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Hello  everyone.  So,  in  the  last  lecture  we  talked  about  viscoelasticity  of  polymeric

materials, where we saw that the viscoelastic response typically is a kind of response,

which is intermediate to that of a purely elastic response as in purely viscous response.

So, we also discussed a couple of mechanical simple mechanical models to describe such

viscoelastic  behavior.  In  today’s  lecture  we  will  carry  forward  that  discussion  on

viscoelasticity, and we will specifically talk about a couple of other parameters, which

are  useful  in  studying  the  deformation  behavior  of  viscoelastic  materials  and  the

corresponding mechanical response.

We will  also  talk  about  the  dynamic  mechanical  analysis,  where  the  response  to  an

oscillating  load  is  studied.  So,  the  response  of  viscoelastic  material  to  let  us  say

sinusoidally oscillating load that is what this dynamic mechanical analysis aims to study.

So, we will briefly look at that topic, and towards the end we will again briefly discussed

the rheology of a polymeric liquids such as polymer solution sand melts.
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So, regarding the content of today’s lecture we will start with discussing a couple of

parameters related to the viscoelastic response. So, first will be the creep compliance and

the next will be the stress relaxation modulus, we will define these parameters. We will

also terms talk about what is called the Boltzmann superposition principle, which applies

for linear with elastic materials and which allows one to obtain the state of stress or

strain in a material at a given time, if the entire deformation history for that material is

known and provided the material is linear viscoelastic.

After that we will focus on dynamic mechanical analysis whereas, as we discussed we

will talk about, how the viscoelastic materials respond to oscillating kind of load. Then

towards then we will focus on rheology and flow behavior of polymeric liquids. So, here

we will see that a in many cases that the flow cannot be described using a Newtonian

kind of model so, non-Newtonian behavior so, behavior of polymeric liquids will be

studied and some simple models that describe such a non-Newtonian behavior that will

also be explored. And towards the very end we will briefly look at the dependence of the

quantity viscosity on temperature as well as molar mass of the polymer.
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So, to begin with we will start with the quantity creep compliance. So, creep compliance

is a parameter, which allows the strain in the material at any given time to be determined

provided it is the material is subjected to some stress or some load and it is a function of

time. So, creep compliance directly relates the strain developed to the stress applied, and



the relationship is simply linear and looks like this. So, epsilon which is a strain induced

will be equal to the creep compliance times the stress applied.

So now if we try and see how one of the models that we discussed in the previous lecture

for linear viscoelasticity how that model can be used to obtain an expression for creep

compliance. So, we discussed in the last lecture that, the creep behavior is modeled in a

better way by the Kelvin-Voigt model. So, we will consider that model here. So, if we

can say Kelvin-Voigt model then the creep behavior is shown by this expression again

there is something that we discussed in the previous lecture and the expression for strain

upon application of some fixed stress sigma naught, for Kelvin-Voigt model is given by

this relation.

So, now using this expression defining the creep compliance we can obtain an expression

for  the  creep  compliance  for  a  Kelvin-Voigt  model.  So,  if  we  do  that  this  creep

compliance is simply the developed by the applied constant stress. So, that is given by 1

over E which is the elastic modulus, then 1 minus exponential of minus t by tau naught

where tau naught is the relaxation time. So, in this way we see that for if we have a

models of viscoelasticity available, we can obtain expressions for creep compliance from

there.

Now, creep compliance is quantity or a parameter that relates the strain developed to the

applied stress. In a similar way if we apply a stress if we apply let us say strain to a

material a viscoelastic material, then what kind of stress is developed that is given by

another parameter, which is called the stress relaxation modulus. So, that is what we will

consider next ok.



(Refer Slide Time: 05:35)

So, the stress relaxation modulus is given by this quantity G t it is a function of time and

allows the stress to be determined as a function of the applied strain. So, the relation

between stress and strain as given by this stress relaxation modulus is again a linear, and

the stress at any point of time sigma t is related to the strain epsilon by this expression

where this stress relaxation modulus G t is the quantity, that relates the stress developed

to the strain applied.

So, again like in the previous case like in the case of creep compliance we discussed the

Kelvin-Voigt model and obtain an expression for creep compliance; for stress relaxation

modulus also let us consider simple model that we discussed in the previous lecture and

see how an expression for stress relaxation modulus can be obtained. So, in the previous

lecture we had discussed that the stress relaxation behavior, where the stress is monitored

as time under a given applied strain. So, that is described in a better way by the Maxwell

model, the Kelvin-Voigt model is not able to capture the stress relaxation behavior of

viscoelastic materials. So, the Maxwell model better captures that behavior. So, we will

for the stress relaxation modulus we will focus on the Maxwell model of viscoelasticity.

So, if we have Maxwell model, then from the previous lecture again the expression for

the stress as a function of time as developed for the Maxwell model is given here and the

constant applied strain is epsilon naught. So again now if we go back to the expression

that  defines  the stress relaxation  modulus then from here we can see that  the G t  is



nothing, but sigma by epsilon. So, if we do that. So, sigma by this epsilon naught which

is a constant strain applied that ratio is given by this expression e times exponential of

minus t by tau naught, and that is the expression for stress relaxation modulus for a

Maxwell model.

So, these are a couple of quantities  or parameters  that  are important  in the study of

deformation response of viscoelastic materials to applied load whether its applied stress

or strain. Next what we will do is a study principle known as a Boltzmann superposition

principle, which allows one to obtain the stress a state of stress or the state of strain in the

material, as a function of its with a knowledge of its deformation history.

So, if a material is deformed in several different steps over a long period of time, then

that deform it the entire deformation history for the material is known then the state of

stress  at  occur  at  a  given  point  of  time  can  be  obtained  using  the  Boltzmann

superposition principle.
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So, the Boltzmann superposition principle as we discussed allows the determination of

state of stress or strain in a linear viscoelastic material provided the deformation history

is known. So, it must be stressed that this principle works only for linear risk elasticity

and of course, if the viscoelastic behavior non-linear it is much more complex and the

simple models that we have been discussing they will  not apply. So, for linear basic

viscoelastic behavior then this Boltzmann superposition principle can be applied.



So, let us consider a case where stress is applied in multiple steps to a given sample of a

material,  and  let  us  see  how  the  strain  varies  with  time  and  how  the  Boltzmann

superposition principle can be used to obtain the state of strain in the material at a given

point of time, with a continuous application of stress which might be changing with time.

So, if we have stress that is varying during the deformation of viscoelastic material, then

what this Boltzmann superposition principle says is that the overall strain or the overall

deformation in the material is just given by the linear sum of the individual strains the in

the material,  that are induced in during the different steps of stresses applied. So, the

overall deformation is given by the algebraic sum of strains during each loading step.

So,  what  we  are  saying  is  that  the  stress  is  being  changed  step  by  step  and

correspondingly strain will develop in the material and it is a viscoelastic material. So, a

kind of creep behavior will be sown shown for each step by the application of stress or

load or what is the state of strain or the amount of strain developed in the material at a

given  point  of  time,  that  we  can  obtain  as  an  algebraic  sum  of  all  the  strains  or

deformation the material induced due to each of the loading steps up to that point.

So, if we illustrate try to illustrate this with a graphical kind of approach, then what we

can say is that let us say we are plotting time on the x axis, and on the y axis if you are

plotting stress first, then let us say initially for some time t equal to 0 initially there is no

stress and then at time t equal to some value tau 1, let us say a step stress of magnitude

delta sigma 1 is applied. 

And then again at another time tau 2 another step stress of let us say magnitude delta

sigma 2 is applied and so on for different periods of time this the load the stress is being

increased  in  a  stepwise  fashion.  So,  for  this  kind  of  a  loading  history  Boltzmann

superposition principle allows us to calculate the strain at any given point of time, as a

linear algebraic sum of all the strains produced by the individual loading steps together

and this is something that will allow for apply for a linear viscoelastic material.

So, if we consider this strain at time t you do to this first loading step so, this delta sigma

1 here. So, due to that the corresponding strain produced will be given by a relation that

contains the creep compliance that we had just introduced in a couple of slides back, and

that creep compliance multiplied by the amount of stress that is applied. So, that is that

gives us a strain at any time t after this quantity tau 1; and because this is the time at



which this stress delta sigma 1 is applied. So, after at any time t after time tau 1 the strain

due to this  particular  stress delta  sigma 1 is  given by this  expression and this  creep

compliance will have a value which will correspond to a time of t minus tau 1.

Similarly, for this second load that we are applying the delta sigma to the corresponding

strain  produced  due  only  to  that  particular  load  will  be  given  by  again  the  creep

compliance multiplied by the stress ok. So, in a similar fashion if successively further

loading  is  done  then  for  each  step  the  corresponding  stress  multiplied  by  the  creep

compliance, that will give us the contribution of that part of the loading to the strain. So,

the overall strain at any time t what the Boltzmann superposition principle says is that

that it is the overall strain t at an overall strain at any time t, is given by algebraic sum of

all the those individual strains produced by the different loading steps. So, this overall

strain epsilon as a function of time is given just by the sum of epsilon 1 epsilon 2 and so,

on.

So, if we substitute that then this overall strain is given as a summation over the product

of the creep compliance, and the delta sigma corresponding to each loading step and if

we have n such loading steps then the overall strain will be given by and the sum of all

the corresponding loading steps. So, this is a case if we have a if the stress is being

varied in a discreet fashion. So, step wise we are changing the stress. If the stress is

changing continuously, then instead of this summation the strain is described using a

integral.

So,  for  a  continuous  variation  of  stress,  the  strain  as  given  me  the  Boltzmann

superposition principle is this integral of again compliance times d sigma. And the lower

limit is taken as minus infinity to consider all the entire possible deformation history is

that the material has gone through. And this stress that we have; if this stress is changing

with time then instead of writing in this rate the strain is more commonly written in a

way where the integral is over time. So, that can be done by changing the d sigma to d

sigma d tau, and then integrating over this time.

So, that is the expression that we obtain from the Boltzmann superposition principle, if

the  stress  is  varying  continuously  or  the  loading  of  the  material  is  being  changed

continuously. In a similar way the Boltzmann superposition principle can also be applied



to obtain the stress developed in a material, if the strain is being changed in either in a

stepwise fashion or continuously. So, next let us see how those expressions look like.
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So, if the strain now is varied during deformation of a viscoelastic material, then the state

of stress can be defined using this Boltzmann superposition principle as again the linear

combination or an algebraic sum of all the individual stresses produced due to due to the

individual strains that are being applied so, if each contribution is summed and that gives

the overall stress at any time t.

So and the algebraic sum of stresses due to each loading step so, if again for a first

loading step strain delta epsilon 1 is there applied when the corresponding stress will be

sigma 1,  similarly  for  the  next  loading step  if  the  strain  is  delta  epsilon  2  then  the

corresponding stress is sigma 2 and we see that the applied strain and the produced stress

they are related by the stress relaxation modulus in this case now. So, the Boltzmann

superposition principle again says that the overall stress at any time t is just given with

the linear sum of all these individual stresses.

So, that is what we do and for again finite discrete or stepwise change in the strain, we

can just write the overall stress as a summation. That summation we can write like this

where again the stress relaxation modulus appears here and again as in the previous case

if the deformation is history such that the strain is changing continuously, then instead of

the summation and integral can be used to describe the state of stress at any point of time



t that is given by again this integral, where it is the lower limit in time is from minus

infinity to consider the entire possible deformation history again.

And as before if strain is changing with time then the integral is better expressed as an

integral over time and that can be done by introducing this derivative d epsilon d tau and

then the variable over which integration is carried out is change to this tau. So, these are

the couple of ways in which both Boltzmann superposition principle can be applied to

obtain either the state of strain on the state of stress in a viscoelastic material provided its

entire deformation history is known to us. So, now, what we will do is next we will

consider  the  response  of  such  viscoelastic  materials  to  a  oscillating  or  let  us  say

sinusoidally varying kind of load or deformation.

Till now we have a focused only on loads that are let us say varying linear and linearly or

ii let us say if they are constant. So, in a case where the variation of applied load is of an

oscillating fashion, then we will see that some interesting kind of behavior is observed

and such kind of study forms the area of what is called dynamic mechanical analysis of

such materials.

(Refer Slide Time: 18:42).

And  the  dynamic  mechanical  analysis  will  focus  on  the  behavior  of  a  viscoelastic

material that is subjected to an oscillating load as we discussed. So, this oscillating load

typically is represented as a sinusoidally varying stress or strain ok. So, in real operation

and real applications of viscoelastic polymeric materials also, many times the material or



the polymer will be subjected to a load that is changing with time in a kind of with a

certain frequency. So, such kind of a load is well replicated by this dynamic mechanical

analysis, where a sinusoidally varying oscillating load is considered.

So, the science sinusoidally varying stress or strain is applied, and we measure the strain

in these kind of experiments. If we consider a sinusoidally varying stress, then the stress

sigma can written simply as a constant sigma naught multiplied by sin of omega t; where

this  omega  is  called  the  angular  frequency  of  variation  of  this  stress  and  angular

frequency the units are radian per second, and its related to the normal the frequency f by

this relation omega equal to 2 pi f.

Now, let us see that if the sinusoidal kind of oscillating load is applied then what can we

response that can we expect for a different kind of materials. So, if we have a purely

elastic material, then in that case the response that we get is that the strain developed also

show the sinusoidal kind of a variation and it oscillates with the same frequency as a

stress. So, the strain frequency will also be omega and it does not show any phase lag

with respect to the stress applied ok.

So, for a perfectly elastic solid the strain will be in phase with the applied stress and it

will  oscillate  at  the  same  frequency  of  the  applied  stress.  Next  if  we  consider  the

response of a purely viscous material  or purely viscous response to  this  sinusoidally

varying stress then in that case we can consider the case of a simple Newtonian liquid.

So, what is observed is that the strain actually lags behind the applied stress in the case

of a purely viscous material, and the angle by which the strain or the phase angle which

by which the strain lags the stress is 90 degree or pi by 2 radian.

But the strain again also oscillates with the same angular frequency as applied stress. So,

the omega is the same, but the strain is not in phase with the applied stress it lags the

applied stress by an angle pi by 2 radian. So, that is what we have mentioned here and

this is for purely viscous response. Now viscoelastic response what we can expect is that,

it will typically lie in between these two extremes of purely elastic and purely viscous

response. So, far below viscoelastic materials if sinusoidal kind of load is applied, then

the corresponding deformation  of  strain that  also vary sinusoidally  used at  the same

frequency as the applied load, but it lags again lags the stress by some angle.



But this angle typically is between 0 and 90 degrees. So, a lag of 0 degree corresponds to

a purely elastic response, a lag of 90 degree corresponds to pure viscous response and for

a viscoelastic material this lag or the phase angle by which the strain lags the stress that

is between 0 and 90 degrees. So, the strain as we discussed lags by phase angle delta for

viscoelastic material.

In general what we can do is that for viscoelastic material we can write the stress and

strain variation in this way, where instead of showing the strain by an angle delta we

have instead shown that the stresses leading by phase angle delta so, it is equivalent. So,

if we consider a sinusoidal stress of this kind then for elastic material the strain will be

lagging and we will have to write the strain as epsilon naught sin omega t minus delta;

but instead of that what we have done is written the stress as leading the strain by this

phase angle delta and both representations are equivalent so, this no issues.

So, the strain is given by epsilon naught sin omega t where again omega is a frequency,

and for stress this delta is the phase angle the phase difference between the strain and the

stress.

(Refer Slide Time: 23:18)

So, again if we consider these equations for the oscillating load and the corresponding

strain produced in a viscoelastic, then this sin omega t plus delta that we can expand. So,

if  we expand the sin omega t  plus delta,  this  is  the expression that we get  this  is  a

standard trigonometric expansion sin of a plus b is sin a cos b plus cos a sin b. So, that is



what we have done here. And what we can do is now identify these two terms the first

term here as well as the second term here as two components of the applied load or the

applied stress. So, what we can say is that the first term that we have identified here, that

is a component of the applied stress that is in phase with the strain developed the phase

difference between this component of the stress and the strain is 0. .

So whereas if we consider the second component of this stress; then that component can

be thought of as lagging. So, if you consider the second component that component can

be thought of as out of phase with the strain by an angle of 90 degree so, leading the

strain by an angle of 90 degrees. So, this component is in phase with the strain and this

component of stress is out of phase with the strain by an angle of 90 degrees and that we

can say observe by identifying that cos of omega t is simply equal to sin of omega t plus

90 degrees ok. So, that is again a standard trigonometric identity.

So, the second component where this cos of omega t is there is that we can write as sin of

omega t plus 90. So, we see that now this component has this extra plus 90 degree that

extra phase angle compared to the strain that we have.  So, this  component leads the

strain by an angle of 90 degrees. So, where that whereas, this component of the stress is

in phase with the strain. So, the component of stress sigma naught cos delta, that is what

we have written that is in phase with the strain whereas, the second component sigma

naught sin delta, that is out of phase with the strain by this angle pi by 2 radian.

So, now these two components  we can basically  write in terms of certain moduli  or

dynamic moduli and that is what will define next. So, the dynamic modulus that is in

phase with the strain now then can be defined as E 1 is equal to this in phase component

of stress divided by the amplitude of strain. So, sigma naught cos delta divided by and

this dynamic modules that is in phase with the strain that is called the storage modulus

usually. Similarly dynamic module that is that is in phase with or out of phase with the

strain by an angle pi by 2 radian, that we can define as the second component of this

stress by the amplitude of the strain. So, sigma naught sin delta by epsilon naught and

that is represented as E 2 and that is usually referred to as a loss modulus.

So, the in phase modulus is a storage modulus and that corresponds elastic response to

the deformation whereas, the E 2 which is which we are referring as a loss modulus that

corresponds of viscous or dissipative kind of response to the diff deformation applied.



So, these two moduli we can express the overall stress again in terms of E 1 and E 2 in

this way based on these two definitions as well as this equation, we can write sigma in

terms of E 1 and into E 2 like this.

And also the ratio of E 2 and E 1 that if we take the ratio E 2 and by E 1, then that ratio

will be equal to the tangent of the phase angle delta. So, that ratio is the actually an

important quantity and that is referred to as a loss tangent. So, this tan delta which is just

E 2 by E 1 so, if we divide this expression of E 2 by the expression for E 1 we will get

tan delta. So, this ratio of loss modulus to storage modulus is tan delta and this tan delta

is referred to as a loss tangent.

So, the two moduli that we have defined here they usually in many cases are combined

as a single complex moduli of this form modulus of this form.
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So, where E star is a complex modulus and even the storage modulus is expressed as the

real  part  of  this  complex  modulus,  and  the  lost  modulus  E  2  is  represented  as  the

imaginary part of this complex modulus E star. So, if we substitute the expression for E 1

and E 2 we get this expression for the complex modulus.

So, till now we have discussed dynamic mechanical analysis considering the application

of certain kind of oscillatory stress. So, if we focus specifically on the application of

oscillatory shear stress. So, under oscillatory shear conditions, this expressions that we



have developed is known the same expressions will apply only thing is that instead of the

strain that we are using specifically the shear strain will appear, and instead the storage

and loss moduli that we have discussed, they will be defined in a similar way, but their

notations are typically different for studies under oscillatory shear.

So, if you have oscillatory shear then the stress again is the sinusoidal function leading

the strain by an angle delta, and for strain we will specifically look at the shear strain the

represented by gamma and again stress can be expanded as done previously and we can

identify the in phase component and the outer phase component of the stress with respect

to the strain. 

And the dynamic mod modulus that  is  in  phase with the strain which is  the storage

modulus  that  is  represented  in the case of  oscillatory  shear  by this  symbol G prime

usually. So, that is again define a sigma naught cos delta by gamma naught. And the

modulus that is out of phase or out of phase by pi by 2 radian from the strain that is

defined as sigma naught sin delta by gamma naught and this is represented by G double

prime typically and this is the corresponding loss modulus.

So, the tan delta again can be defined as a ratio of the lost modulus to storage modulus,

and the overall stress also can be expressed in terms of the storage and loss modules like

this. So, they are all stress if we just combine these two equations with this equation, we

will get the overall stress in terms of G prime and G double prime and tan delta as we

discussed is just a ratio of loss in storage modulus, and this is the loss tangent tan delta. 

So, this is G double prime by G prime and finally the complex modulus in this case of

oscillatory  shear  can  also  be  defined  as  that  was  on  previously,  and  this  complex

modulus is just G prime plus i times G double prime that is given by this expression. And

we see that  the moduli  that  we have these are  written as functions  of omega or the

functions of the applied frequency.

We see in these two equations that G prime G double prime has functions of delta the

phase angle. So, it is observed that the phase angle actually is a function of the applied

frequency. So, that is why moduli that we have since they are functions of the phase

angle they are correspondingly also functions of the applied frequency. So, now, that we

have  discussed  the  dynamic  mechanical  analysis  of  viscoelastic  materials  where  an



oscillatory load is applied and the response is studied, let us briefly discuss a physical

significance of some of these quantities.

So, a measurement of these quantities like the storage or loss modulus as well as the loss

tangent delta, as a function of the applied frequency allows one to obtain information

about the molecular motions that are taking place inside the polymeric sample that is

being explored.  So, if we have a purely amorphous material,  then its relatively more

convenient  to  identify  the  different  types  of  motion  that  are  taking  place  with  the

behavior of these quantities the tan delta as well as E 1 and E 2 with respect to changing

frequency. 

If you have semi crystalline materials crystalline fraction is also present there, there the

analysis becomes more complex so, but for a general let us say amorphous polymeric

material, what is observed is that corresponding to molecular motion say taking place

inside  the  polymeric  material;  the  characteristic  frequency  of  that  those  molecular

motions if  they correspond to the frequency at  which the load is being applied,  then

quantities like tan delta show characteristic peaks.

So, if we plot 1 tan delta as a function of frequency some peaks are usually observed. So,

the large peak in tan delta corresponds to a glass transition in polymeric material, where

which marks the onset of significant molecular motion of polymer chains.

Similarly, if we have a small range segmental motion of few bonds concerted motion of a

few wants. So, a polymer chain or let us say motion of the side groups of a polymeric

material, then such motions will also get reflected in the tan delta graph as some small

maxima. And typically instead of studying the variation of this tan delta or E 1 E 2 as a

function of frequency, what is done is the variation studied as a function of temperature? 

So, temperature can also be varied and variation in temperature actually can produce

similar effects as variation in frequency, and again there the temperature at which tan

delta shows a maximum that will correspond to the glass transition temperature. So, a

glass transition temperature which marks the significant onset of molecular motion, this

tan dent delta shows a strong characteristic peak ok.

So, what we see is that these quantities that a study near dynamic mechanical analysis,

allows us to explore and study the molecular motion of the polymer chains inside groups.



So, that is why this technique dynamic mechanical analysis is a powerful technique, and

useful for studying all the characteristics of polymer molecular motions. So, next let us

see  if  we  consider  that  such  a  sinusoidal  kind  of  load  and  use  a  simple  kind  of

viscoelasticity model that we had developed in the previous lecture, we let us try and see

what kind of predictions are made or what kind of for expressions that we obtain.
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So, if we consider the Maxwell model that we have we had developed in the previous

lecture, there the rate of change of strain is related to the rate of change of stress as well

as the stress by this expression. And if we introduce that the quantity tau naught as eta by

E, where tau naught is the relaxation time corresponding to this model, then we can write

the Maxwell model; equation for this Maxwell model in this way.

So,  now let  us  see  what  happens  if  an  oscillatory  kind  of  load  is  imposed  on  this

Maxwell  model.  So,  if  we  consider  epsilon  as  epsilon  naught  sine  omega  t  so,  an

oscillatory kind of strain and try to solve for this quantity sigma that is the stress using

Maxwell models.

So, we will get this ordinary differential equation again, and this equation is also a first

order linear ordinary differential equation, which can easily be solved by the method of

integrating factors. So, by applying that method and solving this equation the expression

for stress that we get, looks something like this and it contains these two terms when

having the sin omega t and the other having cos omega t terms present.



So now if we compare the expression that we obtained from the Maxwell solution of the

Maxwell model to the expression for this oscillatory shear stress which as discussed a

couple of slides back is this so if we compare these two and try to relate the sin omega t

term here with the sin omega t term here. So, we will see that this term we can say has

been equal to this term here, similarly this term which is the pre factor for the cos omega

t that we can say is has been equal to this term here. So, using this kind of comparison,

we can obtain expressions for E 1 and E 2 which are the storage and loss moduli.

So,  the  storage  mo  modulus  as  predicted  by  the  Maxwell  model  is  given  by  this

expression loss modulus by this expression, and if we take the ratio E 2 by E 1 that gives

the loss tangent tan delta and in Maxwell model, that tan delta is given by 1 over tau

naught omega. If we now try to let us say plot these quantities E 1 E 2 which is the story

in loss moduli or the tan delta as a function of omega, then what we will see is that E 1

actually shows an increase with increasing omega which is reasonable representation of

the behavior observed in actual viscoelastic materials. 

E 2 actually shows a peak or a maximum at a certain tau omega value tau naught omega

value.  So, at omega is equal to 1 by tau naught at  that condition or at that value of

frequency, in this E 2 shows a peak the fact that E 2 verses omega plot shows a peak for

this Maxwell model that is also inline with experimental observations.

 However, if we see tan delta as a and if you plot it as a function of omega will see that,

tan delta continuously decreases as omega is increased, and that is something which is

not very consistent with experimental  findings where tan delta  is  shown to exhibit  a

maximum particularly at the corresponding to the glass transition. And for some other

transitions in molecular motions also some other maximum values of tan delta peaks in

tan delta can be obtained. So, we see that the maximum model although it captures the

behavior of change in storage and loss moduli with omega to a reasonable extent, but it is

not able to capture the behavior of tan delta with omega ok.

So, the since the Maxwell model is relative simple model, we do not expect it to capture

all the physical phenomenon and the tan delta behavior is not captured well. Instead if

we used the standard linear model and try to again solve the equation for an oscillatory

kind of load then the tan delta p can other characteristics may be observed as well. So,

this  here  was just  a  simple  illustration  of  what  happens  when an  oscillatory  load  is



imposed on a simple model of polymer viscoelasticity and with this discussion we will

conclude our discussion on viscoelasticity of polymeric materials, and move on to briefly

discuss  the  rheological  and  flow behavior  of  polymeric  liquids  particularly  polymer

melts.

So, if  we consider the polymeric  liquids like polymer solutions or polymer melts,  in

general at reasonable reasonably large values of shear rates these materials show what is

called non Newtonian behavior. So, to understand on it and behave it let us just first

recap what the Newtonian behavior looks like mathematically.

(Refer Slide Time: 39:19)

So, Newtonian fluid is defined by a fluid where the shear stress tau. So, here we are

using tau for the shear stress. So, instead of tau we can also use sigma, we have been

using sigma in general for the stress in our discussion. So, whether its tau sigma it is

equivalent. So, so for a Newtonian so, it that is proportional to the shear rate. So, this

gamma  is  a  shear  strain  and  if  tau  is  the  shear  stress.  So,  here  let  us  say  we  are

representing the shear stress by tau, with the knowledge that previously we have used the

symbol sigma for the shear stress as well so, but in the discussion of flow behavior of

liquids typically shear stress is many times expressed as tau. So, that is what we will use

here.

So, it is proportional to directly proportional to the shear rate or rate of change of shear

strain with time that this quantity and the proportionality constant is this quantity eta



which is referred to as a viscosity of the Newtonian liquid. So, we can write this tau or

the  shear  stresses  simply  eta  times  gamma  dot,  where  gamma  dot  is  there  a  time

derivative of gamma which is the shear strain. So, gamma dot is referred to as shear rate.

So, for Newtonian liquid the viscosity of the quantity eta is a constant it does not change

with  the  shear  rate.  So,  for  many  liquids  with  non-Newtonian  kind  of  behavior  is

observed where the viscosity actually changes with shear rate. So, an extension of this

Newtonian kind of behavior is what is called the generalized Newtonian fluid behavior. 

The relation between the shear stress and the shear rate is given by a form that is similar

to the Newton’s law of viscosity. But now the viscosity eta is allowed to be a function of

the shear rate. So, for a generalized Newtonian fluid, the viscosity is a function of the

shear rate, but the mathematical form of the relation between shear stress and shear rate

that is identical to what we have for the Newton’s law of viscosity.

And this viscosity which is a function of shear rate, that is referred to as the apparent

viscosity and this kind of a model can capture the behavior of non-Newtonian many non-

Newtonian fluids. So, for the case of polymeric fluids that is the polymer melts, it what is

typically observed is that the behavior non-Newtonian behavior that the exhibit is of the

shear  thinning  kind.  So,  constant  polymer  solutions  and  melts  typically  show shear

thinning behavior, in some cases in rare cases shear thickening behavior can also be

observed.  So,  for  some  polymeric  liquids,  but  mostly  shear  thinning  behavior  is

observed. So, we will focus on the shear thinning behavior

So, by shear thinning what we mean is as the shear rate is increased, the viscosity of the

material actually decreases. So, this decrease in viscosity with increase in shear rate that

is  characteristic  of  a  shear  thinning  fluid.  And  for  a  shear  thickening  fluid

correspondingly the viscosity increases as the shear rate is increased. So, if we try to let

us say plot the shear stress tau against the shear rate gamma dot, for a Newtonian fluid it

will be straight line, for a shear thinning fluid it will be a curve that looks like this. So,

the slope of this curve keeps decreasing as a shear rate increases. So, correspondingly the

viscosity keeps on decreasing as the shear rate increases.

So, this is the shear thinning behavior and many polymeric liquids are shown to exhibit

this kind of a behavior. So if we now try and plot the change in viscosity with shear rate

ok so, here we have plotted chain in the shear stress with shear rate, and this straight line



is Newtonian. So, if you plot the change in viscosity or the apparent viscosity with shear

rate this apparent viscosity, then for Newtonian fluid this viscosity will be a constant so,

we will get a horizontal line; but for a shear thinning fluid like a polytypical polymeric

fluid let us say. Initially we will get a horizontal line at small shear rates and at higher

shear rates it will decrease at very high shear it might also again become horizontal.

So, at very low shear rates polymeric liquid can behave kind of like a Newtonian fluid,

but as the shear rate is increased and the polymer chains tend to elongate, and that will

lead to a shear thinning kind of behavior where the viscosity of the material decreases.

And at  very high shear rates  almost  all  polymer chains are  well  aligned in  the flow

direction, again the viscosity becomes pretty much constant, but the viscosity value will

be very low and that is what is shown by this constant at very high shear rates. The shear

thinning kind of behavior of polymeric liquids can be well captured by a model that is

called the Power Law relation so, a power law fluid model.

So, here the shear stress tau is related to the shear rate gamma dot by this power law kind

of  expression  where  the  m  and  n  are  characteristic  parameters  of  this  Power  Law

equation.  So, now, if  we try to identify  the apparent  viscosity  in  this  equation,  then

apparent viscosity eta as a function of gamma dot we can just write it as m multiplied by

gamma dot to the power n minus 1. Because if we write apparent viscosity in this way,

then for a power law fluid also we can then write the shear stress as just this apparent

viscosity multiplied by the shear rate ok.

So, apparent viscosity for power law fluid is defined like this and finally, the viscosity at

very small or almost zero shear rates here, that is denoted many times via the symbol eta

naught and that is called the zero shear viscosity it corresponds to the viscosity of the

fluid at almost the zero shear rates.

So, this power law fluid model is reasonably good model to describe the shear thinning

behavior of many polymeric liquids, and the study of the flow behavior of polymeric

liquids  is  important  particularly  in  polymer  processing  operations  where,  the  molten

polymer is subjected to high shear rates, and the flow behavior can actually affect the

quality of product that we get. So, the rheology and the flow behavior of polymer liquids

it study is important from that perspective.



Finally let us look at how the viscosity of this polymeric materials or polymeric liquids

um changes with temperature, and what is the dependence on the molar mass of polymer

as well ok. So, if we are talking about a polymeric material and it is above its glass

transition temperature, then the change in viscosity can be related to the glass transition

temperature using an equation called the Williams Landel Ferry equation or the WLF

equation.
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 And it is typically valid for a temperature range between the glass initial temperature of

the polymer and up 100 degrees above the glass transition temperature.

So, the expression for this via WLF equation is something like this; log 10 of eta or the

viscosity at any given temperature by the viscosity at the glass transition temperature that

is equal to this quantity here. Where the C 1 and C 2 are observed to be constant for most

many polymers and the universal values of these constants are minus 17.44 and 51.6

Kelvin. Now this ratio that we have here this ratio is also referred to as a Shift factor 80.

So, 80 is nothing, but the ratio of the in this cases this particular case is a ratio of the

viscosity at temperature t by the ratio of the viscosity of the polymeric material that its

glass transition temperature.

So, this shift factor 80 is actually an important parameter and the WLF equation that we

have written specifically for viscosity it is a more general kind of equation which appears

in  the  study of  what  is  called  time  temperature  superposition  behavior  of  polymeric



materials. So, will not go into the details of such behavior, but it is important to know

that this WLF equation is, more general in applicability; and one can specifically apply it

to the viscosity change with temperature, but other effects can also be captured using this

WLF equation.

So, for this viscosity change the shift factor 80 is just the ratio of the viscosity. If the

temperature  is  much higher  than  the glass transition temperature  so,  if  we are much

higher above more than 100 degree celsius above glass transition temperature, then it is

proposed that an Arrhenius kind of relationship actually better  describes the viscosity

change with temperature. So, this Arrhenius relationship is given by the relation of this

kind where R is the universal gas constant, E a is some kind of activation energy, eta r is

the viscosity at some reference temperature T r and eta is the viscosity at temperature T.

So, these are some expressions relating viscosity to temperature.

We can also discuss the relationship  between viscosity  and molar  mass of polymers,

because it is observed that the polymer molar mass actually has a very strong effect on

the viscosity of polymers. So, if you are talking polymer melts then at for low molar

mass polymeric materials, where the entanglement of polymer chains is negligible; such

cases the viscosity is seen to be proportional directly to the molar mass itself whereas, if

the molar mass is crosses above some critical value of molar mass value, the viscosity

actually is seen to depend very strongly on molar mass.

So, for high molar mass polymers the viscosity is seen to be proportional to M to the

power 3.5 or 3.4 something in that  approximate range.  So, for this  high molar mass

polymers were where entanglement  effects  are strong, there the viscosity  scales very

strongly with the molar mass. Typically there is some critical molar mass below which

entanglement effects are negligible and we have this kind of relation between eta nm and

above this critical molar mass where entanglement effect of long polymer chains started

to dominate the stronger relationship between the viscosity and molar mass is observed.

So, if we plot let us say this log of eta versus log of molar mass, then at for small molar

mass values low slope is observed and, but at higher molar mass values that the slope of

this curve will be much higher, it will be around 3.4 or 3.5 that will be the slope and low

molar mass will have around a slope of 1; and these slopes correspond to the exponents

of this quantity I mean these relations. And at some critical molar mass let us say some m



critical molar mass this transition behavior is observed and that typically marks the onset

on scent of a chain entanglement because that molar mass increase leads to longer chains

which have a greater tendency to get entangled.

So, with that we will conclude this discussion of polymer viscoelasticity as well as brief

discussion of polymer rheology and non-Newtonian flow behavior; and what I will do is

leave you with this video which is a very nice illustration of the interesting effects that

can be observed because of the viscoelastic  and non-Newtonian nature  of polymeric

liquids.
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So, if we look at this video, we have a liquid filled inside a beaker and it rod is placed

inside the liquid and the rod is being rotated at high speed. So, for a Newtonian liquid

what one would observe is that, if the rod is rotated at high speed then the liquid will

typically move towards the periphery of the beaker and rise and get depressed at the

center near the rod, because of inertial effects.

But  for  polymeric  liquids  because  of  the  viscoelastic  nature,  there  is  some  normal

stresses present which lead to rise in the polymeric liquid on the rotating rod that we

have. So, this effect is known as the rotating rod or Wiesenberger effect; in this particular

video as mentioned is taken from a source which is the website of Professor Hatsopoulos

at  MIT.  So,  it  very  nicely  illustrates  very  interesting  kind  of  flow  behavior  of  a

viscoelastic polymeric liquids where the liquid tends to climb on top of a rotating rod.



That will conclude our lecture for today and hopefully these last couple of lectures have

introduced  you  to  the  concept  of  viscoelasticity  as  well  as  how  it  applies  to  the

mechanical response of polymeric materials.

In the next lecture we will look at another interesting kind of mechanical behavior of

polymers, in particular that of rubbery cross link polymers, and that behavior is what is

called a rubber elasticity.

Thank you.


