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Hello everyone in the previous lecture we started our discussion of polymer dynamics

and we specifically focused on dynamics of polymer chains which are unentangled. We

looked at two different model one which was applicable for unentangled polymer melts

and that was a Rouse model. And the other one which better described the behavior of

chain dine polymer chain dynamics in dilute solutions and that is the Zimm model

In today’s lectures, what we will do is focus on the Dynamics of Entangled Polymers.

So,  entangled  polymeric  chains  are  basically  long much longer  in  nature.  So,  if  the

polymer chains are long then typically they will tend to entangle with each other and the

dynamics of such entangled polymer chains is quite different from that of unentangled

polymer chains.

In today’s lecture will primarily focus on dynamics of entangled polymer chains in melt

like state. So, we will introduce concept of entanglements in melts; we will specifically

focus on a concept where which is proposed by Sir Sam Edwards, that is a tube concept.

And  we  will  discuss  how  this  the  system  of  an  entangled  polymer  chains  can  be

described using this tube concept and we will also talk about the related parameters.

And thereafter we will see how this tube concept can be used or was used by design to

propose a model for the dynamics of entangled polymer chains and this model is referred

to as reptation around. So, we will focus on reptation around.
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If we talk about entanglements; so, entanglements can be thought of as what is called

topological  restrictions  that  the  presence  of  other  chains  imposes  on  a  given  chain

because the chains cannot cross each other.

So, since the chains are formed by covalent linkage of monomeric units; if two chains

get it is entangled in a way then they cannot cross each other. And that restriction or

constraint imposed by the presence of surrounding chains on a given chain that can be

thought of as representing entanglements. These entanglements as we discuss topological

constraints it probably is much easier to visualize this using some simple cartoons.

So, we can think of a; consider that two chains that are shown here; one in red and the

other in black. And if we consider the motion of the black chain here and let us say the

black chain is moving to the right; then a point will come when this portion of this black

chain will be restricted from motion because of this portion of the red chain; since the

black chain cannot cross the red chain that constraint will be imposed on the motion of

this black chain by the presence of this red chain.

So, this is a very simple kind of pictorial representation of what an entanglement effect

might be. And here we have just two chains now imagine if the case is more complex

where we have the presence of large number of chains and all of them entangled with

each other which might be the case for a melt of long linear polymer chains.



So, if we have such a complex case where their  multiple entanglements present then

what one can do is again in a simplified manner represent the presence of entanglements

as constraints imposed by the surrounding chains on a given chain. If we again consider

let us say chain that is highlighted in this diagram. And if we consider all the dots that are

around this chain to represent the constraints that are imposed by the surrounding chains

on its motion ok.

So, if that is the case then what we can say is that this polymer chain is not free to move

about a diffuse in any which way that it likes; its motion is constrained by the presence

of all these dots which represent the effect of the chains surrounding this highlighted

polymer chain. So, all are these constraints restrict the motion of the diffusion of this

polymer chain.

And due to this restriction this polymer chain that we have that can only move in a way

which avoids all these obstacles that are present. And one way to accomplish that could

be that if we consider this as a tail end of how the polymer chain; then the motion might

be thought of as starting where the tail retracts in a way. So, this part of the tail retracts in

a  way;  so,  that  some kind of  loop or  kink  is  formed still  respecting  the  constraints

imposed by the surrounding chains. And this kink or loop is then moved or this kink

moves along the contour of the entire given chain all the way towards the head of the

chain which may be here.

And while moving it is respecting all the constraints that are imposed by the surrounding

chains. So, this is a very simplistic picture because as the any motion that takes place

within the given polymer chain; the surrounding chains will also be moving during that

time.  So, the nature of the constraint  imposes itself  might  be a  bit  dynamic,  but for

simplicity if we assume that we have these fixed obstacles. And polymer chain motion

takes place through let us say a kink or a loop developing at one end and then getting

transported  along  the  contour  to  the  other  end;  then  after  some  time  the  chain

conformation might look something like this where part of the tail has retracted up to this

point and the head has extended here.

As we discussed the polymer chains in an entanglement; entangled polymers the polymer

chains  are  constrained  by  the  presence  of  surrounding  chains  and  the  effects  of

entanglement is especially important for long polymer chains. So, if the polymer chains



are short the entanglement effect site either will be not present or will be small. So, if on

the other hand the polymer chains are quite long; then a single chain might be entangled

in many different places. And the effect of entanglement on the dynamics of polymer

chain will be highly pronounced as we will see.

Next we will what we will do is try to discuss a concept which is called the Edwards tube

model or the Edwards tube concept which simplifies the description of a motion of a

polymer chain in the presence of all these surrounding constraints.

(Refer Slide Time: 07:52)

The concept; the concept of entanglement was treated by proposing the tube concept by a

Sam Edwards in the 1960s and in this model the key points of this model are that we

have a given chain and it is surrounded by a bunch of other chains. So, that the motion of

the given chain is restricted and the path that it can take is also restricted by the presence

of the other obstacles around it. The presence of the surrounding chains is modeled as a

constraint on our given chain ok.

All that let us say monomeric units in a given chain they are acted upon by some kind of

constraining  mathematical  potential  which  represents  the  constraints  imposed  by  the

surrounding chains. If we consider since these are mathematical functions and initially a

quadratic kind of constraining force potential was considered.



If we consider the regions in which this constraining potential has the potentials on each

of the monomers exhibits minima, then that path is what is defined as the primitive path.

If the minima of the constraining potentials they lie along what is called a primitive path.

So, this  primitive path is  the region of space which corresponds the minima of this;

constraining potentials representing the surrounding constraints.

And due to the presence of surrounding constraints what is assumed is that the polymer

chain  itself  is  constrained  in  a  tube  like  region  ok.  And  this  primitive  path  kind  of

represents the center of this tube like region and the polymer chain itself is bounded by

this tube like region defined by the presence of the surrounding chain around this is a

given polymer chain.

So,  again  if  we  go  back  to  the  cartoon  that  we  had  drawn  earlier  for  representing

entanglements and constraints and if we consider our highlighted polymer chain here;

then we can think at this particular instant when this snapshot is can say we can consider

the polymer chain to be confined to some kind of a tube like region that is defined by the

presence of other constraints all around this polymer chain.

So, roughly if  we considered this  kind of a tube we can say that  the motion of our

polymer chain is constrained to happen in a some kind of a tube like region as I am

roughly drawing here and so, this is one end of the tube this is the other end. And what

this Edwards tube concept states is that the given polymer chain is confined to a kind of a

tube like region and the central the let a path denoting the center of this tube like region

will  correspond to the primitive path where the constraining potential  will  have their

minima.

It should not be it is not the case that the length of the tube like region corresponds to the

contour length of our polymer chain. So, within if we consider let us say small section of

this tube like region here. So, let us say if we consider this section here portion of the

tube like region the polymer chain in here itself can adopt different confirmations ok. So,

all the primitive path might be somewhere along the center; the polymer chain itself can

have a different confirmations inside. The contour length of a polymer chain usually will

be much larger than the length of the tube that we had confining tube that we have; so,

that is the Edwards tube concept.
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And in this model that is proposed by Edwards; the monomers on the given polymer

chain they are constrained to stay close to the primitive path that defines as the center of

the tube. But if they are not completely bound to the centers; so, they can of course,

fluctuate around the central primitive path due to the thermal effects.

So, thermal fluctuations are allowed although monomers the potential tries to constrain

them along the primitive path or close to primitive path. But since they will be thermally

fluctuating, so they will adopt confirmations that will be centered around the primitive

path, but will not necessarily coincide with the primitive path. If we consider the tube the

confining tube, then what we can say is that we can quantify its width of the tube by a

quantity known as a tube diameter and it is typically represented by a.

What this tube models proposes is that along the tube if the chain motion is happening

along that you, then it is not restricted at all. Because along the tube entanglement effects

are not that the tube is defined by the sounding constraints of within the tube the chain is

free to move. However, perpendicular  to the primitive path which marks kind of the

center of tube the motion perpendicular to this primitive path that is constrained.

And monomers  motion  perpendicular  primitive  path  is  constrained  to  happen  on an

average up to a size characterized by this tube diameter a. So, the monomer displacement

that is perpendicular to this primitive path that is constraint to an average distance a; it

can say happen by a distance more than a, but on an average that displacement will be.



Next if we consider this tube diameter that we have. So, since tube diameter is a quantity

which characterizes  an entanglement  effects  the what  one can say is  that  number of

monomers that is present in a given entanglement strand that will also be equal to the

number of monomers that will be present in a polymer strand of length equal to the tube

diameter. So, in other words the tube diameters the size a corresponds to the or is of the

same order of the as the length of an entanglement strand of the polymer. So, when we

say an entangled strand of the polymer; it is an average measure of the size of the portion

of the polymer chain between two entanglement points ok.

So, polymer chain given for long polymer chains in general will be entangled at different

many different points along its backbone let us say. So, on an average the length of the

polymers a portion of the polymer chain between two entanglement points that is the size

of the entanglement strand and the entanglement strand itself is the portion of the chain

between any two entanglement points.

So, what we are saying is that the tube diameter size this a is of the same order as the size

of  an  entanglement  strand  of  the  polymer  chain.  So,  that  again  itself  suggests  that

number of monomers or the let us say number of Kuhn monomers that are present in a

given entangled strand entanglement strand, that will be equal to the number of Kuhn

monomers that will be present in a polymer chain having or portion of the polymer chain

having length a.

So, if we make that observation then from there we; another observation is that since we

are  talking  about  the  melt  state.  So,  in  the  melt  state  we  have  already  discussed

previously that the polymer chain assumes ideal chain dimensions because the excluded

volume effectively screened in the dense melt state. So, the chain dimensions correspond

to the ideal dimensions; the relation the fact that on any polymers strand of size a which

is a tube diameter will contain any number of Kuhn monomers.

And the fact that the ideal chain dimensions shall be adopted by the polymer; these two

can be combined to relate the quantity a with the quantity N e. And that we can do

simply by writing this expression a will be of the order of b times N e to the power half.

So, this comes directly from what we have studied earlier about statistics of or the size of

ideal polymer chains.



So, we study that if you have any ideal polymer chain that can be represented as an

equivalent freely jointed chain. And there the mean square end to end distance that can

be represented as N b square, where N is the number of Kuhn monomers in our polymer

chain and b is the Kuhn length. What this suggests is that the root mean square end to

end distance which will be the characteristic size of the polymer that will be square root

of N times b.

So, that is exactly what we have written here this N e to the power half is square root of

N e and N e is the number of Kuhn monomers present in within our entangled strand.

And we say that the entanglement strand has an average length which corresponds to the

tube  diameter  a.  So  this  same  relation  has  been  reformulated  for  the  case  of  our

entanglement strand and tube diameter.

So, we see that this tube diameter a is of the order of b which is a Kuhn length times

square root of the number of Kuhn monomers present in a given entanglement strand.

So, again it should be emphasized at N e is the number of monomers or monomer units

present  Kuhn  monomer  units;  present  in  a  entanglement  strand  and  not  on  the  full

polymer chain. A given polymer chain will be composed of many entangled strands and

N e this number corresponds to just a Kuhn monomers single entanglement strand.

So, now that we have this expression we can think of our confining tube. So, the tube

that is confining our polymer chain we can think of it as being composed of n over any

different sections. So, the tube confines the entire polymer; so, it corresponds to a total

let  us  say  N  number  of  monomer  units.  So,  this  N  corresponds  to  the  number  of

monomers are present in the entire polymer chain, N e is the number of monomers in a

given monomers in a given entanglement strand.
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And since the size of an entangled strand is of the order of the tube diameter, we can say

that each of these sections has a size a and each contains N e monomers.

So, if we have if we consider our confining tube because it might be might have a much

different shape than this, but just as an example; we can consider an entire confining tube

as being composed of different sections, if each of these sections has length a; which is

equivalent to the tube diameter itself, then we will have N over N e such sections. The

reason for it that is since then this length is a this will have approximately N e number of

Kuhn monomer units in here.

And since the total chain contains n Kuhn monomers; the number of such sections will

be given by N over N e and each section contains N e monomers. What we can say is

that the entire polymer chain its dimension can be represented using our equivalent freely

jointed chain consisting of N Kuhn monomers and having Kuhn at b. Or equivalently we

can also write  its  dimension to  correspond to the fact  that  it  consist  of  N over  N e

different entanglement strands and each and each entanglement strand has a length a.

We can also think of our entire polymer chain as being a random walk or a freely jointed

chain consisting of segments having length a total of N over N e such entanglements

strands present along the polymer chain. If you use both these cases or considerations;

then the polymer chain dimension let us say R that can be represented in two different

ways either by this or by this. 



So, the second one is just representation where we are considering the polymer to be an

equivalent freely jointed chain having a Kuhn length b and number of Kuhn monomers

N. In the first case here we are considering the polymer to be again kind of freely jointed

chain or a random walk, where the size of a given segment corresponds to that of an

entanglement strand a and we have the total of N over N e such entanglement strands.

And all these entangle strands together constitute a kind of random walk which leads to

our entire polymer chain.

So, since both these are equivalent we can say that the polymer chain dimension can be

represented by either of these relations. And what we can infer from these two is that this

ratio N over N e will be of the order of b square over a squared times N. And that can be

done simply by rearranging their terms here and squaring this N over N e to the one half.

That is what we obtain for the chain dimension we can represent it in two different ways

by considering a chain to be a random walk either of the Kuhn monomers or of the

entangled strands themselves.

Now average control lengths of the primitive path; so, we have a primitive path defined.

So, it the contour length of this primitive path that we can represent simply as a times N

over N e; so, we have consider tube to be divided into n over any different sections and

each section has a length a. So, the total the contour length of the primitive path will be

simply the product which is a times N over N e.

Now, this N over N e that we have here that we already see is of the order of this ratio.

So, if you substitute that then we get this term; so, we are substituting N over N e by b

square over a square times N; so, we get this term. And then finally, from here we can

simplify to this term because we already know that a which is the tube diameter and

which is also the length scale of an entanglement strand or dimension of an entangled

strand that is just b times N e to the power square root N e to the power half. So, that

gives us the dimensions of the primitive path and we already have the polymer chain

dimensions here.

Next let us consider another concept that is important here and that is referred to as the

rubbery Plateau region ok. So, if for long linear polymer chains where the number of

Kuhn monomers N is much larger than the number of Kuhn monomers present in a given

entangled strand; so, if the entanglement effects are strong what is observed is that if the



stress relaxation modulus is obtained as a function of time or as a function of frequency

equivalently; then what seen is that there is a wide region or wide range of time scales or

frequency  scale  over  which  this  stress  relaxation  modulus  actually  shows an  almost

nearly constant value.

So,  this  region  where  the  stress  relaxation  modulus  is  nearly  constant  is  called  the

rubbery plateau region. The value of the modulus at in this rubbery plateau region is

referred to as a Plateau modulus. This Plateau modulus can be represented we will not go

into the details of this, but it can be represented to be of the order of this ratio; where rho

is  the  density  of  the  polymer  melt  R of  course  is  a  gas  constant,  T is  the  absolute

temperature, M e is the molar mass of an entanglement strand.

So, it is called the entanglement molar mass, M is called entangling molar mass and it

can be represented as N e times M naught, where M naught is a molar mass of a Kuhn

monomer. So, a single entangled strand has N e number of Kuhn monomers and N a

subscript e number of Kuhn monomers and each Kuhn monomer has a molar mass M

naught. So, entanglement molar mass will be the simply the product of these two.
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So, now if we consider the Plateau modulus as defined previously and the entanglement

molar mass; this entanglement molar mass the expression we can simplify further. So,

here what we have done is in the Kuhn monomer molar mass that we have represented as

a product of these 3 terms.



So, here v naught is the volume of a given Kuhn monomer, rho is the overall density of a

polymer melt and N is a Avogadro number that has to be present because we are talking

about a molar mass that is the mass of 1 mole of Kuhn monomers. So, this v naught is a

volume of a single Kuhn monomer and rho is the density. So, this product will give the

rho times v naught will give the mass of a single Kuhn monomer. and if you want the

mass of one mole of Kuhn monomer we need to multiply by the Avogadro number. So, if

we substitute this expression for N e which is N e times v naught times rho times N

Avogadro.

If you substitute this here then the expression for the Plateau modulus can be simplified

and we have this where the rho will cancel and this R divided by the Avogadro number

that is simply the Boltzmann constant. So, if we make these simplifications; we get this

expression for our Plateau modulus and which can again be further simplified. Because

this N e; N e is this ratio a square by b square; so, the way we had defined let us say a as

being b times square root of N e previously.

So, this a was defined to be on of the order of v times square root of N e; then from here

if he a square root of N e is a by b and then taking square on both sides and N e will just

be a square by b square that is we had what we have substituted here. And here in this

last step we have just multiplied and divided by b to get these two. So, this term is just b

cube by the volume of a Kuhn monomer and b cube is the cube of the length of the Kuhn

monomer and this second term is just k B T divided by a square b.

So the Plateau modulus in a simplified form can be written as shown here. Next one last

concept or parameter related to the entanglement is what is called the number of chains

within a given confinement volume. So, since our tube diameter which is the confining

tube the tube diameter is represented by a. So, the confining volume we represent by

cube of this; so, the confinement volume will be a cube and we are trying to find out the

number of polymer chains present within this confinement volume and that number is

represented as P e; so, it is a number of polymer chains in the given confinement volume.

So,  the  volume  that  way  we  are  looking  at  is  a  cube  and  the  volume  of  a  single

entanglement strand that is N e times v naught. So, v naught is the volume of a Kuhn

monomer and N e is the number of Kuhn monomers in an entanglement strand. So, this

product this will give us the volume of a occupied by a given entanglement strand. So,



this  ratio  gives  us  this  quantity  P that  quantifies  a  number  of  entanglement  strands

present within given confined volume a cube.

Now again previously we have just discussed that a is given by this b square root of N e.

So, if we substitute that the instead of a cube we will get b cube N e to the power 3 by 2.

And since we have N e in the denominator here that will cancel and we get b q or v

naught N e to the power half; so, that is the expression for p that we get.

So, finally, what we need to understand here is that the Plateau modulus g is something

that is exponentially measurable. And if we have the value of Plateau modulus and other

parameters  related  to  entanglements  such as  M e;  the  entanglement  molar  mass  N e

which is a number of Kuhn monomers in a given entangled strand. And P which is the

number of that same tangle strands present in a given confined volume a cube.

These  can  be  obtained  directly  because  the  g  which  is  a  Plateau  modulus  can  be

measured. And once g is measured M e we can obtain from this expression and once M e

is known then N e we can obtain from this expression or this expression either one, then

this will give us N e. And once N e is also known then from these expressions we can get

P e so, all of them can be obtained.

And if such a calculation of measurements of Plateau modulus and from there calculation

of P e is done for a different linear flexible polymers in melt state; then what is found is P

e is found for most cases to be close to 20. So, P e is found to be close to 20 for flexible

polymer. So, this condition P e being close to 20 that defines what is called the overlap

criterion for entanglement in polymer chains. So, now, that we have discussed a tube

concept and the entanglement; where an associated entanglement parameters, let us now

move on and see how the dynamics of polymer chains within the confining tube like

region can be studied.
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Polymer chain motion in a melt  that is a many body problem at the first glance; the

reason for  this  is  a  given polymer  chain  if  it  is  moving  its  motion  depends  on  the

presence and the corresponding motion of many other polymer chains surrounding it.

And since we have it is a dense system and the polymer chains are long if we try to study

the dynamics directly as a many body problem, it will be a very complex problem to

study and it might not actually be amenable to solution as well.

One elegant approach that was proposed to study the polymer dynamics of polymers

chains entanglement for entangled polymer chains was that by P.G de Genne. And this

approach makes use of the adversative tube concept the concept that we have already

discussed. And here the main point is that for any given polymer chains the surround

chains are around it; again impose constraints and the constraints are imposed such that

the motion of the given polymer chain is restricted to in a confining tube and as a chain

moves of course, the confining tube also moves along with the chain.

De  Genne  who  actually  won  a  Nobel  Prize  for  his  contribution  two  important

contributions to polymer physics now if use the Edwards tube concept to simplify this

many  body  problem  and  proposed  that  the  chain  motion  can  be  considered  to  be

restricted to the tube like region. Any model  of polymer entangle polymer dynamics

which uses the steep concept is comes under the category of tube model. So, the model



proposed by de Genne initially  is  the simplest  tube model  science called  a  reptation

model.

And it is simple trip tube model proposed by de Genne and here what is assumed is that

if you have a long linear polymer chains present in a melt state and highly entangled;

then their motion takes place in a manner that can be thought of us and allow us to the

motion of a sneak that is just slithering around various obstacles. So, if we consider let us

say a large number of snakes in a given pit.

So, the way the snakes; so, of course, if the lot of snakes are present in a small volume

one can think of as a snakes as being kind of entangled with each other. So, the motion of

the snake will be a slithering kind of motion where it traverses making sure that the

obstacles present by the other snakes is are avoided. So, it takes the slithering kind of

motion  and  that  motion  is  what  inspired  this  term reptation  the  origin  of  this  some

reptation is reptile. So, it is a reptilian slithering kind of motion that is what one can

visualize as a reptation model to be like.

And now getting to the mathematical aspects the motion of polymer chain within this

tube; so, if we are considering the confining tube as proposed by Edwards and if I can

see the motion of polymer chain within this  tube.  So, within this  tube the motion is

actually  not  constrained  the  constraints  are  such  that  they  restrict  they  are  kind  of

restricting  the motion to  within this  tube,  but  the motion within this  tube is  actually

unconstrained. So, the curvilinear kind of motion within this tube can be characterized by

a curvy linear diffusion coefficient D c. D c can be found out easily because within the

tube the motion is unconstrained there is the entanglement effects are not there. So, one

can describe the motion simply as a kind of a Rouse motion of the polymer chain if you

are looking only at the motion along the tube.

So, for Rouse motion we already discussed in the previous lecture that the diffusion

coefficient simply is given by k B T over n times zeta when N is again the number of

Kuhn  monomers  present  and  zeta  is  the  friction  coefficient  corresponding  to  each

monomeric unit. So, we within the or along the tube the chain motion is actually not

affected  by  entanglements.  And we can  say  that  the  Rouse  diffusion  kind  of  model

describes this motion and the diffusion coefficient that we can obtain from that model.



Next  if  we consider  the  time  scale.  So,  in  the  reptation  model  the  reptation  time  is

defined as the time required for a given polymer chain to come completely out of its

original tube. So, at any instant if the polymer chain is present inside a certain confining

tube and if we consider now this tube to be fixed in the polymer chain slowly diffusing

out of it. So, the time required for the entire polymer chain to diffuse out of the original

tube that it was present inside that corresponds to reptation time. And of course, if the

polymer chain moves out it will create its own new confining tube around it because of

the presence of the obstacles presented by the other chains.

But the overall time it takes for a given polymer chain to come out of its original tube

that corresponds to the repetition time. And that we can order of this reptation time can

be obtained simply as the ratio of the square of the primitive path length of the primitive

path length corresponds to the let us say contour length of our tube and. So, ratio of the

square  of  the  primitive  path  length  and  the  curvilinear  diffusion  coefficient  which

corresponds the diffusion coefficient of the polymer chain within the tube so, the square

of the length scale traversed by the poly machine divided by the corresponding diffusion

coefficient for that motion.

So, if we again simplify this if initially in this lecture we had discussed that the primitive

path length which will just be a times N over N e that can be written in this format and D

c of course, we have already written like this. So, if we substitute them and take the ratio;

we get this expression for the reptation time. And again we can just multiply and divide

by N e square; so, we get this expression where we have this kind of a cube dependence

of this reptation time on the number of Kuhn monomers present in our polymer chain.
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So,  now  if  we  again  this  is  the  same  expression  rewritten  here  the  reptation  time

expression that we just discussed. What one can see from this expression is that and this

is a as predicted by the reptation model of design; what we see is that reptation time

actually scales as cube of the molar mass of the polymer chain.

And the reason for this is that the number of Kuhn monomers present in a polymer chain

that will be directly proportional to the molar mass of the polymer chain. So, since the

reptation time scales has cube of the number of Kuhn monomers in the polymer chain; it

will also scale as cube of the molar mass of the polymer chain. So, that is the prediction

of this reptation theory or reptation model.

Experimentally  it  is  been  observed  that  this  kind  of  a  relaxation  time  to  which  the

reptation time corresponds to that scales as M to the power 3.4. So, if we go back to the

previous lecture last lecture there we discussed that for the Rouse kind of motion; the

characteristic time actually scales as just N. So, here in the case of reptation the reptation

model predicts the time to scale as M cube whereas, experimental prediction m as an to

your 3.4. So, we see that the exponents are not that different one is 3, one is 3.4, but

quantitatively  of  course,  if  we  try  to  obtain  quantitative  data  that  will  be  different

because of the almost 10 percent or 15 percent difference in exponents.

So, the patient model captures the behavior to some extent, but we will discuss later there

are some deficiencies in the simple reptation model because of which this exponent is



not accurately captured ok. Now we can if we consider the entanglement strand; so, we

can define characteristic  relaxation time for the entanglement  strands of the polymer

chain as well. And that we can define as represented as tau e which will be given by this

expression.

And we can use this expression here because an entanglement strand is the region of

polymer chains between two entanglement points. So, the characteristic relaxation time

of this entangled strand can be described using the Rouse model. Because the entangle

strand itself is a portion of the chain that has a size smaller than the length scale of our

presence of entanglements.

So, this Rouse time of our entanglement strand with which contains any monomers and

from the Rouse model that can we can write simply like this. And this tau e this time can

be thought of as representing a time characteristic time beyond which a polymer actually

becomes aware of the presence of other constraining polymer chains in its neighborhood.

So, if you are observing the polymer chain motion at a time scale below this tau e which

is the Rouse time for the entangled strand; then the polymers chain actually will not at

this time scale be aware of the presence of constraints around it. But above this that time

tau e if we are making observation at a time scale larger than tau e then of course, the

effect of entanglements will be present. Now if we consider so, this tau e again from

previous lecture we can simply now write us tau naught times N e square the tau naught

is an Kuhn monomer relaxation time.

Now,  we  can  consider  the  ratio  of  the  reptation  time  and  this  Rouse  time  for  an

entanglement strand. And if we take the ratio of this and this and if we simplify we will

see that it is of the order of N over N e cube. Now this N over N e this just represents a

number of entanglements present along a given chain right the chain contains n number

of Kuhn monomers a given entangled strand contains N e number of Kuhn monomers.

So, N over N e will be the overall number of entanglements present along a given chain.

So, we see that the reptation time over the; this tau e that scale says cube of this number

of entanglement present along the polymer chain.
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So, now let us consider the motion of the polymer chain again. So, the timescale that is

defined by the reptation time; we discussed that this timescale corresponds to the time

over which the polymer chain moves a distance equivalent to its own size ok. So, it is the

characteristic relaxation time for the entire polymer chain in this reptation model because

this  is  a  time  scale  over  which  the  polymer  chain  is  moving  by  a  distance  that  is

equivalent to its size. The for the entire polymer chain the diffusion coefficient we can

simply write as some square of some length scale divided by this reptation time.

And  that  square  the  length  scale  is  basically  the  length  scale  that  traversed  by  the

polymer in this reptation time and that as we discussed is the size of the polymer chain.

So, we can the diffusion coefficient we for repetition we can get as just R square over tau

reputation that is what we have written here. So, the diffusion coefficient of the chain in

this reptation model is just the square of the some characteristic polymer size which can

be the end to end distance divided by the reputation time. So, this is the order of the

diffusion  coefficient  of  the  chain.  And  this  diffusion  coefficient  corresponds  to  the

diffusion in the entire entangled polymer melt and not inside just the confining tube.

So, previously we had also use that curvilinear diffusion coefficient that corresponded to

the diffusion of the chain just within the confining tube. But if you are looking at the

overall  picture then the polymer chain as it  diffuses through the entangled melt;  that



diffusion coefficient  of  the  polymer  chains  in  that  system that  will  be  given by this

expression.

This polymer if we consider the size of our polymer chains, we can see that it is a square

times  N over  N e.  And this  is  again  something that  we have already discussed in  a

slightly different form to form previously in this lecture. So, and this tau reptation and

the expression repression also we have discussed in a couple of slides back. So, we take

these two expression one for R square and one for the reptation time and we substitute

both of those expressions here; then the expression for the diffusion coefficient in this

repetition model reduces to just this.

Where apart from taking the ratio we have also made use of the fact that a square by b

square is equal to simply N e. So, the diffusion coefficient of reptation we see it scales as

reciprocal of N square or equivalently it will scale as reciprocal of M square, where M is

a molar mass of the polymer because the N which is number of Kuhn monomers and M

which is a molar mass they are directly related.

So, what we can say is that in this reptation model the diffusion coefficient scales as

reciproprocal of M square or M to the power minus 2; so, that is the prediction of this

model. Experimentally, it has been observed that the scaling is again a bit stronger; so,

the exponent is minus 2.3 experimentally observed one; whereas, the predictor is minus

2. So, we still again see some discrepancy although it is able to capture the dependence

to some extent,  but there is some discrepancy in the value of the exponents between

prediction of reptation model and experimental findings.



(Refer Slide Time: 46:03)

So, now if we look at the different time scales that are involved in this reptation model;

this tau reptation if we try to compare them in this reptation time tau rep that corresponds

to the relaxation time of the entire polymer chain in the reptation model. And it is related

to tau naught which is the smallest relaxation time that we have that is the relaxation day

of the single Kuhn monomer.

So, relationship is something like this these things of course, can be obtained using the

different expressions earlier written for the reptation time and tau e and others. It is the

reptation  time is  related  to  the Rouse time  for  an entanglement  strand tau  e  by this

expression. So, earlier the fact this factor 6 was not there, but we already have discussed

that tau rep by tau that is after order of this.

So,  this  factor  6  is  something  that  that  makes  that  is  a  constant  pre  factor,  but  the

dependence is over N over N e to the power 3. And finally, if we consider just the Rouse

time of the entire chain; so, this tau is the Rouse time of a single entanglement strand

which is a portion of the chain. The Rouse time the entire chain tau R is considered, then

that is related to the reptation time using this expression. So, again what we can say is

that the reptation time by the Rouse time of the entire chain is just given by this ratio N

over N e and N over N e is again just a number of entanglements present along a given

polymer chain.



So, this Rouse time will correspond to a characteristic relaxation time a polymer chain if

no entanglements will be well present ok. And the reptation is from time is a relaxation

time of the entire polymer chain; when an entangled entanglements are present. So, we

see that due to the presence of entanglements; the reptation time actually increases it is

higher  than  the  Rouse  time  in  the  characteristic  relaxation  time  the  polymer  chain

becomes longer than if entanglement effects were not present.

Now, this reptation model was mathematically in rigorously solved by Doi and Edwards

in 1970s. And we will not go through the any detailed mathematic mathematics of that,

but we will just identify a couple of results that come out of the solution and discuss that

particularly fine from the point of view of viscosity. So, now from the solution of this

reptation  model  of  diffusion  by  a  Doi  Edwards  the  expression  of  viscosity  that  is

obtained is this where G e as we discussed earlier is a Plateau modulus and tau rep is a

reptation time.

So, from here what we can say is that this viscosity is of the order of G times tau rep this

is  just  a constant tree factor. So,  if  we are considering just  what is the order of this

viscosity of our melt; then that will be and the product these two. And G e; this we have

already discussed earlier is given by certain expression tau rep expression we have also

discussed.

So,  if  we  combine  both  those  expressions  and  simplify  then  the  expression  for  the

viscosity obtained is this. And again we see that the dependence of viscosity on number

of Kuhn monomers or equivalently on the polymer molar mass is of the power 3 type.

So, if we again compare that with experiments; then the prediction of this model is that

the viscosity scales has molar mass to the power 3 because again molar mass and number

of Kuhn monomers they are directly related; so, we can write this and experimentally

viscosity is observed scalars and to your 3.4.

So, again there is a small, but non negligible discrepancy between the exponents. So,

from these results what we see is that the repetition model is a good model for a good

simple  model  for  describing  effects  of  entanglement  in  polymer  melts.  And  it  does

predict some results which match reasonably with experimental findings; especially in

terms of how it is a viscosity or diffusion coefficient scale with the molar mass.



But if the exact scaling is not captured by this model and a couple of reasons why that

happens is that one of the reasons is that in an actual case the confining tube length also

can fluctuate ok. So, the contour length of the confining tube that can change and that

part is not captured in the simple reptation model of design. So, that is one factor which

leads to a discrepancy.

And the other factor is that if we are talking about the given polymer chain constrained

by many other polymer chains surrounding it. So, the other polymer chains surrounding

it are also mobile they are also moving around. So, at after some at a given time if a

polymer surrounded by a certain number of chains; after some time some of the those

chains would have moved out of a region near it and some new chain might have come

in.

So, the; so this kind of phenomenon is referred to as constraint release and this also is a

factor  which  affects  the  polymer  dynamics.  So,  these  couple  of  things  one  is  the

fluctuation in contour to length and there is constraint release; these are not capturing the

simple reputation models of design. And that is why the results that we obtain from this

model are slightly off compared to experimental results, but still the reptation model is a

very good description of entanglement entangled dynamics of long linear polymer chains

in a melt. And it is a simple model and its reasonably well captures a lot of qualitative

phenomenon; so, it is a good map model in that sense.

So, here we will conclude our discussion of polymer dynamics where in the previous

lecture  we talked  over  the  dynamics  of  unentangled  polymer  chains  whether  it  is  a

polymer short polymer chains in the melt state or polymer chains in dilute solution and

today  we  discussed  the  dynamics  of  entangled  polymer  chains.  So,  we  described

different models which are applicable to different cases we discussed the Rouse models,

Zimm model as well as a reputation model today. And we also discussed the different

kinds  of  characteristic  times  which  are  associated  with  the  different  relaxation  of

different parts of the polymer chain.

So, the longest relaxation time will correspond to the relaxation of the entire polymer

chain, but relaxation of small segments or different segments of different lengths of the

polymer chain; they will also have their own character characteristic relaxation times.

So,  with  that  let  us  conclude  our  discussion  of  polymer  dynamics  and  it  must  be



mentioned that what we have discussed is very preliminary. And it is just the surface of

this entire subject and if someone is more interested they are referred to a very excellent

text a book by Doi and Edwards which is name theory of polymer dynamics.

Thank you. 


