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Lecture - 03
Ideal and Real Chains

In today’s lecture will be discussing Ideal as well as Real Chains. So, in the previous

lecture we discussed the ideal chain confirmations in detail and the property that defined

in ideal chain was that distant regions of that same chain do not interact with each other.

So, we will see that will carry on the discussion on ideal chain a bit further today and

then we will also briefly talk about the behavior of real chains where in fact, the distant

regions  of  the  same chain  actually  can  interact  with  each  other  and due  to  that  the

confirmation and the behavior of real chains are seen to be slightly different from that of

ideal chains. So, these are the areas that we will be covering in the lecture today.

(Refer Slide Time: 01:19)

So, before we begin we will  just go through the over an overview of the content of

today’s lecture. So, we will be just summarizing the different models that we covered in

the last lecture of ideal chains and then we will be talking the distribution of the end to

end distance. So, in the last lecture, we discussed the fact that polymer chains can have

many different confirmations and the end-to-end distance actually is not a fixed quantity,



but it can take many values depending on the different confirmations that the polymer

chain is adopting.

So, we discussed this aspect in from a qualitative point of view. Today, we will look at

the mathematical function that can be used to describe this distribution of end-to-end

distance in a more quantitative way. So, after that we will briefly look at the topic of

radius  of  gyration  of  poly  machines  and  this  quantity  radius  of  gyration  actually  is

another  measure of a size of poly machine and it  is  actually  in many cases a better

measure than the end-to-end distance because it is a, it can be defined for all the different

kinds of polymer chain architectures that are available.

So, after discussing radius of gyration, we will also look at next behavior of real chains

and in particular we will be discussing real chains from the point of view of excluded

volume interactions and the final topic that we will be covering is that of behavior of

qualitatively covering, is the behavior of this polymer chains in solution and in particular

the concept of theta condition and theta solvent. So, to summarize in the last lecture we

covered 4 models of ideal polymer chains.

(Refer Slide Time: 03:23)

So, the simplest model was the freely jointed chain model where the bond length was

fixed, but the bond angle and the torsion angle these were allowed to have any free

value. So, this was the most flexible model among the different models that we studied

the simplest one as well, but of course, the least realistic one the ah. We also studied the



freely rotating model where the bond length as well as a bond angles are fixed. So, in

most of the real polymers the bond angle also have fixed values. So, this is more realistic

model, but here again the bond the torsion angles were allowed to have any value. So, in

that sense from that point of view this model is also highly flexible, because the torsion

angle could adopt any values and we, we know that it is the different torsion angle values

that provides polymer chains or the polymer backbone its flexibility.

We also covered the Hindered rotation model in the last lecture where the bond length

and bond angles were fixed, but the bond the torsion angle was not fixed free in this case,

the  torsion  angle  was  allowed  to  take  values  based  on  a  certain  potential.  So,  the

probability  of  a,  the  occurrence  of  a  certain  torsion  angle  was  proportional  to  a

Boltzmann factor, which was an exponential function based on a certain kind of potential

energy related to the torsion angles.

So, essentially the rotation in this model is Hindered due to the presence of a certain

potential and only torsion angles, where this potential energy is favorable torsion angles

which correspond to a low energy confirmations  those are  the ones  which are more

favored in this model. And we also finally, discussed very briefly the rotational isomeric

state model, which is the most sophisticated models amongst ones that we discussed and

which is widely used for predicting confirmations of polymer chains. So, in this model,

the bond length bond angles again are fixed, the torsion angles cannot take any values

any free value, the torsion angle can only adopt discrete certain discrete values in this

case for this model.

So, as an example for polymer, like polyethylene they are typically three torsion angles

which correspond to minimum energy confirmations, and usually they are referred to as

trans  and  gauche  plus  gauche  minus  as  discussed  in  the  previous  lecture.  So,  this

rotational  isomeric  state  model  for  such  a  polymer  will  basically  allow  only  these

torsional states and the entire polymer chain backbone or the conformation of polymer

chain back one that can be represented simply as a sequence of these different torsional

states. So, one such representative sequence is shown here where we see that torsional

states  such as trans gauche plus and gauche minus occur  with different  probabilities

along the chain backbone and this  basically defines the conformation of the polymer

chain.



So,  we also  discussed  about  the  different  mean square  end-to-end distances  that  we

obtain  by the;  for  these  different  models.  So,  for  the  freely jointed  model  the mean

square end-to-end distance was basically nl square and n was a number of points and l

was the length of a bond and correspondingly the characteristic ratio was infinity in this

case is just 1.

Similarly, for the freely rotating chain model again the R square this mean square n to n

distance that is still  proportional to nl square, but we have a proportionality constant

here, which is a function of the fixed bond angle theta and in this case the characteristic

ratio is defined as 1 plus cos theta by 1 minus cos theta and this value will be greater than

1. So, one thing again to emphasize is that theta is not strictly speaking the bond angle,

but it is the angle between the bond vectors or angle between the adjacent bond vectors.

So, for the Hindered rotation model again the mean square into n distance depends on n l

square, its proportional to nl square, but the proportionality constant actually has 2 terms,

one dependent on the fixed bond angle theta and another term, which depends on the an

average of the cosine of the torsion angle. So, for this case again one can obtain a value

for a characteristic ratio as C infinity. So, that basically summarizes our discussion of the

different ideal chain models in the previous lecture and today we will just move ahead

and discuss how the chain ends are  basically  distributed and how the distribution of

chain ends or the end-to-end distance, how the distribution of that end distance can be

represented mathematically for these simple ideal chain models.
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So, again if we consider a schematic of a polymer chain as shown here then the 2 red

circles basically let us say these two represent the 2 chain ends and we have a polymer

chain  where  the  bonds  are  reprinted  by  these  vectors  here  and  this  dashed  vector

basically represents that this polymer chain is quite long and we are only showing a few

bond vectors at the beginning and at the end. So, for such a representation the end-to-end

vector we are representing by this capital R, this vector capital R. So, now, our aim is to

study the distribution of this end-to-end distance. So, the magnitude of the end-to-end

vector that is what the end-to-end distance is and we wish to study how this end-to-end

distance is distributed for different confirmations of the polymer chain.

The distribution function for this end-to-end distance let us say that we represent that this

distribution function by W R. So, this function is W and itself a function of the end-to-

end distance R. So, we are calling it W R and this distribution function is basically gives

the probability of the magnitude of the end-to-end vector lying between R and R plus

delta R. So, essentially if we have an end-to-end vector R then its magnitude will be

given by let us say this vector R with mod sign so, let us this is the magnitude. So, this

decision function basically is gives a probability that this magnitude will lie between a

distance R and R plus delta R.

So, essentially  its  magnitude  is  close to this  value R. So, next if  we consider freely

jointed chain it can be shown that this function has the form that is shown here. So, the

function W R actually has a Gaussian form where this parameter beta is given by the



expression here. So, this,  this function or this Gaussian function basically  gives us a

distribution of the end-to-end distance.

So, if we were to plot this W R with as a function of R ok, so if we let us say plot this

function W R as a function of the end-to-end distance R then it will actually go through a

maximum and then again decay at longer hours, the distribution of end-to-end distances

has  a  maximum,  shows  a  maximum  and  of  course,  for  very  large  values  of  R  the

probability  that  two ends are  so separated by that  large distance  that  that  small.  So,

basically this probability function decays down as the distance R becomes large.

This distribution now that we have this distribution we must consider this limitations. So,

the mathematical function that we have shown here it is not valid for all cases, it is only

valid when the number of chain segments or the number of bond vectors if that is that

number is large so one condition is that that n small n should be very large for this kind

of distribution to be valid and the other is that the end-to-end distance is that we are

considering that should be significantly lower than the maximum stretched length of this

polymer the polymer chain.

So, if we consider again the polymer chain that that shown here; then the maximum

length that this polymer chain if this is a freely jointed polymer chain then the maximum

length again will correspond to this number nl, which is n number of bond vectors times l

the length of a single bond vector. So, the end-to-end distance should be smaller than this

the maximum dimension that this polymer chain can adopt. So, only for such conditions

this distribution function is valid. Now as we just discussed this small n is the number of

bonds in small l is the length of bond. This quantity small nl this quantities actually has a

name and this quantity is referred to as contour length of a polymer chain.

So,  the  contour  length  of  any polymer  chain  is  basically  its  length  as  measured  by

moving along the backbone of that polymer chain. So, if one moves along the backbone

of the polymer chain then the length that is measured will come out to be n times l and

that is referred as a contour length. So, basically the condition for validity of the end-to-

end distribution function is that the end-to-end distances that are being described should

be significantly lower than the contour length of the polymer chain. The reason for this

limitation is that the Gaussian function that we have considered here if we take a close

look at it even for values of R even for values of this end-to-end distance R greater than



nl even for these such values the distribution function actually does not decay to 0, it has

a very small,  but a finite value, but physically  speaking this  any end-to-end distance

greater than nl is physically not possible, it is an unphysical scenario.

So, but the mathematical function that we have it gives a nonzero probability for the

occurrence of such end-to-end distances as well are greater than nl. So, so that is why

this function, functions form is basically valid only for R, R into n distance is smaller

than the maximum stretch length of your polymer chain, for values of R equal to greater

than  nl,  this  does  not  describe  the  correct  behavior  because  it  will  predict  nonzero

probability  for  occurrence  of  such end-to-end distances  as  well  which  is  completely

unphysical.
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So, this is the discussion that that applies to a freely jointed chain, now let us consider

the case of for not just not a freely jointed chain, but any ideal chain. So, for any ideal it

can be any chain which where the interaction between distant regions of the same chain

are not present that is the definition of ideal chain. So, for any such ideal chain, which is

not necessarily freely jointed, it can be freely rotating, it might be something that is, that

is described by the rotation isomeric state model.

So, for any such ideal chain one can actually rewrite the same distribution function for

the end-to-end distance WR. So, that same equation or expression is valid, the only thing

is that the parameter beta that we had described earlier the definition of beta changes. So,



if we look at this expression for beta here instead of the small n we have a capital N here

and instead of l square be a have b square here.

So, if you remember from the previous lecture, we had defined these quantities capital N

and the small b as the number of segments, a number of bonds and the bond length for

equivalent freely jointed chain. So, any ideal chain can be represented or can be mapped

using an  equivalent  freely  jointed  chain.  So,  that  this  equivalent  chain  that  we have

mapped onto it that behaves like a freely jointed chain; so, this capital N and b basically

are the number of bonds and the bond length for the equivalent freely jointed chain for

our ideal chain here.

So, again the validity in this case also applies only when the end-to-end distance that we

are considering is much smaller than capital N times b, which is again the contour length

for this equivalent freely jointed chain corresponding to any ideal chain that we have and

also the number of such bonds should be quite large. So, as we discussed the capital N is

the number of equivalent bonds are also differ Kuhn monomers and this we discussed in

last lecture and b is the length of this equivalent bond and it is also can be written as or it

is also known as the Kuhn length and this is also something that we discussed in the

previous class when talking on the equivalent freely jointed chain. So, again as discussed

the magnitude of the end-to-end vector should be much smaller than the contour length

of our (Refer Time: 18:26) ideal chain that we have.

(Refer Slide Time: 18:30).



So, if we consider this distribution function if we want to find out the mean square end-

to-end distance using this distribution function that that is possible and that can be done

by simply integrating R square multiplied by this distribution function WR times d R and

integrating from 0 to infinity. So, this basically is what is called the second moment of

this distribution function, this second moment of this distribution function gives us the

mean square displacement.

So, for an ideal chain or freely joined chain let us say if we substitute the expression for

WR here which is given here. So, if we substitute this expression here in this equation

then for a freely jointed chain the mean square end-to-end distance that is given by this

integral and upon integration it can be shown that this integral comes out to be just nl

square,  which is a result  for a freely jointed chain that we, that we discussed in the

previous lecture.

So,  to  basically  carry  out  this  integration  one  can  use  the  standard  mathematical.

integration formula x to the power 4 e exponential of minus x square dx integration of 0

to infinity that is 3 by 8 square root of pi a to the power minus 5 by 2. So, if you use this

relation and in here if we use this parameter a as beta square then we can use this relation

to integrate this expression here and prove that the mean square end-to-end distance is

equal to nl square in this case as well.

So, the this distribution function that we have discussed as it is applicable to any ideal

chain provided that we are using the Kuhn length and the number of Kuhn monomers

and for a regular freely jointed chain of course, its applicable as well. So, next let us

discuss another important quantity for describing or characterizing the size of a polymer

chain and that quantity is referred to as the radius of gyration.
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So, this radius of gyration this quantity actually is quite useful because it is something

which can be defined for any kind of polymer architecture. So, if we consider the mean

square end-to-end distance the measure of size that we have been using till now. So, that

mean square end-to-end distance actually is using it is problematic for certain polymer

chain architects just like a cyclic order ring polymer. So, for a cyclic polymer, there are

no chain ends. So, the mean square into n distance basically is 0 for that case. So, again

that is a problem in that case the mean square end-to-end distance does not give us any

information about the size of a cyclic polymer.

Similarly, if you have a branched polymer, so for a branched polymer again there are

many chain ends, there not just 2 change, there are multiple chain ends in a branched

polymer.  So,  again  there  if  we  can  try  to  calculate  the  mean  square  end-to-end

displacement that the quantity itself is not well defined because we have many chains

and it is a not just 2 chain ends. So, what we notice is that mean square end-to-end

distance is a good measure of size of linear polymer chains, but when we consider other

kind of polymer chain architectures like branch polymers or cyclic polymers then the

mean  square  end-to-end  distance  itself  fails  to  describe  the  size  of  such  polymers,

polymer chain architectures.

So,  radius  of  gyration  as  we will  see  is  actually  use  useful  measure  of  the  size  of

polymers of any architecture and the reason for this is the radius of gyration basically is



defined in  a  way such that  it  is  possible  to  define it  for  any kind of polymer chain

architecture. So, the equation defined the radius or the square of the radius of gyration is

shown  here  and  the  square  of  the  radius  of  gyration  is  defined  as  1  over  N  and

summation over all the; let us say monomer units present in your polymer chain. So,

summation over all of that and the summation is carried on the quantity R i minus R cm

square. So, this R i and R cm are basically what is called position vectors ok.

And the R cm here is the position vector of the center of mass of your polymer chain and

R i is the position vector of the individual monomer units on the polymer chain. So, the

R cm or the center of mass position right to the center of mass can simply be represented

as an average of the all  the position vectors of all  the monomer units  present in the

polymer chain. So, let us say if we again draw a simple schematic of a polymer chain

like this and let us say our coordinate system is such that the origin is located somewhere

here we have our it is x, y and z axis like this. So, let us say that this monomeric unit let

us denote it as monomer unit number i. So, if we draw vector from the origin to this

monomeric unit that is what this position vector R i represents.

So, the R i in this formula here is the position vector of any ith monomer unit on your

polymer chain from the origin of the coordinate system that we have chosen ah. So, this

in this summation here i runs from 1 to n. So, in this so, basically we will be considering

the position vector of each monomer unit in the polymer chain. Now the R cm are the

position vector of our center of mass of the polymer chain. So, if we let us say let us say

that this is a point which represents a center of mass cm or the cm stands for center of

mass the cm or center of mass of this polymer changes at a certain point located here. So,

now, the position vector or the vector connecting the origin to this point the center of

mass that is what this vector R cm is.

So, this R cm is the position vector of the center of mass and as we discussed if we know

the positions of all the monomer units present then just the average the average of those

vectors  are  just  summing  taking  the  vectors  sum of  all  the  position  vectors  of  the

monomer units and dividing that by the number N that will give the position vector of

the center of mass. So, if we combine these two, if we combine these two relations, if

you combine these two relations and of course, to do carry out some mathematical steps

then what can be shown is that the radius of gyration square can be represented using the

formula here.



So, in this formula we see that there is a double summation over both i and j. So, for any

two monomer units  that is  i  and j  this  R i  minus R j  basically  represents the vector

between these two monomer units and the square of that and again double summation of

that if it did perform that step and then divide by N square that is that will also give you

R g square that is what this formula tells us. So, if we let say have a polymer chain and

the monomer the location all the monomer units are known then instead of separately

carrying out a calculation the center of mass and using this first formula here instead of

doing  that  we  can  directly  use  this  second  formula  here  since  we  already  have  the

positions of all the monomer units known in the polymer chain.

So, next let us talk about the mean square radius of gyration. So, as we discussed in the

last lecture the polymer chain ends basically other distance learning polymer chain inch

is not fixed it keeps on changing and the reason for that is the polymer can adopt many

different confirmations it because of its backbone flexibility. So, depending on the vast

number of different conformation that are possible one can have a vast number of end-to-

end distance as possible and that is why we chose a mean square end-to-end distance to

represent the polymer size. So, same is true for the radius of gyration as well.

So, the equation, these equations that we have defined here, these are valid only when we

are considering a single polymer chain conformation, but as we as we know the polymers

have flexible backbones and they can adopt a huge number of confirmations. So, again

the radius of gyration also cannot be uniquely defined because for each other different

conformation the radius gyration actually will be different.

So, different confirmations will correspond to different positions of the monomer units,

which will lead to different values of radius of gyration. So, for these reasons instead of

using  a  unique  radius  of  gyration  value  mean square  radius  of  gyration  values  also

employed.  So,  the  mean  square  radius  of  gyration  again  represented  by  the  angle

brackets which as we have discussed before represents the ensemble average. So, this

mean square radius of gyration that again is simply can be defined in using either of

these 2 relations.

So,  in  both  these  cases  the  angle  brackets  represent  the  ensemble  average  of  these

quantities, which means the average over all the different polymer chain confirmations

that are possible. So, next for an ideal linear chain ok, so the equations that we have



discussed till now for a radius of gyration or the mean square radius of gyration those

equations are valid for any kind of polymer chain.

So, for any kind of chain molecule those equations are mathematical equation definitions

of the radius gyration and they are strictly valid. The only assumption in the all those

equations is that the all the monomer units have the same mass, if the monomer units are

of  different  masses  then  the  individual  mass  of  the  monomer  units  also  has  to  be

accounted  for   the  equations  that  we have  here  these  equations  actually  will  not  be

directly  applicable  one  will  have  to  modify  them to  include  the  different  monomer

masses.

But if we have a linear any linear polymer chain and if all the monomer units are of the

same type,  which means they will  have the same molar mass. So, in that case those

equations are valid. Now if consider the special case when the polymer chains are ideal

polymer chains, so in that case one can actually show will not go through the derivation

of the proof here a proof here, but it can be shown that for an ideal linear polymer chain

the mean square radius of gyration is basically given by N b square by 6, which is also

again equal to the mean square end-to-end distance by 6.

So, again here the capital N and the small b represent the number of bonds and the bond

length of the equivalent freely jointed chain. So, capital N is basically number of Kuhn

monomers  and  small  b  is  the  Kuhn  length  of  the  equivalent  freely  jointed  chain

corresponding to any ideal chain that we are considering. So, if we consider of just a

simple freely jointed chain. So, in that mean square and radius of gyration can simply be

written as nl square by 6. So, we see that the radius of gyration for ideal polymer chains

that in magnitude its smaller than the mean square end-to-end distance.

So, later on will also again encounter radius gyration when we talk about measurement

of poly and molar mass and we will see that this is a property that can be measured

experimentally. So,  that  is  another  advantage  of using radius  of gyration  to describe

polymer chain dimensions because apart from the fact that it can be defined for any chain

architecture, it is also something that is experimentally measurable. So, till now we have

been talking about ideal chains and the different models of ideal chains and so on.
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 Next let us spend a little bit of time on the unreal chains. So, we know that ideal chains

are chains and basically idealized concept where the polymer chain is such that even the

distant parts of a polymer chain does not, it distant parts of the polymer chain do not

interact with each other ok. So, if the two, there are two monomers which are located far

apart along the polymer chain then they can come very close in space and then still they

are not interacting that certain ideal chain model implies. So, if let us say if we have a

polymer chain like this, one of the confirmations can be like this.

If  we  can  consider  an  ideal  chain  then  basically  a  conformation  where  part  of  the

polymer chain basically intercepts with another part that is allowed ok. So, physically

speaking that is something that will not happen to the same physical region of space

cannot be occupied by 2 different monomers on the same polymer chain.

So, physically that is not a very realistic kind of model, but that is what now that is what

the fundamental assumption in for an ideal chain model is. So, in a real chain real chain

basically such interactions are allowed. So, a real chain is of course a chain where a

polymers segments are poly monomeric units on the polymer chain those we even those

which are separated by long distances along the polymer backbone, if they are close

enough to each other in space then they will interact and they different parts of a polymer

chain cannot overlap with each other. So, basically what the for real chains what happens

is that if you are considering till now all the models in everything that we ever discussed



is for isolated polymer chains so, for the signal, if we have a single isolated polymer

chain how does it behave.

So, for an isolated polymer chain in real chains any and each part of the isolated polymer

chain molecule can actually interact with other parts of the same molecule because each

part  actually  excludes  other  parts  of  the  same  chains  from  the  volume  that  it  is

occupying.  So,  if  a  certain  part  of  a  certain  monomeric  unit  in  each  real  chain  is

occupying a certain physical  volume of space then if we are considering some other

monomeric  unit  in  the same chain,  which  is  some distance  away along the  polymer

backbone then that other monomeric  unit cannot occupy the same physical  region of

space as being occupied by this monomer.

Parts of the polymer chain basically exclude the other parts from the volume that they are

occupying and that is something that physically reasonable as well. So, what happens

because  of  this  fact  that  in  real  chains  parts  of  chains  exclude  other  parts  from the

volume that  they are occupying the mean square end-to-end distance in a  real  chain

basically it turns out to be larger than those in ideal chains and this is because of what is

called the excluded volume interactions.

So, as we discuss excluded volume interactions are interactions which result from the

fact that a certain part of a given polymer chain excludes other parts of the same chains

from the volume that it is occupying. So, such interactions are called excluded volume

interactions and in an ideal polymer chain such interactions are not present, so distant

parts of the polymer chains can overlap and such confirmations are allowed.

In a real chain if different part distant parts of a polymer chain of the same polymer chain

are overlapping with each other and then such confirmations will not be allowed and due

to excluded volume repulsion basically the dimension that a real polymer chain adopts

that those dimensions are tend to be higher or larger than the size that ideal polymer

chain adopts. So, the real polymer chains because of these excluded volume interactions

are larger than the corresponding ideal chain.

So, the relation between these the dimensions of this real polymer chains and the ideal

polymer chains that relation is shown here and in this relation the parameter alpha R

where alpha R is referred to as a expansion parameter and this basically is a measure of

how much larger the real polymer chain is compared to the ideal polymer chain size. So,



the  subscript  0  here,  this  subscript  0  here  that  basically  denotes  what  is  called

unperturbed  dimension  are  the  dimensions  in  the  absence  of  excluded  volume

interactions.

So, these unperturbed dimensions are basically dimensions of an ideal polymer chain and

if we apply this expansion factor alpha R to the dimensions are ideal polymer chain then

we will get the dimension of a real polymer chain. So, let us say if we consider a freely

jointed FJC or a Freely Jointed Chain model we consider an example of that then in such

a model this the unperturbed dimension or R square naught is just nl square, so this is

just the ideal chain dimension.

So, in this case, what is called the dimension of the real chain that will correspond to

alpha R square root of n times l because we are in this relation the R not square root of R

not is considered here in the definition of alpha R. So, basically if we have an idea about

the dimension of an ideal chain and if we know what the expansion parameter is of you

can relate the expansion parameter to some things which are known. So, if we have the

in these information then based on this the dimension of the real polymer chain can be

predicted directly using the relation that is shown here.

So,  we  know  that  for  ideal  polymer  chains  this  mean  square  end-to-end  distance

basically square scales has n or the number of bond vectors present in the polymer chain.

So, for a real polymer chain there should be a half here actually. So, for real polymer

chain the square root of this mean square end-to-end distance or square root of this R

square that actually is proportional to n to the power 3 by 5 or n to the power point 6 for

if the chain is expanded due to excluded volume repulsions. So, in that case this the end-

to-end distance basically scales as n to the power 0.6 or 3 by 5. If we consider ideal

polymer chains then this scaling for that is a ideal polymer chains this scaling is this

proportionality is to square root of n which is n to the 0.5.

So, we see that as a number of monomer units or segments in the chain increase then the

rate at which the size or the end-to-end distance of a polymer chain increase that rate is

higher for a real polymer chain compared to the ideal polymer chain, because in ideal

polymer chain it scales as n to the power 0.5 whereas for a real polymer chain the square

root of the mean square end-to-end distance that scales end-to-end to the power 0.6 or n

to the power 3 by 5.
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Finally let us talk a little bit about before conclude let us start to talk a little bit about the

behavior of real chains in the presence of other substances like if the polymer changes

that is in a solution. So, it will be surrounded by solvent molecules or if the polymer

chain is not isolated,  but in if it  is in the presence of or if it  is surrounded by other

polymer chains of its own kind like in the case of an amorphous polymer sample or a

polymer melts so, in such cases how the behavior will be.

So, specifically for now will focus on the behavior of real chains in solution, as we have

just  discussed  the  real  chains  have  a  larger  dimension  than  ideal  chains  and  this

perturbation from ideal chain dimensions result from excluded volume interactions. So,

basically different parts of the polymer segment cannot overlap and they if they come

close to each other this excluded volume repulsion and that is why overall the size of the

real polymer chain is expanded or larger compared to the size of an ideal polymer chain

which is the unperturbed dimension.

So, we discussed in the previous slide that we there is an expansion parameter alpha

which can be used to relate the real polymer chain dimension to the ideal polymer chain

dimension and this expansion parameter actually in the last slide we discussed the case

of an isolated polymer chain, but even if a polymer chain is present in a solution where

its  surrounded  by  other  solvent  molecules  even  in  such  cases  the  this  expansion



parameter takes care of the effect of the surrounding molecular environment. So, that

such details are actually incorporated in this expansion parameter.

So, let  us consider the behavior  of dilute  solutions.  we were focusing specifically  in

dilute solutions, for now because in a dilute solution the polymer chains themselves will

not interact with each other, different polymer chains will not interact with each other the

polymer solution is dilute the chains will basically remain isolated from each other and

each chain will be separately surrounded by solvent molecules.

So,  in  such  dilute  polymer  solutions  where  the  chains  are  not  overlapping  different

chains are not overlapping with each other or not getting entangled with each other and

where  the  chains  have  essentially  isolated  from  each  other.  There  the  primary

interactions that are of interest are the excluded volume interactions that are internal to

individual  isolated  chains  and the interaction  between the  solvent  molecules  and the

monomeric units or the segments of the polymer. So, what will happen is that if we have

a polymer chain present in such a dilute solution then excluded volume interactions will

want to expand the polymer chain dimension from its ideal dimension. 

So, the segment repulsion will want the polymer chain to swell. Now if the polymer, but

because the solvent is also present around it depending on the nature of the interaction of

this polymer chain with the solvent the actual behavior of the polymer chain will be

dictated  by both  these  interactions.  So,  the  interactions  internal  interactions  between

segment due to excluded volume interactions and the segment solvent interactions both

of these will govern how the polymer chain basically what kind of dimensions they adopt

in solution.

So, if we have a good solution. So, we have really doing a very qualitative discussion

here. So, if we consider a good solution a good solution is where the polymer segments

basically have favorable interaction in the solvent molecules. So, what said is that the

polymer segments like the segment  solvent  molecules  and in  that  case internally  the

segment  repulsion  due  to  excluded  volume  interactions  that  will  try  to  expand  the

polymer chain and since the polymer is having favorable interaction with the solvent

molecules it does not have much problems with expanding. So, polymer will adopt an

expanded conformation with alpha or the expansion parameter value larger than 1.



So, for in the presence of a good solvent the polymer will swell and it will adopt an

expanded conformation where the size will be larger significantly larger depending on

how good the solvent is it will be larger than the unperturbed or the ideal chain chained

dimension. Next if we consider the other extreme where the solvent is poor and where

the polymer segments basically are not interacting favorably with the solvent molecules.

So, if the polymer segment and the interaction with the solvent is poor or unfavorable in

that case what will happen is that the internally again the segment repulsion will be such

that the polymer will try to adopt an expanded conformation, but because the polymer

chains  themselves  are  interacting  poorly  or  unfavorably  the  surrounding  solvent

molecules that other effect basically will try shrink the size of the polymer chain.

So, essentially in a poor solvent where the solvent segment interactions are unfavorable,

the polymer chain will not adopt any expanded conformation it will adopt contracted or a

strong kind of conformation and in fact, if the solvent quality is very poor, so that the

interaction is very unfavorable between the polymer and the solvent then in such case of

the solvent it essentially becomes a non solvent such that the polymer chains basically

precipitate out of that solution. So, in the case of a poor solvent if we have condition

where the segment repulsion due to excluded volume interaction of the polymer chain if

that repulsion is counteracted in counterbalanced by the solvent segment unfavorable the

interactions, if these 2 effects are exactly balancing each other then basically we have a

situation  where  the  polymer  chain  adopts  nearly  ideal  conformation,  ideal  chain

conformation, or ideal chain dimensions.

So, such a situation or such a condition is referred to as a theta condition and the solvent

for which such condition arises such solvents are called theta solvent. So, in the theta

solvent what we have is that the internal polymer segment repulsion due to excluded

volume, they are balanced by the solvent segment repulsion.

So, these two interactions which are working in opposite direction balance each other in

such a way that the size of this; these are real polymer chains, but because of the balance

of these two interactions the size of these real polymer chains basically correspond to a

dimension of  ideal  polymer  chains.  So,  for theta  solvents  or theta  condition  the real

polymer chains are also known to adopt ideal chain dimensions and there is something



that has been observed explained it is not just some theoretical argument it is observed

experimentally as well.

So, what we see is that if the certain conditions are met which is true for a theta solvent

then the polymer real polymer chains can also assume unperturbed dimensions and this

concept of theta solvent is something that we have introduced here in a very qualitative

way, but in the next few lectures when we will talk about polymer thermodynamics we

will be discussing this concept of theta solvent in a bit more detail. So, with regards to

the confirmations  of ideal  polymer chains and the behavior of real chains qualitative

behavior of real chains this is where we will conclude our discussion.

So, what we have learnt is that the ideal polymer chains can be described by different

kinds of models of different complexity and basically if we have a real polymer chain

then in that case the dimensions typically are expanded compared to an ideal polymer

chain because of excluded volume interactions, but when we can have certain conditions

where real chains also adopt ideal chain dimensions one such condition is where the

solvent  is  of  such  a  type  that  the  segment  internal  repulsion  of  a  real  chain  is

counterbalanced by the  solvent  segment  repulsion  and such a  solvent  is  called  theta

solvent.

So, that is one example another example is where basically is the case of amorphous

polymer  chain,  polymer  samples  are  polymer  melts,  where  from the  perspective  of

polymer chain again the polymer chain will want to expand due to the internal segment

repulsions,  again  due  to  (Refer  Time:  48:48)  volume  interactions,  but  because  it  is

surrounded by other chains as well the segments of the a given chain will also interact

with the segments of the surrounding chains and those segments segment repulsions will

again counteract the internal excluded volume interactions.

And again in such cases where we have a very concentrated a collection of polymers

multiple polymer chains the internal repulsion volume repulsions within the chain are

counterbalanced by the external repulsions between different chains and again in such

cases also its been observed that ideal polymer chains dimensions are assumed. So, that

basically concludes our discussion of polymer chain confirmations ideal polymer chain

models  and  qualitative  behavior  of  real  chains.  In  the  next  lectures  for  we  will  be

focusing on the thermodynamics of polymer solutions in more detail.


