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Rubber Elasticity

Hello everyone in the last couple of lectures we have been talking about the viscoelastic

behavior  of  polymeric  materials.  In  today’s  lecture  we  will  discuss  another  very

interesting  property  of  certain  polymeric  materials  which  is  referred  to  as  Rubber

Elasticity.

(Refer Slide Time: 00:44)

So, we will  begin today with an introduction to the type of polymeric  materials  that

exhibit this behavior and such polymers as refer to as elastomer. So, we will talk about a

little bit about the elastomers and their common properties and then we will move on to a

thermodynamic  description  of  the  rubber  elasticity  behavior.  We will  also  discuss  a

model of this rubber elasticity which is based on a molecular kind of approach and that

model is commonly referred to as affine network model. And, towards the end we will

also look at a more phenomenological  kind of approach to rubber elasticity which is

given by the Mooney Rivlin equation. So, to begin with today let us start by discussing,

what is an elastomer?



(Refer Slide Time: 01:43)

So,  elastomers  are  basically  polymeric  materials  which  show  certain  interesting

mechanical  properties,  so  they  exhibit  very  high  reversible  deformations.  So,  if  we

stretch an elastomeric material it can be stretched to several times its original length and

when the  applied  force  is  removed the  elastomeric  material  will  attain  it  is  original

dimensions. So, it is a reversible kind of deformation that these materials show.

So, that is one interesting properties and also the material typically exhibit low Young’s

modulus. So, when we are discussing mechanical properties of polymeric materials, we

discuss the typical range of Young’s Moduli exhibited by different types of polymers. So,

elastomeric materials  typically  show low Young’s modulus,  but since they are highly

stretchable they show a high elongation at break.

So,  what  are  the at  least  at  the molecular  level  what  are  the features  that  define  an

elastomeric polymeric material. So, one thing that a polymer one condition is that the

polymers should be cross linked, so we should have a network polymer and typically the

cross link density should be light. The other property of the polymer is that it should be

above it is glass transition temperature, so it should be in it is rubbery state.

So, elastomeric properties will be exhibited by a rubbery polymers and another important

point is that the polymers should be very should have a very low degree of crystallinity.

So, if a polymer is highly crystalline then it will typically not show elastomeric kind of

behavior. So, these points are listed here where the, it is mentioned that the polymers



should be cross linked it should be above the glass transition temperature and should

have low degree of crystallinity and typical elastomeric polymers exhibit all  these or

satisfy all these conditions.

The mechanical  behavior  of elastomeric  materials  where which is  a characterized  by

large reversible deformations, as well as a non-linear elastic kind of a behavior that is

referred to as rubber elasticity and that is the focus of our discussion today. So, some of

the  important  rubbery  or  elastomeric  materials  that  are  commonly  used  are  poly

butadiene, natural rubber, neoprene, butyl rubber and many other.

So, many rubbery kind of materials are elastomers where at the molecular level their

network  polymers  and  they  exist  above  their  glass  transition  temperature.  So,  as

discussed rubber elasticity is just this non-linear elastic behavior of elastomers, where

they very high reverse where elongations are exhibited.

(Refer Slide Time: 04:37)

So, next let us focus on the thermodynamics of this rubber elasticity phenomenon, if we

talk about rubber elasticity as exhibited by elastomeric materials, then there are few very

interesting kind of properties that these materials  show. So, let  us say if we have an

elastomeric material like a rubber band and if it is stretched very quickly then it heats up

and if  the elastomeric  material  is  kept  in  a  stretched state  and then it  is  allowed to

contract  rapidly then it  cools.  So, this  is  an interesting kind of property and there is

something that can be easily observed. So, if one has a rubber band and if it is stretched



very quickly and placed on one’s lips, then one can feel that rubber band heating up

actually.

So, the that is the interesting kind of property, another very interesting property that this

elastomeric materials exhibit is that when they are in a stretched straight, then if their

temperature is increased then they tend to contract. And, this is a contrary to the behavior

shown by many other common materials like metals and other materials where heating

leads to an expansion. So, as stretched elastomer actually contracts when the temperature

is raised, so that is another interesting kind of property. So, we will the briefly discuss the

thermodynamics of rubber elasticity and try to see that some of these observations can be

explained from that thermodynamic perspective.

So, one thing before we begin to notice that these elastomeric materials their deformation

can be considered to take place at a constant volume and so what that means is that one

can assume the elastomeric materials to be essentially incompressible, that is when it is

deformed it is dimensions might change. But they change in such a way that the overall

volume of the material remains unchanged.

So, this is an assumption that will be employed in the thermionic description as well as

affine network model that we will discuss today. And, this assumption is a justified one

because  several  observations  actually  confirmed  this  kind  of  assumption.  Where  the

deformation actually happens had an almost constant volume for elastomeric materials,

so we will make that assumption and start our development from there.

So, let us say that we have an elastomeric material and a force is applied to elongate it by

a certain amount, if we consider tensile force f that is acting on the elastomer then the

correspondingly the work done by this force in extending the elastomeric material by a

small amount of length dl. So, that work done is given by this delta W or del W and that

we can simply write it as the force times the elongation produced. So, we are talking

about a tensile kind of force acting and a corresponding elongation produced along the

direction of the force. So, the work done will simply be the force times the corresponding

elongation that is f times dl.

Typically when we talk about the work done on a system then we also consider what is

called the pressure volume work. So, if you are familiar  with the thermodynamics of

gases then this pressure volume work is actually quite important, but as we discussed we



will consider the elastomeric materials to be incompressible and when deformed. So, if

the volume is not changing that pressure volume work can be neglected. So, the work

that no quantity of work involved in the deformation of elastomeric material that will

that will only include this f times dl kind of term and this p dv term will not appear

because volume is not changing. 

Now, if we consider the elastomeric materials elongation or deformation to be reversible,

then in that  case the corresponding heat associated that  also we can obtain from the

second law of thermodynamics and that will just be the temperature times the change in

entropy. So, we can for a reversible deformation we can say that the associated heat is

equal to the temperature times the entropy change.

Now, we have these 2 terms and we can combine these and place them in the first law of

thermodynamics for a closed system and then try to come up with an expression for this

force or the force time’s dl term ok. So, the first law of thermodynamics as we know

states that the change in internal energy system is given by the heat added or removed

from the system and the work done on the system or by the system. So, the form that we

have written here where dU is equal to this del Q plus del W. So, in this format assumed

is that the heat supplied to the system is taken as positive and work done on the system is

taken as positive. Now, using the expression for the work done from here and the heat

from here and substituting these two back here.

We get the expression that is dU will be equal to just T times entropy change plus f times

dl and if you just rearrange the term then we can write this f times dl. The force times the

a small amount of deformation or elongation to be equal to the internal energy change

minus temperature times the entropy change. So, that is one expression which we have

obtained by applying this  first  and second law of thermodynamics  and assuming the

deformation to be reversible as well as incompressible. 
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So, that is this expression that we just obtained, now if we talk about any cha process that

is happening at a constant volume then the relevant free energy of interest is actually the

Helmholtz free energy. So, Helmholtz free energy which we denote by A that is defined

as internal energy U minus temperature times the entropy. So, if we now consider this

change in a Helmholtz free energy dA at constant temperature then that we can simply

write as dU minus TdS and since we are we are considering the change at a constant

temperature.  So, the minus S dt term which should also appear  that will  be 0,  so at

constant temperature we have this expression and we see that this the right hand side

here exactly matches the right hand side on the this expression.

So, from by comparing these 2 what we can say is that this term fdl force times the

deform deformation that  is  equal  to the change in Helmholtz  free energy at  constant

temperature ok. So, another way to write this is that we can say that the force is simply

the change in Helmholtz free energy with changing elongation or changing deformation

at a constant temperature. So, we can take this dl here and we get f equal to dA dl at

constant temperature. So, we can express that as a partial derivative in this form where

we can say that this force is equal to the rate of change of a Helmholtz free energy with

change in elongation at a constant temperature.

This expression basically relates the force to elongation as well as the thermal in quantity

which is a Helmholtz free energy and Helmholtz free energy as we have just discussed is



defined as U minus TS. So, we can substitute that in place Helmholtz free energy here

and then separate this term into 2 separate derivatives, one will be del U del l at constant

T and the second will be minus T times del S dell at constant T and we are taking this

temperature T outside because the partial derivative is at constant temperature.

So, we see what we see is that the force that we have here that is a that can be expressed

as this  combination of 2 terms the first  term is  an energetic  term, it  depends on the

internal energy of the system and how it changes with elongation. The second term is

entropic  in  origin  and  which  captures  how the  entropy  of  the  system changes  with

elongation.  So,  we  can  write  this  f  as  f  E  plus  f  S  and  energetic  and  an  entropic

contribution, where this energetic part is simply del U del at constant T and the entropic

contribution is minus T times del S del l at constant T.

So, now the interesting properties that are observed a for in elastomeric materials, the

important  characteristic  that  these  materials  have  which  leads  to  such  interesting

properties is that for the deformation of elastomeric materials is the entropy change that

is a dominant term. So, if we consider this expression here then the second term which

contains the contribution of due to entropy change, that dominates over the term due to

the  energy  or  internal  energy  change  and  this  is  the  reason  why  the  some  of  the

interesting properties of elastomers are observed.

So, this force f so this is the force half that we are talking about this is a tensile force and

this also the retraction force that the elastomer will develop. So, if we are pulling the

elastomer down let  us say elongating it,  then the elastomeric material  will  develop a

retraction force which will try to pull it back to it is original dimension. So, this force can

also  be  thought  of  as  a  retraction  force,  as  we discuss  it  consists  of  2  components

energetic and entropic and for elastomers the entropic component is the dominant one

and that is why it exhibits several interesting properties.

On the other hand if we consider common materials other materials like metals, so there

if deformation takes place the atomic positions change from their equilibrium positions.

So, that leads to a increase in internal energy and the corresponding response is primarily

due to the change in internal energy. So, the entropy change there that contribution is not

that  strong, but  for  elastomeric  material  is  the entropy change here produced due to

deformation that contributes primarily to the retraction force generated.



This entropy change takes place because when the elongation force acts and the materials

deform the chains get stretched. So, in the stretch state the chains actually lose entropy

and that entropic driving force tries to bring the elastomeric material back to its original

dimensions, so that the entropy can be increased again. So, that is an important factor

that  determines  several  of  the  important  properties  of  other  interesting  properties  of

elastomers.

(Refer Slide Time: 15:39)

So, now if we again go back to the expression for change in Helmholtz free energy dA,

so  this  in  the  previous  slide  we  had  written  this  change  at  a  condition  of  constant

temperature. If we just write this change dA in a general form without imposing any

constant temperature condition, then we can write this dA is dU minus TdS minus S dT.

So, we will have 3 terms here and we already know that dU minus TdS this term is just

the force f times dl that we have already established, so that we can substitute here. So,

we get dA in general this change in Helmholtz free energy is just f dl minus S dT. 

Now the dA which is the total differential  of the Helmholtz free energy that one can

always write in this form provided that we are saying, that the Helmholtz free energy is a

function of the elastomeric length l and temperature T. So, if that is considered then we

can always write this d the total  differential in this form and this is standard kind of

mathematical relation. So, what we are saying is that the total change in Helmholtz free

energy, that is due to the change in Helmholtz free energy because of changing length.



As well as the change in Helmholtz free energy because of changing temperature and

these 2 combined to produce the overall change, so that is what this total differential

represents. And, from this expression what we can say is that the f here and this we have

already talked about previously also f is just the changes in Helmholtz free energy at co

with respect to length at constant temperature and similarly the S here by comparison or

this minus of S will simply be equal to this term here del A del T at constant l.

So, both the Helmholtz free both the retraction force and the entropy can be related to

change in Helmholtz free energy. Now for any differential the like dA if it is an exact

differential,  then  we  can  apply  a  condition  whereby  the  second  derivative  of  this

Helmholtz free energy. Let us say with respect to temperature and length is independent

of the order in which the individual derivatives are taken.

So, if we can what we are trying to highlight here is that this del square A del l del T will

be equal to del square A del T del l. So, the order in which the derivative is taken with

respect to temperature and l that is immaterial and both these cases result in the same

expression. That is the property of any exact differential and all the thermodynamic state

variables are exact differentials, so they will sat Helmholtz free energy will also satisfy

this condition and if you apply this condition then it can be shown that rate of change of

entropy with respect to the deformation del S the del l at constant T that is just minus del

f del T at constant l.

So, this is a kind of a Maxwell relation for elastomeric materials and this as we discussed

can be obtained by applying this condition for exact differential in the expression that we

have. So, now that we have this relation between the entropy change with length and the

retraction force length with temperature, this relation actually can help us in explaining

one of the interesting properties exhibited elastomers.

So, we discussed earlier that if an elastomeric elastomer is in the stretched state and if it

is  heated  if  the  temperature  is  increased  then  it  contracts.  So,  this  kind  of  a

thermodynamic  relation  actually  explains  that  behavior,  so  what  we obtain  from the

relation here is that the retraction force increases with increasing temperature at constant

elongation and how we come to that conclusion is that when as elastomer is elongated so

that chains get stretched.



So, in that case entropy always decreases entropy of the system will decreases, so since

the  entropy  decreases  with  increasing  elongation.  So,  this  is  the  left  hand  side  is  a

negative term because with increasing ls is decreasing. So, this derivative be a will have

a  negative  value  and  since  that  is  equal  to  minus  of  this  term.  So,  this  the  partial

derivative del f del T at constant del that can be positive for elastomers.

So, what that implies is that as a temperature is raised the retraction forces also increased

if  the  elastomer  is  maintained  at  a  constant  elongation.  So,  that  is  what  we  have

mentioned here and another way to look at it is that as we have a elongated elastomer or

stretched elastomer and if we heat it then the retraction force tends to increase. So, if the

elongation is not maintained constant then the elastomeric material will tend to contract,

because  a  retraction  force  that  is  pulling  it  back  will  tend  to  increase.  So,  this

thermodynamic expression explains that behavior of elastomeric materials. 

Another interesting property of elastomeric materials that we discussed was that if it is

stretched rapidly it  heats  up.  So, this  another  thermodynamic  expression that  can be

developed which explains that behavior. So, we without going to details we will just say

that it can shown that the change in temperature of an elastomeric material with changing

length at constant entropy that can be shown to be equal to this term ok. Where the Cl is

just a heat capacity of an elastomer at constant length, so for gases we talk about heat

capacity  at  a  constant  volume  or  at  constant  pressure.  So,  here  for  an  elastomeric

material and equivalent quantities it is heat capacity at constant length and that is what

the Cl represents. 

So, on the right hand side here the temperature this is this T which is always the absolute

temperature in let us say the Kelvin scale or any absolute scale so it is always positive.

The Cl heat capacity is also positive and we just discussed that this del f del T at constant

l, this derivative we discussed from this relation and that this derivative is also positive.

So,  the right  hand side of this  expression is  positive  and what  that  means is  that  at

constant entropy if the length is increased for an elastomer, the temperature will also

increase this del T del l will be positive.

So, temperature increases with increasing elongation at constant entropy and this kind of

constant  entropy elongation  can  be thought  of  as  equivalent  to  an adiabatic  kind  of

elongation where there is no heat flow involved ok. So, adiabatic stretching corresponds



to this kind of a condition and what this says is that as the elongation is increased the

temperature increases, so that is a thermodynamic description of rubber elasticity. Now

let  us discuss a little  bit  about model  of rubber elasticity  that takes into account  the

molecular approach to this phenomenon.

(Refer Slide Time: 23:15)

The model that we will discuss is a simple kind of model and is refer to as affine network

model, then of course other models which are more sophisticated. But since this is an

introduction to rubber elasticity, we will restrict ourselves to this simple model which

gives reasonable predictions at least at low elongations. So, this affine network model

was  originally  proposed  by  Kuhn  and  the  key  assumption  of  this  model  is  that  the

deformation of the entire network is affine deformation.

So, what that means is that when the deformation takes place the material undergoes the

same relative deformation throughout. So, if the overall  specimen of our elastomer is

deformed by a certain ratio it is dimensions are changed by a certain ratio, then even at

the molecular scale the corresponding chains, their dimensions also scaled by that same

ratio so that is what this affine deformation implies in this case.

Let us just establish some of the nomenclature that we will you we will  be using in

discussing this model. So, let us say that initially we have a very elastomeric material or

elastomeric  sample  having  length  L x  naught  L y  naught  in  L z  naught  in  the  xyz

direction. So, that is the original dimension and after deformation the let the lengths the



new lengths be L x L y and L z in the 3 dimensions. So, now the deformed lengths can be

related to the original lengths through certain factors and these factors are referred to as a

deformation factors or extension ratios and they are represented by the symbol lambda.

So, L x the deformed length in the x direction will simply be lambda x times L x naught

which is an additional length in the x direction, similarly L y will be lambda y times L y

naught and L z will be lambda z times L x naught.

So, this is how the extension ratios or the deformation factors are defined and if you look

closely then these factors are actually related to the strain. So, we have discussed earlier

that the strain is the ratio of the elongation produced in the material or the deformation

produced by the original dimension and whereas here if we look at these expressions the

deformation  factors  lambda  they  are  simply  the  ratio  of  the  deformed  length  to  the

original dimension.

So, one can relate the strain to these factors through a simple kind of an expression. So,

the strain let us say the strain in the x direction will correspond to lambda x minus 1,

same in the strain in the y direction will be e lambda y minus 1 and the strain in the z

direction will be lambda z minus 1. So, these factors and strains are related through this

very simple kind of expression.

So, now if you consider at the level of the polymer chains or the polymer network, then

let us say that the end to end distance of a network strand there let that vector the end to

end vector be represented by R R naught. So, this vector r naught and we are talking

about the networks stand in the initial original or and deformed stat and let Rx naught Ry

naught Rz naught be the components of this vector in the 3 directions. So, now when we

talk about network strand what we mean is in the network polymer that we have, the

network strand is the portion of a chain that is between 2 cross linked points. So, as we

discussed earlier a network polymeric is a polymer which consists of several cross linked

points.

So, it is the chains are cross linked with each other and a network strand corresponds to

portions of a chain which exists between 2 such cross linked points. So, this end to end

vector R naught they corresponds to that of network strands in this model and again

when the material is deformed. Then in that case the end to end vectors will also change

their magnitude and the affine deformation assumption that we are making that leads to



the fact, that the in the deformed state the end to end vector will have components which

will be related to the undeformed end to end vector components through again the same

factors lambda x lambda y lambda z.

So,  the  factors  that  relate  the  undeformed  and  deformed  dimensions  of  the  overall

material,  those same factors also relate the undeformed and the deformed end to end

vector  dimensions  of  the  network  strands  and  that  is  the  affine  deform  Affine

deformation assumption coming in. So, now with this kind of expressions and definitions

let us proceed.

(Refer Slide Time: 28:16)

So, in the very first week we talked about isolated ideal polymer chains and we discussed

the fact that the end the end to end vectors their distribution can be represented as a

Gaussian distribution, provided that the dimension of the end to end vector is very much

smaller  than  the  fully  or  elongated  length  of  the  chain.  So,  the  end  to  end  vector

dimension is much smaller than n times l then this Gaussian kind of distribution can be

assumed to be valid for the end to end vector distribution.

So, if that assumption is valid so if the elongation is not too high then in that case it can

be shown we will  not  go through the  derivation  here.  But  it  can be shown that  the

entropy change associated with a deformation will simply begin by the expression, that

we have here that is delta S will be equal to minus n times k B by 2 lambda x square plus

lambda y square plus lambda z square minus 3 and these 3 as the other deformation



factors or the extension ratios defined in the previous slide k B is the Boltzmann constant

and n is the number of network strands that are present in our network polymer sample

or the elastomer ok.

So, n is the number of network strands and as we discussed these network strands are

nothing but the chains that are between 2 cross linked points in the network. Now this

delta s expression once we have that we can also obtain an expression for the Helmholtz

free energy so or the change in Helmholtz  free energy, so change in  Helmholtz  free

energy at constant temperature delta e we can always write it as delta U minus T delta S.

Because we defined a as U minus T S so delta S it will be delta U minus T delta S at

constant temperature.

Now, for elastomeric deformation or the deformation of elastomers, we have discussed

that the contribution of the energy change or the energetic part that is very weak and

entropic contribution is the dominant one. So, in the this when discussing the change in

the  Helmholtz  free  energy  we  will  again  neglect  the  change  in  internal  energy  and

primarily attribute the change in Helmholtz free energy to the change in entropy of the

system. So, so neglecting the delta U term we can just write delta S minus T delta S and

the delta S we have already stated here, so the Helmholtz free energy change that can be

given by this expression for an isothermal deformation at constant temperature.

Now, this  Helmholtz  free  energy is  also  equivalent  to  the  work associated  with this

deformation. So, the work or the isothermal reversible work of deformation W that we

can write simply as this delta A and that will be given by the same expression that that

we have here. So, it is dependent on the temperature the number of a network strands

present  as  well  as  the  extents  the  issues  in  all  3  directions.  These  are  some of  the

important  expressions  for  this  model  and  then  next  we  will  try  to  simplify  these

expressions for a specific kind of deformation.

So,  right  now  we  have  taken  or  developed  this  model  assuming  different  levels  of

deformations in the different directions. Now, if we focus specifically on what is called a

uniaxial deformation, where the primary deformation will be in one direction and some

associated deformation in other directions will be there and if we assume incompressible

deformation then we can further simplify these expressions. So, that is what we will do



next  now if  we assume incompressible  deformation  where no volume changes  takes

place.
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Then what we can say is that the product of the 3 extension ratios that will be equal to 1

and something that one can easily verify. So, if the initial volume is v naught that will be

equal to L x naught plus times Ly naught times L z naught and the deform volume v will

be L x times L y times L z and if we equate v naught to v that is the volume is if the

volume is not changing then it can be shown that the product of these 3 factors is just

one.

So, that comes due to the incompressible deformation assumption, next we will consider

the case of uniaxial deformation only in a certain direction that is the x direction in our

case and we will say that this lambda x the extension ratio in the x direction. We will just

represent that as simply lambda and the primary deformation is taking place in this x

direction and in the y and z directions some corresponding deformation will take place,

so that the volume remains unchanged and the deformations in y and z directions will be

equal, so that the lambda y will be equal to lambda z.

Now, since we have this condition because volume is not changing and lambda x we

have represented as simply lambda.  So, we can say that the product lambda y times

lambda z is just 1 over lambda and since lambda y and lambda z themselves are equal.



So, what we can see next is that lambda y square is just equal to 1 over lambda and

finally lambda y is 1 over square root of lambda.

So, if we have a deformation lambda taking place in the x direction correspondingly in

the y and z direction 1 over a square root of lambda deformation will also take place. So,

now as if lambda y and lambda z are equal then we can simply say that lambda y and

lambda z are just both equal to 1 over square root of lambda and once we have these this

expression as well as this expression the. We can go back to the expression for the work

of  deformation  or  the  change  in  Helmholtz  free  energy  due  to  the  deformation  and

substitute these values for the 3 lambdas and try to simplify those expressions.

So, if we go back to the expression for the work, then we had this expression previously

and for lambda x square will simply substitute that by lambda square, lambda y square

will be just 1 over lambda lambda y square is 1 over lambda same lambda z square will

also be 1 over lambda, so they can be added to get this 2 over lambda term. So, this is the

expression that we get for uniaxial deformation where no volume change taking place,

similarly since I have no strain energy is just equal to this work of deformation or the

helmholtz free energy change that is equal to the work of deformation, so for that also

the same expression will apply.

So,  now  that  we  have  these  2  expressions  what  we  can  do  is  try  and  develop  an

expression  that  relates  the  stress  to  the  deformation.  So,  a  stress  strain  or  stress

deformation kind of expression that captures the mechanical behavior like mechanical

properties of these elastomers that is what we will attempt to develop next.
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So, this is the expression that we just derived and we have discussed earlier, that the

retraction forces this f is just simply equal to the partial derivative of the Helmholtz free

energy with respect to the deformation. So, if you are talking about f x the force in the x

direction,  then  that  we can  say as  the  partial  derivative  this  delta  A associated  with

deformation with respect to the dimension in the x direction which is L x or the change

in dimension in the x direction which is Lx.

So,  again  this  L  x  which  is  a  deform  dimension  at  any  point  of  time  during  the

deformation process that we can write as lambda x times L x naught, where L x naught is

the undeformed dimension in the x direction and this L x naught is a constant so that we

can take  outside.  So,  we just  get  this  expression and here since we are talking  to  a

uniaxial deformation instead of lambda x we are simply using lambda here. Now, if we

consider  this  partial  derivative  that  can  be  obtained  by taking  the  derivative  of  this

expression with respect to lambda and if we do that what we get is this expression here.

So,  if  we  differentiate  this  with  respect  to  lambda  we  will  get  2  lambda  and

differentiating this as a term with respect to lambda gives us minus 2 over lambda square

so those are the 2 terms here. And, finally upon simplification by cancelling the factors 2

here we get this expression for f x the force in the x direction. Now, is now if we have

this f x we can also develop an expression for the corresponding stress sigma xx. So, this

corresponding this normal tensile stress associated with this force f x, that we can write



as f x divided by the corresponding cross section area on which this f x is acting. So, f x

is  a  force  directed  along  the  x  direction,  so  it  will  act  on  a  surface  that  is  again

perpendicular to the x axis and that lies in the yz plane.

So, for so on that face of elastomeric sample the corresponding cross sectional area will

be  simply  L y times  L z  that  is  what  we have used  here.  And,  if  we substitute  the

expression for f x from here if this is the expression is substituted here then we get this

expression. And, now L y and L z if you see here these 2 are the deformed dimensions,

so the cross section area that we are considering here that is a cross section area at any

point of time during the deformation process. So, it is the deformed cross sectional area.

Now, this  L y and L z also we can write in terms of the corresponding undeformed

dimensions and the extension ratio. So, L y is just lambda y times L y naught and L z is

lambda z times L z naught.

So, if you do that we will get this expression, now lambda y we have already discussed

for the uniaxial deformation lambda y is just 1 over square root of lambda and then same

applies for lambda z as well. So, the product lambda y lambda z that will just be 1 over

lambda, so if we make that substitution this lambda comes up over here in place of the

lambda y lambda z here and we have this product here. So, this lambda we can of course

take inside here and this product this is just the volume of our elastomeric material which

is not changing during deformation that is the assumption.

So, L x times L y times L x naught times L y naught times L z naught that is just a

volume. So, if we represent the volume of a elastomeric material by V that is what we

can get in the denominator here. And, taking this lambda in here we get lambda square

minus 1 over lambda in here and this is kind of stress this is referred to as a true stress

because, it is defined based on the deformed cross section ok. So, in this definition we

have considered the cross sectional area in the deformed state. So, such stress is referred

to as true stress and we already discussed that this product is just the volume of the

sample. And, this sigma true is the true stress for uniaxial deformation in the x direction

in our case.
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So, that is a true stress expression that we already developed, but apart from this kind of

a definition of the stress there is another definition that is very common that is called the

engineering stress or the nominal stress. And, the difference in the definition is that the

engineering stress is defined based on the undeformed cross sectional area. So, if we talk

about this engineering stress it is based on undeformed cross sectional area. And, the

expression for the sigma engineering this engineering stress is just a corresponding force

divided by the cross section in the undeformed stage.

So, that is why we have used L y naught and L z naught and again this f x if we substitute

this f x the expression for f x from the previous slide, then we get this expression and this

product is simply the volume as we have already discussed. So, and we get this volume

here. So, the expression for engineering stress is this here.

The factor that appears in both the these definitions for engineering stress as well as for

the true stress, this factor n times k B times T divided by the volume that is referred to as

the shear modulus of the elastomer and represented by G. So this n k B T by V that is the

shear modulus of the elastomer G. And, this  n by V this  number of strands per unit

volume  or  the  volume  or  the  number  density  of  the  network  strands  present  in  the

polymer sample that we can represent as this nu. So, this nu is just this n by V factor here

and one can relate this expression or this n by V factor to the density of the elastomeric

material and this M s which is what is called the number average molar mass of the



network strand and the they can be related in this fashion ok. So, all the symbols that we

have used here they are again defined here, where we as we discussed these are shear

modulus needs the number of network strands per unit volume, rho is the density of the

overall  network polymer and this  M s is the number as in molar mass of a network

strand.

So, network strand is the portion of a chain that that is between 2 cross linked points. So,

the numbers as more than mass of such network strands, that is what this ms represents

and the shear modulus can be written in terms of this M s and rho like this or in terms of

the number of network stands in volume like this, both are equivalent. So, finally the

expression that we have derived for this model is that the engineering stress is given by

G times lambda minus 1 over lambda square, where G is the shear modulus. The true

stress is G times lambda square minus 1 over lambda. And, if we compare these 2 the

engineering  and  the  true  stress  then  they  can  they  can  be  simply  related  by  this

deformation factor the extension ratio lambda. So, the engineering stress is just a true

stress divided by lambda, when we are considering this a uniaxial deformation ok.

So, this is a simple model for elastomeric deformation that is developed considering the

molecular  viewpoint,  there are certain of course limitations  with this  model.  So, one

important  limitation  is  that  since,  it  assumes  a  Gaussian  distribution  of  end  to  end

distance. So, that is why when the extension or the elongation is high this, the model is

not able to capture the actual behavior because, at high elongation so the chains become

highly stretched. And, in that limit when the chains are highly stretched the Gaussian

distribution approximation that does not work that fails at the molecular level. So, that is

why this model also fails to capture the deformation behavior when the elongations are

very high.

The other issue is that if the molar mass of or if the chains in the polymer are very long,

then in that case apart from the chemical cross link side are present one can also have

what  is  called  physical  entanglements  between  the  chains.  And,  they  these  physical

entanglements can act as physical cross links and that can also affect the stress strain

behavior and the modulus of the material. So, these are things which are not captured by

this material model, but since it is a simple model and it captures some of the features of

rubber elasticity well. So, it is some it is something that we have discussed and another

good thing about this model is that it based on molecular kind of interpretation.



The last thing that we will discuss on this topic is of what is called a phenomenological

model, which is does not have any molecular interpretation behind it. But which is seen

to actually capture the rubber elasticity behavior to a good degree of accuracy.
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So,  that  model  is  typically  called  the  Mooney-Rivlin  equation  and  as  this  a

phenomenological model and it does not rely on any molecular kind of a approach. So, it

does not have any molecular insights built into it. And, one cannot draw any conclusions

about the molecular nature all things happening at the molecular scale from this model.

But it is a good model in the sense that it captures the rubber elasticity behavior quite

well for a wide class of elastomers. In this model what is there is 3 strain invariants are

considered. So, we will not go into the details of the derivation, we will just mention the

key points. So, a strain invariant is a quantity which is independent of the coordinate

system that we that we are choosing.

So, 3 different strain invariants are considered and these in strain invariance and nothing

but combinations of the extension ratios that we have discussed previously. So, different

combinations  of the lambda x lambda y lambda z in constitute  these different  strain

invariants.  And, the  free energy density  of  the elastomer  is  written  as the difference

between the strain invariants in the deformed state and the value of the strain invariants

in the undeformed state. So, it is written as a function or a kind of a series power series

of this difference.



So, we will again not going to the details of how further derivation is done, but we will

again consider the simple case when we have just uniaxial deformation and the network

polymer is incompressible. So, in that case as before lambda x we can represent simply

by lambda and the lambda by lambda z both come out to be 1 over square root of lambda

and it is identical to what we did for the affine network model ok.

So,  under  these  assumptions  we  will  get  these  relations  between  lambda  and  the

Mooney-Rivlin  equation  without  derivation  we  can  state  this  equation  in  this  form,

where the true stress divided by lambda square minus 1 over lambda which is equal to

the engineering stress divided by lambda minus 1 over lambda square.  So,  the these

quantities are equal to 2 times C1 plus 2 times C2 over lambda where C1 and C 2 are

constants of this model.  And, if we compare this model the Mooney-Rivlin equation,

with our affine network model. The previous model that we discussed then this equation

reduces  to  affine network model  in  and in  the case where the shear  modulus  of  the

elastomer is given by 2 times C1 and C2 is 0.

So, for these values of the Mooney-Rivlin constants the affine network model can be

obtained  from  the  Mooney-Rivlin  equation.  But  even  for  many  elastomers  this  C2

actually is not necessarily 0; it might it typically is seen to have some finite value and if

for and in that case the elastomeric response is captured well by this equation.

So, if let us say one plots the quantity is sigma engineering versus lambda minus 1 over

lambda square, if we plot this against 1 over lambda. So, what the affine model says is

that since C2 is 0 and in this kind of a plot this 2 C2 will simply be the slope of the plot,

so if these models were to apply then we should get horizontal lines in this plot. But for

many materials the lines and not actually horizontal they have some slope and that leads

to non-zero value of  C2. So,  but  for this  such non 0 C2 values  this  Mooney-Rivlin

equation as is seen to fit experimental data for many elastomers quite well, so it is a good

phenomenological kind of description of a rubber elasticity.

So, with this topic we will conclude our discussion of rubber elasticity and in this week

we  have  discussed  a  few  interesting  properties  of  polymeric  materials  particularly

viscoelasticity  and rubber velocity. In viscoelasticity  we talked primarily  about linear

viscoelasticity and some simple models that describe linear viscoelasticity behavior. We

also talked about response to oscillatory stress and oscillatory deformation. And, today in



rubber elasticity we talked about the thermodynamics of rubber elasticity, as well as a

simple  molecular  based  model  called  the  affine  network  model  as  well  as  a

phenomenological  model  which  is  a  Mooney-Rivlin  equation  to  describe  this

phenomenon.

So,  in  the  next  week  the  lectures  in  next  week  we  will  focus  on  the  dynamics  of

polymeric materials, in polymeric dynamics itself is a advanced topic. So, we will just

touch upon the very basics introductory aspects of polymer dynamics. So, with that we

will end this lecture here.

Thank you.


