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Hello everyone. In this last week of our course, we will be focusing on the subject of

Polymer Dynamics. So, polymer dynamics basically is a study of the motion of polymer

chains within polymer solutions as well as in polymer melt.  So, the study of polymer

dynamics is important to understand the flow behavior of polymer solutions as well as

melt and especially for flow of polymer melts. It is important from a practical viewpoint,

because molten polymer flow is used extensively in polymer processing operations.

So, now the dynamics of polymers it actually the nature of the dynamics depends on

whether the polymer chains are entangled with each other or not. So, in today’s lecture

we focus on the dynamics of unentangled polymer chains and we will look at a couple of

models that describe the dynamics of these unentangled polymer chains in the different

kind of scenarios. And in the next lecture we will focus on the dynamics of entangled

poly polymer chain. So, the content of today’s lecture is somewhat or something like

this.
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We will start with an introduction just introduce some common concepts and terms like

diffusion coefficient friction coefficient and so on and then we will discuss 2 different

models one is the rouse model the other is the Zimm model and these 2 different models

are models that describe the dynamics of unentangled polymer chains.

So,  we will  see  that  the  rouse  model  is  something  that  is  useful  for  describing  the

dynamics of polymer melts, provided the chain in the chain length in the polymer melt is

short and the chains are not entangled. On the other hand we will see that Zimm model is

a good model for describing the dynamics of polymer chains in dilute solutions, again

where since the chains are far apart they are not enta entangled with each other.

So, to begin with we will start with some introduction to basic concepts. So instead of

focusing on entire polymer chain initial will initially, we will talk about the motion of a

particle present inside let us say a liquid. So, if we are considering a particle that is small

enough let us say a colloidal particle, then the collision of the liquid molecules with this

colloidal particle will lead to motion of this colloidal particle in a random zigzag kind of

a fashion.

So, the motion actually  might  look like a random walk and such motion which was

discovered first way the Robert brown is referred to as a Brownian motion. For such kind

of motion what is called the mean square displacement of this particle that is observed to

be directly proportional to time and the relation between the mean square displacement

and  time  is  given  by  this  expression  where  the  quantity  D here  is  referred  to  as  a

diffusion coefficient of this particle in that liquid medium.
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This kind of motion is referred to as a simple diffusive motion and it is characterized by

the  fact  that  the  mean  square  displacement  is  directly  proportional  to  time  for  this

particle or on in other words the average this distance at the particle traverses that is

proportional to the square root of time, so that is what we have stated here.

So, now this simple diffusive motion that we have what we will see that in the case of

polymer chains the motion of the monomeric units on the chain that need not be of the

type of  simple diffusive motion  that  we have outlined here.  We will  see that  it  will

depend on the time scale associated with the observation and under certain time scales

the motion might be of the diffusive kind, but at other time scales other kind of response

might be observed.

The monomeric unit motion in a polymer is not always of simple diffusive kind, so that

is what we are trying to understand here and next we let us continue with our discussion

of  this  motion  of  particle  in  a  liquid  and  just  try  to  establish  some  other  common

concepts and then we will try to apply that to polymer chains. So, if we consider the

motion of this particle and if we say that the certain force f acts in this particle and that

leads to the particle moving with a constant velocity V. Then in that case of course if just

a constant force is acting on a particle then Newton’s law suggest that we will have a

constant acceleration of the particle and not constant velocity.



So, what the particle 2 move around with the constant velocity, whatever force is acting

to  move  the  particle  there  is  some  other  force  which  would  be  counteracting  and

balancing  this  in  this  force,  so  that  the  particle  velocity  remains  constant.  As  we

discussed that the these particles are moving about due to the random collision of solvent

molecules with this particle and the opposing force to this motion is also due to collision

of solvent  molecules  with other liquid molecules  with this  particle.  So, the opposing

motion opposing forces what is called the drag force and when the force responsible for

moving the particle be is equal to the drag force in this particle will move with a constant

velocity.

So, if we have that case where the particle has attained a constant velocity, then what we

can say is  that  this  force is  related  to  this  velocity  through this  coefficient  which is

referred to as the friction coefficient. So, we have defined diffusion coefficient up here as

quantity  that  relates  the  mean square  displacement  to  the  time average  displacement

happens, here we have the friction coefficient which is a which relates the force acting on

the particle and the corresponding velocity  which with the particle  moves and as we

discuss whatever force is moving the particle that will be exactly balanced by the drag

force. So, the drag force expression will also be given by the same equation, only thing is

that the force drag force will be equal and opposite to this driving force f here.

Next we have a relation which is referred to as the Einstein relation and this relation

connects the 2 coefficients that we have identified so far. So, it is a relation between the

diffusion coefficient and the friction coefficient. So, what Einstein relation states is at the

diffusion coefficient of particle moving in the liquid is equal to KB times T divided by

the friction coefficient, where the KB is of course the Boltzmann constant and T is the

absolute temperature this equation relates the diffusion and friction coefficient. Next let

us try to figure out what are the timescales of motion involved. If you are still sticking

with this example of this particle moving in a liquid, what are the kind of time scales

involved in the motion of this particle?
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So, if we represent the size of this particle by this quantity R and let us say we represent

the time scale or the amount of time it takes for this particle to move by a distance, which

is of the same scale as it is own size we dif if we define this time as tau. Then what we

can say is that this tau is of the order of it, of course not equal but it will have similar

kind of scale as R square over D, where R square is the square of the size of the particle

and D is the diffusion coefficient and since we are talking about a time over which the

particle moves a distance equivalent to it is own size.

So,  the  corresponding time would be  of  the order  of  this  R square  by the  diffusion

coefficient. So, it is a simple scaling kind of argument and from the Einstein relation the

since diffusion coefficient D is just KB times T over zeta that we can substitute here and

there which results in this expression for this characteristic time over which the particle

moves by a distance equal into it is size. Now let us consider the motion of a spherical

particle  through a Newtonian liquid and we are considering the flow to win what  is

called a slow or creeping kind of regime.

So, and if you say that the Newtonian liquid that we are considering has a viscosity eta

so the liquid has a Newtonian kind of nature, what that means is that the shear stress is

directly proportional to the shear rate and the constant of proportionality is a constant

viscosity eta. So, if we have this constant viscosity eta for our Newtonian liquid and if it

is flowing fast this spherical particle having size that is corresponds to this R, then stokes



derived this stokes law which states that the friction coefficient zeta is simply 6 times pi

times eta times R, where eta has the viscosity of the liquid R is the is a measure of the

size of our particle.

So, if it is a spherical particle it is just the radius of that particle, so that is the Stokes law

and this also suggest that the zeta that we have is again of the order of the product of eta

times  R.  So, if  you look at  this  relation  in  the Stokes law the friction  coefficient  is

proportional to the product of the viscosity of the liquid and the size of the particle and

there is some proportionality constants 6 pi here. So, what we can see is that the friction

coefficient  is  of  the  order  of  eta  times  R,  we  already  have  discussed  it  in  Einstein

equation relates the diffusion coefficient with the friction coefficient and that relation as

discussed in the previous slide is this so if we combine these 2.

So, if we substitute this zeta from stokes law here in Einstein relation then we can get an

expression for our diffusion coefficient. So, diffusion coefficient expression by obtained

by combining  the  Stokes  law and Einstein  equation  is  the  equation  is  called  stokes

Einstein relation and it relates the diffusion coefficient to the viscosity of the liquid and

the size of our particle ok.

So, the strokes Einstein relation is d is equal to KB times T divided by 6 pi eta R, now

the we can measure the diffuse the diffusion coefficient of let us say if now we come to

the case of a polymer coil, so if you have a polymer solution in the polymer if it is a

dilute polymer solution. Let us say the polymers are in the form of these random coils

that is separated by good distance as a solution is dilute.

So, we can measure the diffusion coefficient of such polymer coils using experimental

techniques such as dynamic light scattering and that diffusion coefficient measurement

will allow us to get a measure of the size of our polymer coils are. So, this R the size

measure of size that  we get from this  relation that  is  referred to as a hydrodynamic

radius. So, the hydrodynamics radius of our polymer coils that we can calculate, if we

measure  the  diffusion  coefficient  of  our  polymer  chains  in  a  dilute  solution  using

techniques like dynamic light scattering and using the Einstein stokes Einstein relation

obtaining the value of R.

So, so just  rewriting the stoke Einstein in relation we can get the expression for the

hydrodynamic radius which is just KB times T divided by 6 pi eta times the diffusion



coefficient.  So,  now  with  that  this  background  to  the  general  concepts  related  to

dynamics and flow. Let us move on and focus on case of the dynamics of polymer chains

in solutions as well as melt. So, the first and we will consider 2 simple models today for

the dynamics of polymer chains which are not entangled.
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So, the first model that we will focus on is referred to as the rouse model of polymer

dynamics and it was proposed by rouse as the name suggests. So, here in this model the

polymer chain is a thought to be come thought to consist of a collection of beads which

are connected by strings. So, it is a kind of a bead string model where each we have a

bunch of beads which are connected to each other by spring. So, cartoon of this kind of

model might look something like this where we have this bead, then we have a spring we

have this bead another spring and so on.

So, this is the kind of representation that we have of the polymer chain in this rouse

model, the number of beads that is taken to be this quantity N and the size of the spring

that is connecting the beads that is taken to be that is denoted by the symbol small b.

So, this kind of nomenclature that we are using the number of beads to be N in the size

of spring to be small b, that if you recall is similar to the kind of nomenclature we use

when we are talking about the equivalent freely jointed chain model. So, when we talk

about the number of Kuhn monomers and the Kuhn lengths so there also be use a similar

kind of nomenclature.



So, there the polymer chain was represented by collection of Kuhn monomers and here

in this case we are representing the polymer chain as a collection of beads connected by

string. So, the size of the spring is a small b number of beads is capital N and some of the

other assumptions that are involved is that. In this rouse model the beads that we have

they interact with other beads only through the connecting springs, so there is no other

way in which the beads  interact  with each other  they only interact  with other  beads

through that strings that connect them.

Another assumption is that each bead is considered to have it is own separate friction

coefficient zeta ok. So, each bead is having an independent friction coefficient zeta and

the last  assumption  is  that  if  you are considering this  for these polymer  chains  in  a

solution let us say, then the solvent molecules freely drain around this polymer chains

that is a other assumption.

So, if you go back to the lecture when we talk about the viscosity average molar mass

and specifically  the different  types  of  viscosities  in  dilute  polymer solutions  and the

friction properties right dilute polymer solutions, there we introduce the concept of 2

different kinds of models one was freely draining one was non draining. So, rouse model

assumes that we are in this freely draining kind of regime, where the solvent molecules

can freely flow around all the monomeric units of a polymer chain ok, so solvent freely

drains through the chain.

Now, with these assumptions what we can say is that for the entire polymer chain, the

friction coefficient for the whole chain is given simply by the number of beads that we

have multiplied by the friction coefficient corresponding to each bead. So, that is n times

zeta and since the friction coefficient zeta is independent for each bead, we can say that

for the entire polymer chain this zeta R and that the overall friction coefficient is just

given as a product of these 2 and the R in the subscript of course, denotes the rouse

model, so we are talking the rouse model. So, the capital R denotes that.

Now, if we talk about the viscous frictional force that the chain experiences, so as we

discussed this force is simply equal to the friction coefficient times this velocity. So, if

we talk about the frictional force experience,  then we will have this minus sign here

because, this will act in a direction opposite to the motion so the frictional force is just

minus of zeta times the velocity. So, if the chain is moving with some velocity polymer



is moving with some velocity v then this frictional force is minus of zeta R times v and

since the overall friction coefficient for the chain is just n times zeta. So, we have this

equation as well.

Next we can of course, define the diffusion coefficient of polymer chain in this rouse

model, but the Einstein relation states that this diffusion coefficient is just given by K B

over T times the friction coefficient. So, the friction coefficient in rouse model is simply

the N times the individual friction coefficient of the beads, so the diffusion coefficient for

a rouse chain that is given simply by K B T over N zeta. So, now the time that is required

for a given polymer chain to diffuse by a distance that is of the order of it is own size or

length that time is referred to as a rouse time and it is denoted by the symbol tau R.
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So, if we want to write a kind of an expression for this rouse time, then we can we will

have first have to consider a parameter that specifies the size of our polymer chain and

the time required for a given polymer chain to diffuse a distance equivalent to this size

that will give us the rouse time. So, the rouse time tau R can be defined as being of the

order of R square over D R, where D R as we have discussed is the diffusivity of the

polymer chain in the rouse model or the diffusion coefficient, R can be thought of as a of

as a measure of the size of the polymer chain. So, it can be related to the um mean square

end to end distance, so R square can be the mean square end to end distance. So, next if



we express the diffusion coefficient in terms of the friction coefficient zeta; so, DR is K

B T over N time zeta as we have established in the previous slide.

So, if we substitute that expression here we will get this expression, for the rouse time

where we see that the rouse timescale says [noise] R square here and next what we need

to  do is  express  this  R the measure  of  our  polymer  size  in  terms of  the  number  of

monomeric units present in the polymer as well as the size of a given monomer unit. The

rouse time that we have it is significance is can be thought of as in this way, that if we

are observing the polymer chain dynamics on scales that a timescales at a smaller than

rouse time, then the polymer will show viscoelastic kind of response viscoelastic modes

of relaxation. Whereas, if we are observing the polymer chain motion on time scales that

are larger than the rouse time, then the polymer will show a simple diffusive kind of

motion.

So, with that next let us again go back to how we can express this polymer chain size R

in terms of other quantities. So, the chain size R we can what we can say is that it is

related to this  order of the order of b times N to the power nu, where this  nu is  an

exponent whose values half for an ideal linear chains and it is value will be different if

we have non-ideal chains. Now the relation that we have here for an ideal chain the

relation of this kind we have already established in the very first week of this course,

where we discussed that any ideal chain can be thought of as an equivalent freely jointed

chain. So, there what we saw is that the mean square in twelve and distance R square that

was expressed at that time as n times b square ok.

Where N was the number of Kuhn monomers b was the Kuhn length ok, this R square

that we had discussed at that time this the measure of chain size R is related to the this

expression here and if we consider the square root on both sides here then we get N to

the power half times b and that is the same expression that we have written for the chain

size here, where nu being half will be the case for an ideal chain. But this expression is

more general in the sense that the exponent nu it is if it is value is something different

then it can describe also the behavior of non ideal real kind of chains as well.

Now let us try to substitute this expression for the chain size R in the expression for

rouse time, so that expression for rouse stream is written here and if we write down or

substitute  this  expression  here.  Then  upon  simplification  we  get  this  kind  of  an



expression and this  expression relates  how the rouse time scales with the number of

monomers in our polymer chain. So, the exponent that we have is 1 plus 2 nu and we

have already discussed that nu is half in the case of ideal linear chains. So, in the in that

case if nu is half the relation between tau R and N will be of this kind, so tau R will is

seen to scale as N square for ideal linear chains.

If we have a non ideal real chains then depending on what kind of environment our real

chain is in the value of the exponent will vary. So, if the chain is in a highly expanded set

in for example in a good solvent, then it is been shown that the value of nu is close to 0.6

it is approximately 0.588 or that we can roughly take that to be around 3 by 3 by 5 or 0.6.

So, for a real chain in good solvent the value of nu will be around 0.6 and for ideal

chains it is 0.5 or half.
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Next  let  us  try  to  define  another  characteristic  time  which  is  which  is  at  the  other

extreme.  So,  the  rouse  time  that  we  have  just  discussed  it  can  be  thought  of  as  a

characteristic  relaxation  time  for  our  entire  polymer  chain,  on  the  other  hand  if  we

consider  the  smallest  unit  of  a  polymer  chain  that  will  be  the  corresponding  Kuhn

monomer and if we want to talk about a characteristic time of relaxation of the Kuhn

monomer. Then again that we can define as that time required for that Kuhn monomer to

move by a distance as equal to it is or of the order of it is own size.



So, with that definition the that relaxation time for the Kuhn monomer that we can write

as tau naught is equal to b square by D, where b is the size of our Kuhn monomer the

Kuhn length and D is the diffusion coefficient of the individual monomer unit and in the

rouse model we have already discussed that the individual for each individual monomer

the there is an independent friction coefficient zeta. So, this D one can write it as just KB

times T divided by zeta and if you do that the expression for tau naught or the Kuhn

monomer relaxation time becomes this. So, this is the other extreme this is the relaxation

time  of  the  smallest  subunit  of  our  polymer  chain  and  rouse  relaxation  time  is  the

relaxation time for the entire polymer chain.

So, rouse relaxation time now or the rouse time that we can we have already written in

the previous  slide an expression for  that  and the general  expression in  terms  of  this

exponent nu that is given by this relation. So, we see that in this part of this equation or

relation this portion of this term is just the tau naught of the Kuhn monomer relaxation

time. So, we can write the rouse time in terms of the Kuhn monomer relaxation time and

N to the power one plus 2 nu and for ideal linear change the value of nu here will be half,

so in that case rouse time is related to the monomer relaxation time tau naught through

this N square term. So, in this case for the ideal chains the ratio of the rouse time to the

Kuhn monomer relaxation time that will  scale  as N square.  So, the longer the chain

becomes the larger the ratio tau R by tau naught becomes and it scales by 10 to the power

2.

Now, the relaxation time or the rouse time that we have discussed we based on some

simple arguments we came up with an expression which was not an exact expression, but

which gave a relation between rouse time and other quantities. So, the relation that we

have developed that is a kind of order of magnitude relation which relates to rouse time

to the R to be of the same order of magnitude of as certain terms rouse. In fact, did a

detailed calculation for this rouse model and came up with a more precise expression for

rouse time which  is  shown here and we see here  that  compared to  the  approximate

expression that we had developed in the previous slide, here the only difference is this

constant pre factor 1 over 6 pi square.

Otherwise the all the parameters and other things like the N square dependence on rouse

time they remain the same, so this is based on a detailed calculation by rouse rep as

about in 1953.
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And next let us try to relate this concept of relaxation times and all those things to the

viscosity of the solvent in constituting the solution. By stokes law which we have already

discussed at  the very beginning of  this  lecture,  what  we can  say is  that  the friction

coefficient is related to the solvent viscosity and the size of the particle that is moving

through the solvent ok.

So, if we are talking about the friction coefficient of a single Kuhn monomer unit or a

single monomer bead in our rouse model of the polymer chain. In the friction coefficient

can be defined as the solvent viscosity multiplied by the size of our monomer which is

given by v and what we can see is that the friction coefficient will be of the order of this

product according to stokes law. So, that is what we have written here for individual

monomer beads this is the friction coefficient that we have in the rouse model. Of course,

for the entire polymer chain the friction coefficient is just the number of monomeric units

times the friction coefficient of individual monomer unit.

So, the zeta R which is the friction coefficient of the entire polymer chain that is just N

times zeta. So, now with this definition of the friction coefficient of the monomer units

each monomer unit, we can write our Kuhn monomer relaxation time was expression we

had developed to be of this kind. We can write that expression to be of this form where

what we have done is just substituted eta as times b in place of zeta here and eta s of

course is the solvent viscosity.



Next if we talk about the rouse time, then the rouse time expression also we had already

developed in the previous  slides and if  you substitute  the expression for  the friction

coefficient of each monomer unit by eta s time b this is the expression that we get. Again

these this is valid for an ideal linear chain if it is a non ideal chain then instead of this n

square will have one plus 2 nu as the exponent, but for ideal chains nu is half so we get N

square. So, we have these 2 times and both of the both these times associated with the

relaxation of either a single monomeric unit or the entire polymer chain these times also

give us information about the kind of dynamics that will be observed on different time

scales so I given polymer chain.

So, if the time of observation is smaller than tau naught or the Kuhn monomer relaxation

time,  then  pretty  much  no  polymer  motion  will  be  observed  because,  this  is  the

characteristic time for relaxation of a single monomeric unit. If we are talking about time

scales of observation between tau naught and tau R, so between the Kuhn monomer

relaxation time and the rouse time of a polymer chain.  Then the viscoelastic  kind of

response will be observed as we have discussed previously and if we are observing at a

time scale that is larger than the rouse time of the polymer chain, then simple diffusive

kind of motion will be observed and the behavior of polymer might be similar to that of a

liquid.

On timescales below down art we have elastic response no moment of polymer above

rouse time we have diffusive motion and similar to that of a simple liquid and in between

these 2 time limits we have for the polymer chain exhibiting viscoelastic response as we

discussed. Next we will also like to discuss how the polymer solution viscosity or the

viscosity of the polymeric system that the rouse model is describing how that is related to

let us say the polymer molar mass or the size of the polymer chain.

So, according to a rouse model without going to any detailed derivation, what we will

see is that this viscosity of the our polymeric system that we are that the rouse model is

describing that viscosity is of the order of zeta over b times N. So, zeta is a friction

coefficient again b is the size of our monomeric unit N is the number of monomer units

present in the polymer chain.

So, this is the expression for viscosity that we obtain from this rouse model and what we

can say is that the n that we have here capital N the which is a number of monomeric



units present, that will also be proportional to the molar mass of the polymer. Because,

the more the number of monomeric units the larger the molar mass will be and this will

be a linear relation between the number of monomeric units present and the molar mass

of the polymer chain.

So, on the basis of this expression what we can say is that the eta that we have the

viscosity that will also be proportional to proportionality sign here to the molar mass of

the polymer chain and the proportionality will be a direct so that eta varies as M to the

power 1. So, this kind of behavior is observed experimentally, if we are talking about the

behavior of polymer melts where the polymer molar mass of the polymer chain size is

smaller than a certain critical size and if the polymer chains are long molar mass is high

then what is observed is the viscosity actually scales in a much stronger way with molar

mass. So, it is typically observed that be above a critical molar mass of polymers chains,

the viscosity actually starts scaling as molar mass to the power 3.4 whereas, below that

critical molar mass the scaling of viscosity with M will be just eta being proportional to

M to the power 1.

So, that the power or exponent of the molar mass that changes from 1 to 3.4 as the

polymer size, increases beyond a certain critical size and the polymer molar mass also

goes  up beyond a certain  critical  molar  mass.  So,  this  kind of  behavior  is  observed

experimentally and of course the rouse model only captures the behavior for the small

molar mass polymer melt systems. Above the critical molar mass due to the presence of

what is called entanglement, so we have longer polymer chains now and they can get

entangled. So, this entanglement effects lead to a much stronger variation of viscosity

with power molar mass which rouse model cannot capture.

So, for this more advanced models for entangled polymer dynamics need to be used to

get predictions which match with the experimental observations for such systems. But

for a rouse model again the proportionality is direct the prediction of rouse model is that

the viscosity is directly proportional to M. Now it is valid if we are talking at a polymer

melt where the polymer chains are unentangled, so that the polymer chain size is not too

large.  Again  the  viscosity  the  expression that  we have  given is  kind  of  an  order  of

magnitude kind of expression, so the viscosity is of the same order of magnitude as this

quantity as rouse made a detailed calculation. The prediction of from rouse model is or



the calculation of rouse is this where we have this one over 36 as a extra constant factor

coming in and finally as we discussed.

Just now this rouse model applies well if we have unentangled polymer melts because, as

we will see in the next slide the this interactions called hydrodynamic interactions with

which are typically of importance in dilute polymer solutions. But these interactions are

screened in polymer melts and since rouse model does not incorporate these interactions

it is not a good model for dilute polymer solutions. However, since in the melt these

interactions are screened so for the description of dynamics of polymer melts, especially

the unentangled polymer melts rouse model is a reasonably good model to apply.

So, when we say an entangled polymer melts again the polymer chains will be short and

there will not be any entanglements between the polymer chains. So, what we are just

discussed is that rouse model is not a good model for describing dynamics of polymer

chains in dilute solutions ok. So, now let us see what kind of model is a reasonably good

model for description of such systems.
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So, so before we move on to this the description of this model which is which applies

well to dilute solutions, let us first talk about this concept of hydrodynamic interactions.

So, we just mentioned that hydrodynamic interaction is something that are not captured

by the rouse model and that is why it is not a good model for dilute solutions. When a



particle is moving in a liquid medium, so through a solution or solvent then the particle

drags some molecules of the solvent along with it as it moves

So, due to this the there is a long range force on the solvent surrounding solvent due to

the motion of the particles through it and if you are talking with a polymer chain which

can be thought of as consisting of several be beads of particles connected by some kind

of strings that is a bead spring model. Then in that case, the motion of one bead that will

lead to a force a long range force in the surrounding solvent as well as on the other beads

of the polymer chain. So rouse model states that the interaction between different beads

in a polymer chain is only through the connecting springs.

Whereas, if hydrodynamic interactions are present then apart from interacting through

the presence of the connecting springs the beads will also experience force due to the

hydrodynamic interaction, that is a movement of one bead will lead to a long range force

not just in the surrounding solvent but all also on the other beads of the polymer chain.

So, that is the concept of hydrodynamic interaction which is absent in rouse model, so

rouse is rouse model does not consider these hydrodynamic interactions at all here in that

model the beads interact just by the connecting springs. So, that is why this rouse model

the  assumptions  involved are  not  correct  for  dilute  polymer  solutions,  instead  in  the

model that is of choice for describing dynamics of to dilute solutions is the Zimm model.

Here what is assumed is that as a polymer moves through the solvent it drags the solvent

that is present in it is pervaded volume. So, what is pervaded volume now imagine a

polymer chain in a in a given solvent; so, the volume of the solvent or the volume of

solution that is spanned by a given polymer chain that would be referred to as a pervaded

volume of a given polymer chain.

So, if we let us say consider a system where we have these polymer chains and we have

surrounding solvent molecules.  So, roughly the volume that is spanned by this entire

chain that will the volume of these kind of spheres will constitute the pervaded volume

of the polymer chain. So, this pervaded volume of course will be much larger in general

than the actual  occupied volume of the polymer chain that  is  a volume occupied by

individual monomers of the polymer chain.

So, that occupied volume will be smaller than the pervaded volume and in the pervaded

volume of a given polymer chain typically much of that volume will be occupied by



solvent molecules. If we have a dilute polymer solution or the pervade volume of a given

chain can also be occupied by not just a solid molecules, but other chains if we chain

overlap and if the polymers is let us say it concentrated.

What is in the Zimm model what is assumed is that as a polymer chain moves it drags

the solvent present in it is pervaded volume and if we if you recall our discussion in the

lecture where we are talking of friction properties of polymer solution, then we talked

about how the viscosity average molar mass can be measured or determined. So, there

we talked about 2 different extremes one was a free draining model which corresponds to

the rouse model here, otherwise an was the non draining model and that is what this

Zimm model can be thought of as corresponding to.

So, here the pervaded volume of the polymer chain is treated like a solid object in this

Zimm model. So, it requires once closer to the non draining model that we had discussed

previously and because the Zimm model incorporates the hydrodynamic interactions it is

a good model for describing dynamics of dilute polymer solutions. So, here to start with

the friction coefficient of a polymer chain in a Zimm, in the Zimm model is defined like

this here zeta z is the friction coefficient of the entire polymer chain in the Zimm model

and using the fact that the entire polymer chain that pervaded volume acts as a kind of a

impermeable sphere.

What one can say is that the friction coefficient is just solvent viscosity eta s times the

size of the entire polymer chain given by R here. So, this expression again comes from

the stokes law that we have discussed previously and here the entire polymer chain is

treated  as  a  particle,  in  the  case of  rouse model  we say we saw that  the  individual

monomeric units were treated as particles and stokes law was applied there. Here for the

entire polymer chain we are applying the stokes law to obtain an expression for the a

friction coefficient of the polymer chain.
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So, now that we have an expression for the friction coefficient,  the diffusion kind of

polymer  chain  can  be  defined  using  the  Einstein  relation  in  this  way. Here  Dz  the

subscript z denotes that we are talking of the Ximm model and that by Einstein relation

the diffusion coefficient of the entire polymer chain is given just by KB T over zeta Z

and if we substitute the expression for zeta Z which is this then we and also for the an

expression for the size of our polymer chain R as b times N to the power nu, then we get

this expression for the diffusion coefficient of a polymer chain in the Zimm model and

this expression that we have derived.

It is approximate the exact expression based on detailed calculations by Zimm is given

here which shows that again there is  an only an extra  pre factor constant  pre factor

present here or here, otherwise the relation between Dz and other terms here are is of the

same type as we have discussed here only difference is it this constant pre factor.

So, now that we have an expression for the diffusion coefficient in the of the entire chain

in the Zimm model, again we can introduce the concept of a kind of a characteristic time

of this Zimm model and that is called the Zimm time and this is again defined as the

characteristic time that is taken by a given polymer chain to diffuse by a distance, that is

equivalent to the or after order of the it is own size. So, as before as we did for the rouse

model  for  the  Zimm  model  also,  the  Zimm  time  of  this  characteris  characteristic

relaxation time of the entire polymer chain that will be given by just square of the a



measure of the polymer size R square divided by the diffusion coefficient Dz and again if

we substitute the expression of diffusion coefficient from above then we get this kind of

relation between our Zimm time and the size of our polymer chain R cube um.

So, on the dependences of R cube type and again this R the size of the polymer chain R

we can again write as of the order of b times N to the power nu again as before and if we

do that we get this expression here. Where we see that the this quantity of this term is

nothing but tau naught the Kuhn monomer relaxation time that we have already defined

previously in today’s lecture.

So, the Zimm time tau z is related to the Kuhn monomer relaxation time tau naught

through this factor N to the power 3 nu. So the ratio of tau z to tau naught is n to the

power 3 nu and if we consider the full calculation by Zimm as reported by zimm. So, in

that case the expression for tau z comes out to be this or we just have this approximate

pre factor 0.163 otherwise the terms that appear here, in the detail calculation are also the

same terms that we have here only this extra pre factor constant pre factor is present.
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Now, for the Zimm time we have seen that it is related to the monomer relaxation time

tau naught by this N to the power 3 nu, rouse time is related to the monomer relaxation

time may this factor N to the power 1 plus 2 nu. So, from here from these 2 relations

what we can comment is that the Zimm time actually or the ratio of Zimm time to the

monomer relaxation time that scales less strongly, than the ratio of rouse time to the



monomer  relaxation  time  with  respect  to  the  size  of  the  polymer  chain  which  is

quantified by this N here.

So, Zimm time has a weaker dependence on chain length the than the rouse time and the

reason why we are making this statement is that if we consider. Let us say for example

ideal chain where nu is half, so in that case this exponent becomes 1 plus 2 into half

which is 2. So, so in that case the rouse time will scale as N square, whereas for an ideal

chain sin since we have 3 nu kind of scaling here we will get a exponent 1.5, so the

Zimm time will scale as N to the power 1.5.

So, clearly the scaling of Zimm time is weaker and for other cases also let us say for a

real chain in a good solvent in even in that case the exponent nu is around 0.6, so it is

still less than 1. So, even if we use such values of nu we will see that the scaling of the

rouse time with respect to N is much stronger or stronger than the scaling of Zimm time

with respect to the chain length or N.

Now, last thing that we want to discuss with respect to this Zimm model is the concept of

intrinsic viscosity. So, intrinsic viscosity is something that we have already discussed

previously  when  we  talked  in  the  friction  properties  of  polymer  solutions  and  the

measurement of viscosity average molar mass. It can be shown will not go into details

where it can be shown that intrinsic viscosity is of the order of this quantity where we

have this KB T as the Boltzmann constant times absolute temperature Avogadro constant,

the  solution  viscosity  test  the M naught  is  a  Kuhn monomer  molar  mass.  So,  if  we

considering the chain to be composed of Kuhn monomers then the molar mass of a given

Kuhn monomer  that  is  M naught  and this  N is  just  the number of  Kuhn monomers

present in our given chain model.

This tau here is the relaxation time there that we are talking about, so this expression is

general it is not specific to the Zimm model, we can try to find out the expression for our

intrinsic viscosity in the, for the rouse model as well. So, in that case instead of tau we

will replace tau by tau R the characteristic relaxation time of the polymer chain in the

rouse model.  But since we know that rouse model  is not a good model  for polymer

solutions  especially  dilute  polymer solutions.  So,  that  is  why if  we do that  then  the

expression for the intrinsic velocity that we will get and the kind of scaling the behavior

that it will describe that will be incorrect.



Zimm model on the other hand incorporates hydrodynamic interaction, so it is expected

to be a good description of even the friction properties of dilute polymer solution. So,

what  we will  do is  in  this  expression for  the  intrinsic  viscosity  will  in  place  of  the

relaxation time that that time that we will have here, we will use the relaxation time has

developed in the Zimm model and we will see what kind of expression we get for the

intrinsic viscosity.

So, for Zimm model the characteristic relaxation time of the entire polymer chain that is

given by this expression as we have already discussed and if you substitute the that this

first  this  tau  z  in  place  of  the  relaxation  time  here.  So,  the  expression  for  intrinsic

viscosity  in  the  Zimm model  becomes this  and in  place  of  tau  z  we can replace  or

substitute this expression and if you substitute this expression of course this eta s here

will cancel this eta as the KB T here will cancel this KB T. So, we will be left with this

term upon simplification and instead of again R we can write Rs to be of the order of b N

to the power nu, so if we do that we get this kind of an expression.

Now finally, what we can do is that we can take this M times N M naught times N and

say that this is the molar mass of our for entire polymer chain, M naught is a molar mass

of a given Kuhn monomer N is a number of Kuhn monomers their product should be the

molar  mass of  the polymer chain.  So,  this  M naught  N and we can write  as  M the

polymer molar mass and if we do that here in this expression, then we can write that this

intrinsic viscosity is of the order of Avogadro number times R cube over M where we

have replaced this M naught times N by M here.

So, what we see here is a kind of relation which is already familiar to us, which we have

already  discussed  when  we  are  talking  about  the  frictional  properties  of  polymer

solutions and that expression is a Flory fox equation. That we have discussed previously

is  the  Flory  fox  equation  states  that  the  intrinsic  viscosity  is  some  proportionality

constant or some universal constant times R cube over M and this kind of a ratio and the

same kind of ratio we are getting here as well starting from the Zimm model and we get

an Avogadro number. So, of course this is a not an exact equality we are saying that this

intrinsic  velocity  is  of the order of these terms. So, it  is equivalent  to the Flory fox

equation that we have already discussed and what we see is that as a Zimm model it is

application leads to the Flory fox equation for polymer solutions, which is something

with an in agreement with the experimental findings as well.



What  we  have  done  in  today’s  lecture  is  describe  2  different  models  of  polymer

dynamics  one  is  rouse  model  which  applies  well  to  a  unentangled  polymer  melt

dynamics. But it which is something that is not applicable to, so there are dynamics of

dilute polymer solutions because it does not capture the hydrodynamic interactions. On

the other hand we have the Zimm model which is a good model for the description of

dynamics of dilute polymer solution. Of course these are 2 extremes we have polymer

we have dilute polymer solutions, we can also have polymer solutions that are a bit more

concentrated. So, we will end by a quick dis with a quick discussion on the dynamics of

semi dilute polymer solutions a very qualitative kind of discussion, a semi dilute solution

is a solution which cannot be considered as a fully concentrated solution, but which is

not also a highly dilute solution as well.

In a semi dilute solution what happens is that it is a solution where the polymer chains

present in the solution have just started to overlap with each other. So, the pervaded

volume of the polymer chains in the solution they add at this point where we describe the

solution as a semi dilute solution. So, at this point the pervaded volumes fill the entire

space of our solution and the polymer chains just  start  to overlap.  So, if  we have a

solution or the polymer concentration below this overlap concentration, then we can say

that  our  solution  is  a  dilute  solution  and if  the  polymer  concentration  is  above this

overlap concentration then we say that the solution is a semi dilute solution.

So, in general  even for semi dilute solutions if  we look at  the absolute  value of the

polymer it is a volume fraction in the entire solution, the volume fraction still will be

quite  small  much  smaller  than  one.  But  since  the  polymer  chains  have  started

overlapping  the  properties  of  the  solution  now  will  be  strongly  determined  by  this

overlap of polymer chains and the behavior will be much different from what we see in a

typical dilute solution.

So, in semi dilute solutions again the kind of model that we can apply to describe it is

dynamics depends on the kind of length scales that we are talking about. So, in semi

dilute  solutions  we  can  define  a  kind  of  an  screening  length  and  this  characteristic

screening length. if we are talking of length scales below this kind of a hydrodynamic

screening  length,  then  on  that  those  length  scales  the  Zimm  model  can  be  applied

because hydrodynamics  interactions  might  be important.  But  beyond a certain  length

scales and because now the polymer chain concentration is higher and they have started



to  overlap,  so beyond a  certain  length  scale  the hydrodynamics  interactions  will  get

screened. So, beyond that length scale one can describe the dynamics using the rouse

model where the hydrodynamic interactions are not considered.

So, a semi dilute  solution depending on the length scale that we are at  either Zimm

model or the rouse model can be applicable. So, at small enough length scales where the

hydrodynamic interactions are important one should use the Zimm model and at then

scales larger than a certain screening length where the hydrodynamics interactions are

screened then rouse model can also be applied, that is the description for a semi dilute

solution.

If we are talking about polymer melts then if the chain is unentangled then we can use

the rouse model, if you have entangled polymer chains if the polymer molar mass is high

and the chains are long and we have entanglements then the dynamics is of a completely

different kind and it is not captured by rouse model. We have to resort to other models

like reputation which will be discussed in the next lecture, so for today we will conclude

this lecture on the polymer dynamics of unentangled polymer solutions and melts at this

point.

Thank you.


