free energy change of mixing.

So, since for an ideal solution Gibbs free energy change of mixing is directly related to

the entropy change of mixing. Here what we will do is first try to establish an expression

for the entropy change of mixing. So, entropy change of mixing is basically defined as

the change in entropy due to the formation of the mixture.  So,  for an ideal  solution

although the enthalpy change of mixing volume change of mixing are 0 the entropy

change of mixing as we will see is not actually 0. 

So, entropy change of mixing is defined as the difference between the entropy of the

mixture that is formed and the respective entropies of the pure species 1 and 2 which we

are mixed to form the solution. So, before we go ahead what the for today’s discussion

what we need is a what is called a statistical mechanical definition of entropy. So, this

definition of entropy is provided by Boltzmann and that is why this expression in the

formula for entropy is refer to as the Boltzmann entropy formula.

So,  a  what  this  expression  states  is  that  the  entropy of  a  collection  of  molecules  is

basically Boltzmann constant multiplied by the natural log of a quantity omega. And this

omega is nothing but the different number of distinguishable equal energy states or equal

energy arrangements that are possible for this given collection of molecules. So, if we



have a set of molecules or collection of molecules the number of different ways in which

we can arrange these molecules, with each arrangement being distinguishable from the

other,  but  having  the  same  energy;  so  now  the  number  of  such  different  states  or

arrangements that is referred to as this quantity omega.

So this, with this Boltzmann entropy expression now what we will do is write down this

the entropy of the individual components 1 and 2 as well as the entropy of the mixture in

terms of this Boltzmann entropy formula. So, the S 1 will be just k B times l n omega 1,

S 2 will be k B times l n omega 2, and S 12 will be k B times l n omega 12. Where, the

omegas are again the respective distinguishable arrangements that are possible in the

different cases that we have here, for the pure components and the mixture.
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So, again the formula for entropy changes S 12 minus S 1 plus S 2. So, if we substitute

the expressions for an these entropy is using the Boltzmann formula, then we get the

following expression which again can be simplified to get an expression like this: k B

multiplied by natural log of the ratio of omega 12 by omega 1 multiplied by omega 2. So,

with this expression in place now all we need to do is come up with expressions for these

three quantities: omega 1 omega 2 and omega 12. So, if we have expression for these

three quantities those can be substituted here and one can get a expression for the entropy

change of mixing for ideal solution.



So, to do that let us first consider a model for this ideal solution behavior that we are

discussing. So, the model that we will be using for further derivation basically is what is

called  a  Lattice  model.  And  here  what  is  assumed  is  that  for  a  whether  its  pure

component or a mixture all the molecules basically occupy distinct sites on a on a lattice.

So, for such a kind of a model omega 1 basically will be the number of different ways in

which N 1 indistinguishable particles from molecules of the solvent can be placed on N 1

lattice sites or lattice cells. Similarly omega 2 will be the number of ways in which the N

2 indistinguishable molecules of the solute can be placed on the N 2 different lattice

sites.

So, in the our discussion we will represent the solvent molecules by this solid or in circle

and the solute molecules by this empty black circle. And we say indistinguishable in both

the cases that is the word which has been highlighted here and. So, we say that both in

both the cases and molecules are indistinguishable, because the molecules in both the

cases correspond to those of pure components. So, for pure components all the different

molecules will pretty much be indistinguishable from each other.

So, in both these cases the N 1 molecules in the first case of the solvent and the N 2

molecules in the second case for the solute they are indistinguishable. Now if we mix a N

1  molecules  of  the  solvent  N  2  molecules  of  the  solute  then  will  form  a  mixture

containing N 1 plus N 2 molecules. And the lattice model that we are employing or will

be employing basically requires that this N 1 plus N 2 molecules of the mixture of the

solution; I will placed on N 1 plus N 2 lattice cells or lattice sites.

So, representation of a typical lattice of the mixture or solution that is formed, that is

shown here. So, here we see that the molecules of the solvent that is solid or in circles

and the molecules are solute are kind of randomly distributed over the different lattice

cells. And for simplicity we are showing a two dimensional lattice in reality of course as

lattice will be three dimensional. So, here we are showing as square lattice the actual

lattice can be cubic in three dimensions or it can have any other shape as well.

So now, that we have defined our lattice in this way, the two things that we can directly

notice is that the omega 1 and omega 2 will be one each. The reason for that is that

omega 1 omega 2 correspond to the number of distinguishable arrangements of the pure

solvent molecules and the pure solute molecules, but all the pure solvent molecules are



identical similarly all this a pure solute molecules are also identical. So, if we want to

place N 1 identical solvent molecules on N 1 cells of any kind of lattice then there is only

one way to do it. If we try to let say swap two different molecules here, then we will not

end up with an arrangement that is distinguishable from the previous one.

So, essentially there is only one way to place a N 1 identical molecules of solvent on N 1

cells of a lattice. Similarly for solute also you have N 2 identical molecules or solute so

on a lattice containing N 2 cells there is only one way in which they can be placed. So,

again the number of arrangement is one and. So, omega 1 and omega 2 are both unity.

But for the case of mixture: the case of mixture actually the situation is different, because

now the all the particles are not actually identical; in the solution of the mixture that here

we  have  both  solvent  molecules,  and  the  solute  molecules  present  as  shown in  the

representative lattice here.  And the there are  actually  because there are two different

types of molecules now there are many possible ways of arranging these molecules on

this lattice cells. So, the omega 12 in this case is actually not 1, but it is given by this

kind of an expression.

So, omega 12 for this case is given by N 1 plus N 2 factorial divided by N 1 factorial

times N 2 factorial. So, the numerator here in this expression, the numerator here N 1

plus N 2 factorial basically provides a different number of ways in which one can place

N 1 plus N 2 of these molecules on N 1 pus N 2 number of cells in our lattice.

But if we if we consider only the numerator we are actually over counting the number of

distinguishable arrangements, because even for a mixture of or a binary mixture placed

on the  lattice  here  there  are  many arrangements.  Out  of  the  N 1 plus  N 2 factorial

arrangements  that  we have counted  there  many arrangements  which  will  actually  be

duplications or in other sense which will be indistinguishable from each other.

So, this the denominator contains N 1 factorial and N 2 factorial these two terms; these

two terms basically take care of the fact that when if we consider just N 1 plus N 2

factorial  arrangements  we  are  over  counting  and  we  are  actually  counting  many

arrangements which are actually identical. So, that scaled by these two quantities and we

get the overall number of arrangements in the case of mixture.



So, to further illustrate this point let us consider again the lattice that shown here. And

here, let us say if we swap any two molecules of the same type. So, let us say we swaped

two molecules of the solvent these two. So, after swapping we see that the arrangement

of the overall lattice remains unchanged. So, because we have N 1 identical molecules of

the solvent on the lattice these N 1 factorial terms come into play here, because these N 1

solvent molecules their internal swapping and rearrangement basically will not lead to

any change in the overall arrangements

So this, the N 1 plus N 2 factorial this term has to be divided by N 1 factorial. Similarly

if we consider any two solute molecules and let us say we swap them, so in this case we

have swap these two molecules.  And again we see that swapping any two randomly

chosen solute molecules also does not create any new arrangement. So, to account for

such identical again cases of resulting from the swapping of different solute molecules

this N 2 factorial term also has to be considered here.

So, overall the omega 12 term is represented by a ratio of N 1 plus N 2 factorial and N 1

factorial times N 2 factorial. So, if we now substitute all the expressions for omega 1 to

omega 1 and omega 2 in the expression for entropy change of mixing then we end up

with in this expression here. So, we see that the expression that we have obtained here

contains factorials of different terms.

So, next what we will see is that in the case of N 1 plus N 2 factorial or N 1 factorial n to

factorial these terms there is an approximation that can be made provided the numbers N

1 and N 2 are quite large. So, this approximation is referred to a Stirling approximation,

its valid for cases where N is large. So, what it states is that the natural log of N factorial

is approximately equal to N times ln N minus N provided N is large.
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So, in a typical scenario for a given solution when we are mixing two substances; the

number of molecules usually will  be very large. So, N 1 N 2 are large quantities so

typically the Stirling’s approximation will be valid. So now, let us apply the stirlings

approximation to the entropy change of mixing that we have derived just now. So, we

can apply Stirling’s approximation to all these terms.

So, we have three terms containing natural log of factorials. And in all these terms the

quantities N 1 N 2 and N 1 plus N 2 are quite large, so a sterling approximation can be

applied to all of them, and if we do that then the expression for the entropy change of

mixing gets simplified like this. And now here we see that this minus N 1 term will

cancel this plus N 1 here, this plus N 2 will cancel the this minus N 2 again will cancel

this plus N 2 here. So, canceling these terms and again simplifying and rearranging. In

the next step we can say that the entropy change of mixing can be represented by this

equation here.

Now, this term here again we can split into two terms say its N 1 plus N 2 multiplied by

ln N 1 plus N 2. So, we can write it as N 1 ln N 1 plus N 2 plus N 2 ln N 1 plus N 2. And

we can split this into two terms and then combine respective terms with the these two

terms. So, splitting in splitting can be done in this fashion. So, we have one term here

and term here, and this term will be combined with this and similarly this term we can

combine with this, because in both these cases N 1 is common here in both these terms N



2 is common. So, we combine and finally end up with this kind of an expression for the

entropy change of mixing. So, we see that inside the log we get these ratio N 1 by N 1

plus N 2 and N 2 by N 1 plus N 2. And as we know these ratios basically are nothing but

the respective mole fractions.

So, these ratios can be expressed as the respective mole fraction fractions X 1 and X 2.

And the expression for entropy change of mixing as you see has simplified to negative a

Boltzmann constant multiplied by N 1 ln X 1 plus N 2 ln X 2.
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And, now if we want to change from the number of molecules  N 1 and N 2 to the

number of moles small n 1 and small  n 2. Then the factor of Avogadro number will

appear. So, the number of molecules N 1 will  just be equal to the Avogadro number

multiplied by number of moles N 1 small n 1. Similarly the number of molecules capital

N 2 will be equal to Avogadro number times number of moles small n 2. So,. So,.

So, now, the these two constants Boltzmann constant Avogadro constant they can be

combined together and their product is nothing but the universal gas constant. So finally,

upon simplification and combining constants the expression for the entropy change of

mixing that we get is that delta S of mixing is equal to minus R number of moles n 1

times ln X 1 plus number of moles of solute n 2 times ln X 2.



So, this is the entropy change of mixing for an ideal solution and if we just multiply this

entropy change of mixing by minus T we will get the Gibbs energy change of mixing the

expression for that which is nothing but RT and whenever the next one plus n 2 and X 2.

So,  this  is  a  standard  thermodynamic  result  which  one  can  obtain  from  classical

thermodynamics as well, but here what we have used is to use the statistical definition of

entropy, and the concept of a lattice model to perform this derivation because the same

will be used in the case of polymer solution as well.

So, we see that this mole fractions X 1 and X 2 will of course, be less than 1. So, since

these are less than one their natural logs ln of X 1 ln X 2 both will be negative or less

than 0. So, what that implies is that the, entropy change of mixing will always be positive

for ideal solutions and the Gibbs energy change of mixing will always be negative for

ideal  solutions.  So,  with  that  introduction  to  ideal  solution  thermodynamics  of  ideal

solution behavior let us now move on to the case of polymer solutions and see how the

scenario is different there. 
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So, let us consider the thermodynamics of polymer solutions. So, in this case let us say

that we have again; as we did for the case of ideal solutions we will adopt what is called

a lattice model, because the theory that we will be discussing one for polymer solution

which is the Flory Huggins theory that is based on the lattice model of this polymer

solution.



So, here let us first consider component 1 which is a solvent and let us say we have N 1

molecules of this pure solvent, and that occupies a certain lattice. So, each molecule of

the solvent occupy individual cells in the 2D square lattice; that we have shown here, but

as mentioned in the actual case the will have a 3D lattice. And here we have shown a

square lattice where was 3D version will be a cubic lattice, but Flory Huggins theory is

actually not just limited to consideration of; not just limited to cubic lattice other kinds of

lattice geometries also are fine.

So, let us say that component solvent molecules N 1 molecules occupy N 1 lattice cells.

And next let us say that we add polymer molecules to this solvent to form our solution.

So, for the polymer molecules;  the polymer molecules  here are represented by these

orange  circles  connected  through  these  black  bars.  Individual  units  of  the  polymer

molecules are connected to each other through the bonds. So, the component two which

is the solute in our case is the polymer and that also is represented on a lattice in this

Flory Huggins against theory.

So, as a representation here we have shown only two polymer molecules, but let us say

for the general case for the development of this theory we have a total of N 2 number of

polymer molecules. So, one polymer molecules here is basically one chain of polymer,

so N 2 polymer molecules means N 2 chains of polymer. And another detail is that, for

each polymer molecule or for each polymer chain we have x segments. So, the orange

circles that we have here these basically are referred to as segments in Flory Huggins

theory. 

So, for in this representative example we have a two polymer chains each having eight

segments, but for the general case for the development of the theory we will consider N 2

polymer molecules and with each polymer molecule having x number of segments. So, if

we combine the polymer with the solvent the what the theory assumes is that the solution

that forms is also, can also be described on a lattice. And the nature of the type of the

lattice for the solvent molecules and the pure polymer molecules as well as a polymer

solution, the type of lattice is identical or the same for all the three cases.

So, that is one of the assumptions of this Flory Huggins theory, which need not be very

realistic, because strictly speaking the molecular arrangement in polymer pure polymer

or impure solvent need not follow a similar kind of lattice structure. So, in any case that



is one of the assumptions. And so mixing the polymer N 2 molecules of polymers and N

1 molecules of the solvent gives us our polymer solution having N 1 plus N 2 molecules.

So, in the case of solvent we have N 1 molecules occupying N 1 lattice cells. In the case

of polymer we have N 2 molecules occupying x times N 2 lattice cells, because each

molecule basically contains x segments. In the case of a polymer each segment occupies

one lattice cell. So, we have x times N 2 cells which are being occupied by x times N 2

polymer segments.

So, another assumption this Flory Huggins theory is that the volume of a given polymer

segment and the volume of a solvent molecule they are identical. So, volume of polymer

segment and a volume of a solvent molecules shown here these are assumed to be same

in this Flory Huggins theory. So, when we combine them the polymer solution that forms

it can will contain N 1 molecules of solvent N 2 molecules of the polymer. But since,

each polymer molecule occupies x times or x number of cells because it has x number of

segments, so a total number of lattice cells in the polymer solution that sum. So, the total

number of lattice cells that will be occupied is N 1 plus x N 2; where N 1 lattices are

occupied by the solvent molecules and x times N 2 lattice cells  are occupied by the

different polymer segments that we have.

So, with this kind of description will now proceed to find out how the thermodynamic

properties or property changes can be obtained for such cases. So,. So, if we again go

back to the quantities omega 1 omega 2 and omega 12. So, if we look at these quantities

omega 12 as well. So, omega 1 is pure solvent where we have N 1 molecules placed on

N 1 cells of a lattice. So, since all the molecules are identical there is only one way or

one arrangement here, so omega 1 again is 1.

But in the case of polymer molecules, although all the polymer molecules again in this

theory are also assume to be identical of the same length, but the but their connectivity

actually leads to a situation where omega 2 actually is not unit its, it has will we have

will have a value much higher than 1. So, all the polymer molecules are identical since

the  segments  are  connected  in  a  given  polymer  chain  that  actually  leads  to  the  a

possibility of multiple distinguishable arrangements, and omega 2 as we will see will be

much larger than 1.



Similarly when we have polymer solution of course omega 12 will be much larger than

1.  But,  here  again  I  mean  apart  from the  fact  that  we  have  two  different  types  of

molecules again the polymer chains are also this being connected internally, they can

adopt  different  confirmations  and  that  will  further  add  to  the  different  number  of

distinguishable arrangements. So, both omega 2 and omega 12 need to be calculated and

that is the essence of this Flory Huggins theory how the approach used to calculate these

two quantities and from there of course the entropy change of mixing can be calculated.

So, as we discussed the long chain nature of polymer molecule as well as the fact that the

segments  are  connected  to  each other  that  leads  to  multiple  different  conformational

possibilities for the polymers. And hence the omega 2 and omega 12 are large.
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So, again let us just consider a illustrative example for the same thing. So, let us focus

just at the pure polymer case, the lattice containing pure polymer molecules. So, in this

representative case this, what is shown here is one possible confirmation that the two

polymer  molecules  can  have.  Similarly  the  two  polymer  molecules  can  also  adopt

different conformation that is shown here or the conformation adopted can change to

something like this. 

So,  these  are  three  just  three  sample  or  representative  sample  confirmations  of  the

polymer that is shown there are many other confirmations that are possible. And, due to

the fact that multiple confirmations can be adopted by the polymer chains the number of



distinguishable arrangements of these chains on the lattice is also quite large. So, also

that is why omega 2 will be much larger than 1. And similarly for the polymer solution

also similar case is there. So, omega 12 also will be much larger than 1.
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So before we go ahead, in today’s lecture we will focus on only a one part of the Flory

Huggins theory and that part deals with the case where we are considering the mixing of

the solvent with the polymer as a thermal  mixing. So, a thermal  mixing is  a mixing

where the enthalpy change of mixing is 0. So, what we are assuming is that in a thermal

mixing the interactions again are similar to each other or the interactions the difference in

interactions  between  polymer-solvent  and  polymer-polymer  or  solvent-solvent;  these

different interactions are not that important and ultimately the enthalpy of mixing is 0. 

So, this is something that not, that is not very realistic, but to develop this theory as a

starting point we will consider the case of a thermal mixing of our polymer solution,

where the enthalpy changes even the complexity due to the interactions is not accounted

for. But, what we will do is in the next lecture we will incorporate some other terms

which account for the interaction present and take into the consideration the fact that

enthalpy change of mixing actually is not 0.

So, in today’s discussion all that we are doing is trying to come up with an expression for

the entropy change of mixing from what is called a purely combinatorial perspective, we

are not taking into consideration any difference in interactions.  So,  so the discussion



today is limited to the case of our assumption of a thermal mixing where the delta g of

mixing is 0 in the next lecture we will  relax our assumption and add extra terms to

develop the complete theory.

So, let us look at the polymer solution as our system which again is a model where all the

solvent molecules and polymer molecules are placed on a lattice. So, in this system we

have as we discussed we have N 1 plus N 2 molecules,  we have.  For each polymer

molecule x segments are there, so a total of x times N 2 polymer segments are there. So,

these are the individual polymer segments and the total of x times N 2 polymer segments

are there. Total number of lattice cells is N 1 plus x N 2. So, N 1 is number of molecules

of solvent and x times N 2 is a number of molecules of polymers segment, and one cell is

occupied either by a solvent molecule or by a polymer segment. 

Now, our aim is to calculate an expression or develop an expression for omega 12. So,

here will what we will do is to develop an expression; we will consider that the lattices

initially empty and it is filled by first adding the polymer molecules to the lattice one by

one, and then at the end adding all the solvent molecules to the remaining empty sites.

So, as we are adding the polymer molecules one by one will also try to come up with an

expression for the different possible arrangements that the polymer molecules can adopt

and using that will try to come up with an expression for omega 12. So, in for this step

by the addition of polymer molecules, let us say instead initially we consider lattice to be

completely empty and we are trying to add the first polymer molecule to this lattice. So,

again  for  each polymer  molecule  that  that  is  being  added the  addition  will  be  done

segment by segment.

So, the first segment of the first polymer molecule when we try to add that the entire

lattice is empty in the entire lattice is available  for adding this first  segment  of first

polymer molecule.  So, if  we have a N 1 plus x N 2 times a number of lattice cells

available, so those many possible possibilities are there for placing the first segment of

the first polymer molecule. Now the second next segment of this first polymer molecule

that cannot be arbitrarily placed anywhere, because it has to be connected to the first

segment that was placed on the lattice. So, due to the connectivity of polymer chain we

see that already this some restriction.



So, the next segment can only be placed in one of the adjacent or neighboring cells of the

first segment that has been placed. So, the after placing the first segment of this first

polymer molecule the remaining x minus 1 segment, so to relax segments are there. So,

the remaining x minus 1 segments, they can only be placed in empty cells which are

adjacent to the previously added segments; because they have to be connected to the

previously added segment, so for the chain connectivity to be there.

Next, for each segment of the chain the individual number of possible arrangements that

are there that is counted or calculated. So, the individual number of possible placements

for  each  segment  is  calculated.  And  for  a  polymer  chain  the  number  of  possible

confirmations that that can be there for a given polymer chain that will represented by

represent  by  this  symbol  nu  in  our  discussion  and that  is  calculated  was  simply  by

multiplying together all  the different possible placements of all  the segments that we

have considered for that chain.

So, just a continuous multiplication of the different possible placements or all this chain

segments  of  a  given  chain,  when  they  are  multiplied  together  that  will  give  us  the

number of possible  confirmations  that  a given chain will  adopt.  And as the polymer

molecules are added successively the different number of possible confirmations each

polymer molecule that is being added; the how many confirmations it can adopt that is

calculated.

And finally, when all  the polymer molecules  have been added and that  the different

possible arrangements are there they have been calculated the remaining empty cells will

be N 1, and the remaining N 1 solvent molecules will be added to those N 1 cells. So,

again the solvent molecules are indistinguishable. So, there is only one way to add the N

1  solvent  molecules  to  the  remaining  empty  N  1  cells  of  the  lattice,  so  only  one

distinguishable.  So,  a  spatial  arrangement  for  this  solvent  molecule  addition  will  be

there, because all the solvent molecules are identical.
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Next, let us try to calculate this quantity omega 12, that is our aim here; to calculate

omega 12 as well as omega 2 and then to calculate the entropy change of mixing. So, this

omega 12 based on our previous discussion if since we have a total of N 2 number of

polymer chains,  the omega 12 actually  can be simply written in this form 1 by N 2

factorial. And this symbol here, this symbol here basically is the symbol for a continuous

product. So, just like capital sigma is a symbol for summation this capital pi is symbols

for continuous product, so what this means is that we are multiplying nu 1 with nu 2 with

nu 3 and so on with nu N 2.

So, all these nu’s which basically correspond to the different number of confirmations of

the individual polymer chains. All these nu’s are multiplied together in this term here and

then it is divided by N 2 factorial, because at the end all the N 2 polymer molecules in

themselves  are  identical.  So,  we are  not  considering  the  polymer  molecules  to  have

different length or in a different chemical identity all the polymer molecules have the

same number of segments and they are identical. So, to account for the over counting due

to the fact that polymer molecules themselves are identical this factor N 2 is used in a

denominator here.

Next, let us focus on this quantity nu. So, in this expression, in this continuous product

here that we have here this zeta here; this zeta that basically is a kind of an index for this

product. So, zeta basically runs to all the different polymer chains that we have in our



system. So, zeta equal to 1 corresponds to the first polymer chain that is added zeta equal

to 2 corresponds to a second polymer chain that we are adding to the lattice and so on all

the way up to N 2, because we have N 2 number of polymer chains. So, this will run up

to N 2. Now the expression for nu zeta that is important,  because once we have that

expression that week that we can back substitute here and then try to simplify and come

up in the expression for omega.

So, for expression for zeta  or nu zeta;  basically  a different  number of confirmations

possible for the chain number zeta that is being added to our lattice. So, that is given by

the  expression  that  we  have  shown  here,  we  here  at  this  quantity  z  is  called  the

coordination  number  of  the  lattice.  So,  whatever  lattice  we  are  considering  we  are

showing us planar square lattice, but it is irrespective of the type of lattice the only detail

of  the  lattice  that  is  important  that  comes  into  the  theory  at  least  at  this  point  is  a

coordination number of the lattice. So, even if there we have some other lattice the if we

know the coordination number of the lattice then we can just introduce that quantity as z

in these expressions. And we will see that later on the in the expression for the entropy

change  of  mixing  this  coordination  number  does  not  feature  at  all.  So,  in  the  final

expression becomes independent of the type of lattice being considered.

So here, actually we have three terms and each term has some physical meaning. So, the

first term basically corresponds to the number of ways in which the first segment that

you are adding of this chain number zeta, that the number of in ways in which the first

segment can be placed in the lattice; that is this term. This second term is corresponds to

the number of ways in which; the second segment can be placed of this chain number

zeta in the lattice. And this actually is a product of actually x minus 2 terms you see this

power raised to  the power x minus 2.  So,  they are x minus 2 terms here and these

correspond to the remaining addition of the remaining x minus 2 segments of the chain

number zeta.

So, we will not go into the detail of the these terms. The one thing to point out here is

that in the derivation of this expression here an assumption is made in the Flory Huggins

theory is called the mean field assumption. So, what that assumption states is that: when

a  given  segment  is  added  in  a  lattice  then  it  is  assumed  that  the  previously  added

segments are homogeneous geneously distributed throughout their lattice. So, if a given

in the polymer segment is being added though all the other segments that have already



been added to the lattice, they are assumed to be uniformly distributed across a lattice.

That  is  the  mean  field  a  assumption  or  mean  field  approximation  of  Flory  Huggins

theory. So, using mean field approximation, actually this the second term in this third

term can be written.

So, this mean field approximation which says that the segment distribution or polymer

segments distribution is uniform throughout the polymer solution or the lattice that kind

of a approximation is for a concentration in a concentrated solution that is a reasonable

approximation, because you will have polymer, chains, and segments distributed almost

throughout the solution. But for a dilute solution that approximation is severely limiting

as we will notice or note later on. So, this nu zeta the number of confirmation of this zeta

is chain that the expression that we have here this expression can be simplified and the

final expression that we obtain is shown here.
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Next if we substitute the expression for nu zeta from the previous slide here. So, in the

nu zeta that we had from the previous slide is a simplified version. We substitute that in

the expression for omega 12 the resulting expression that we get is shown here. So, these

expressions  might  seem  a  bit  long,  but  we  will  see  that  later  on  after  appropriate

mathematical manipulations all the final expression that we will get will be relatively

simple. Mathematically, it will be as simple as the expression that we get forgot was an

ideal solution although the form will be slightly different.



So, now again from this expression here the these terms can be taken out, because these

terms do not depend on the zeta over which the product is being taken. So, these terms

can be taken outside and if we take their terms outside power of N 2 comes over all these

terms, because this is a these terms are actually getting multiplied N 2 times if we expand

this product. So, when we take them out this term will get raised to the power N 2 here.

And this will remain inside the product, because we have a zeta containing term here.
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So, in any case said this is the expression that we get. And again now if we consider the

case of pure polymer, so apart from omega 12 the whose expression we have obtained

the expression for omega 2 that is the number of possible arrangements  for the pure

polymer chains on the lattice that is also something that we need to calculate, because

that is its not trivial to find that out.

So but, since we have already obtained an expression for omega 12 get an expression for

omega 2 which is that for a pure polymer that becomes simple, because the similar kind

of a similar kind of a approach can be adopted as was done for this polymer solution case

where the polymer molecules are being added one by one. And just once the polymer

molecules  are  being  added  successively  the  different  arrangements  possible  can  be

counted.

So, similar approach can be used the only difference here is that; now the total x N 2

polymer segments that we have they are getting added to only x N 2 lattice cells for the



case of pure polymer. In the case of polymer solution this x N 2 polymer segments will

being added to N 1 plus x N 2 lattice cells, whereas now for pure polymer they are

getting added to this x N 2 lattice cells. So, in the x this expression here just replacing

this term N where this N is nothing but N 1 plus x N 2. So, if we replace this N by x N 2

then we can just obtain the an expression for omega 2. So, the expression for omega 2

that applies for a pure for the pure polymer is this.
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And, again in this expression we can make certain simplifications. So, if we start from

that expression and we rearrange the terms a bit. So, we take these terms outside take this

N 2 in here and this term this terms we have taken outside. So, we the bracketed term

that we have created just by rearranging the some of the other terms. So, the bracketed

term basically can be further simplified. So, the bracketed term is again shown here or

written  here.  So,  it  can  be simplified  to  this  form ok.  And again  this  is  just  simple

mathematical manipulations over you can just work through it and verify that for this

simplification will lead to this expression.
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And the expression that we have obtained there, that expression which is shown here;

that  expression can again be further  simplified if  we take natural  log apply sterlings

approximation and do some many mathematical manipulations. So, it can be shown that

this term here is equal to this quantity x by e to the power x minus 1 to the power whole

to the power N 2.

So, now that we have simplified this term the omega 2 which was a product of this term

as well as this bracketed term. So, this bracketed term we have simplified in this form.

So  finally,  the  expression  for  omega  2  becomes  what  is  shown here.  So,  we  get  a

relatively simple simpler expression now.
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So, for omega 2 as we discussed we get simplified expression like this. Omega 12 we are

we are not going to the detail mathematical manipulations here, but for omega 12 it can

be  shown  again  using  some  mathematical  manipulations  and  application  of  again

Stirling’s approximation and so on. It can be shown that omega 12 is basically given by

as can be given as a product of omega 2 and this bracketed quantity. Omega 1 which is

the for the pure solvent that is that is again just one because for a pure solvent we have N

1 identical solvent molecules which have to be placed on N 1 lattice cells, so there is

only one possible arrangement. So, omega 1 is just one.

So, now for the combinatorial entropy term; here the from the definition we have this

delta S combinatorial  S Boltzmann constant times natural log of this ratio and if, we

substitute  the  expression  for  omega  12  as  well  as  omega  2  n  omega  1  from these

expressions if you substitute all of these here. So, if you substitute all these three here

then we end up with this equation for our combinatorial entropy change.

So,. So, if we again take the natural log then this is this expression that we have this can

be further simplified as shown here. And again some just taking the reciprocal of these

terms inside the natural log. So, we are inverting these terms. So, here you see it is N 1

by N and x N 2 by and instead of N by N 1 and N by x N 2. So, so if we invert these then

basically a minus sign will come outside. So, the expression for delta S combinatorial

can be written like this.



Now these two quantities, these this ratio as well as this ratio these ratios if we represent

by phi  1  and phi  2  then  the expression  for  combinatorial  entropy change of  mixing

according to Flory Huggins theory will be given by this expression. And again if we wish

to change from number of molecules to number of moles then the Boltzmann constant

will change to the universal gas constant.

So, this is the expression for combinatorial entropy according to Flory Huggins theory.

Here the phi 1 and phi 2 if you notice carefully the phi 1 and phi 2 which correspond to

this ratio N 1 by N N x N 2 by N these two are basically the volume fraction of the

solvent phi.  So, phi 1 is  the volume fraction of the solvent  and phi 2 is the volume

fraction of the polymer in the solution. So, phi 1 is defined as N 1 by N which is N 1 by

N 1 plus x N 2 phi 2 is x N 2 by N. So, if we if you we recall the lattice model for our

polymer solution there we have N 1 plus x N 2 total  number of cells  N 1 cells  are

occupied by solvent molecules.

So, the volume fraction of solvent in that kind of an arrangement will just be N 1 by N 1

plus x N 2. So, that is what this phi 1 is. Similarly for the polymer the polymer molecules

actually occupy x times N 2 cells, because each we have N 2 polymer molecules and

each polymer molecule occupies x number of cells because it contains x segments. So,

there the volume fraction will simply be the number of cells occupied by total number of

cells which is again x N 2 divided by N 1 plus x N 2. So, phi 1 and phi 2 as mentioned

are the respective volume fraction of the solvent and the volume fraction of the solute or

the polymer.

So, we will conclude or stop this lecture here, where we have developed an expression

for the combinatorial entropy change of mixing which purely depends on the different

ways in which the polymer chain can arrange itself for the different conformation the

polymer chain can adopt leading to entropy change of mixing. Apart from this here in

this discussion we have completely ignored any interactions or difference in interactions.

We said that the for this part we are assuming a thermal mixing.

But, in the next lecture what we will do is extend this theory to incorporate the effect of

different interaction between the polymer molecules and the solvent molecules. And after

incorporation of that effect of interactions the final expression that will obtain for the



delta g or the Gibbs energy change of mixing that will be the that will give us the Flory

Huggins equation for the Gibbs energy change of mixing. 


