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Ideal Chain Models

So, in the previous lecture we discussed some introductory concepts of polymers. So,

what are polymers, what are different types of polymers, how polymers can be classified

into different categories and how the molar mass of polymer is defined in different ways,

these are some of the things that we discussed in the previous lecture. Today, we will be

starting at different topic and that topic is basically the ideal models of polymer chains.

So, before we go ahead I will just briefly discuss the content of this lecture.
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So, in this lecture we will be starting off by discussing what ideal chains are and how

they are different from real polymer chains, and then we will be talking about different

the  models  that  are  available  for  ideal  polymer  chains.  So,  specifically  we  will  be

focusing on four different models. The first model is the freely jointed chain model, the

second model  will  be the  freely  rotating  chain  model,  the  third  one  is  the  hindered

rotation model and the last one that we will discuss very briefly is the rotational isomeric

state model.



So, as we go from top to bottom these models actually increase in complexity more and

more constraints are added. So, the top most model is actually the simplest one, but it is

the least realistic one and as we go down the bottom one, which is rotational isomeric

state model that is the one which is more realistic and it is actually used to predict the

conformation of polymer chains to good degree of accuracy in many cases.

And finally, we will also be discussing the concept of what is an equivalent freely jointed

chain. So, any of the chain models that ideal chain models that we have listed here; they

actually all of them can be represented by an equivalent freely jointed chain. So, how

that can be done that we will discuss towards the end of this lecture. So, what is an ideal

chain?

(Refer Slide Time: 02:30)

So, by an ideal chain what we mean is polymer chain, in which monomers which are far

apart along the polymer backbone they do not interact with each other. So, monomers

which are very close to each other monomers, which are close along the polymer chain

they will in fact, interact, but those which are sufficiently far apart they do not interact in

the case of ideal chain models.

So, this kind of model might seem quite unrealistic, in the sense that any actual polymer

chain in any actual polymer chain the monomers no matter how far apart they are when

they come to close together they will actually interact, but it turns out that these kind of

models they serve to two purpose. One is that using these models as a base one can



actually build upon them to develop more realistic models for real polymer chains and

the other thing is that many in many cases actually real polymers systems or polymer

chains are known to adopt ideal chain conformations.

So, if we look at some of the cases here polymer chains have actually been observed to

adopt chain conformation, which are very nearly ideal in certain cases. So, some of the

cases are listed here one is the case of a dilute polymer solution at what is called the theta

condition. So, we will not going the details here because when we come to the topic of

polymer thermodynamic few after a few lectures, then we will discuss this concept of

theta conditioning in detail and we will see that at certain special condition the polymer

chains  in  a  dilute  polymer  solution  actually  start  to  behave  or  tend  to  adopt  the

conformation of an ideal chain.

Similarly, if we have polymer in molten state or even concentrated polymer solution they

have also been shown to exhibit nearly ideal chain conformations. So, before we move

move ahead it is important to emphasize that polymers actually can adopt many different

conformations. So, single polymer molecule, it is a long chain molecule and molecules

are usually quite flexible. So, due to the inherent flexibility of the backbone the polymer

molecule  conformation  keeps  on changing with time  and due  to  this  the  long chain

nature and the flexibility of the backbone the then numerous conformations, then that a

given polymer chain can adopt.

So,  this  flexibility  of  the  backbone  which  is  responsible  for  the  various  number  of

conformations that are possible so, this flexibility arises not because of the flexibility in

terms  of  bond angles,  but  it  the  flexibilities  because  the  different  torsion  angles  are

allowed for a given polymer chain or given group of atoms in a polymer chain, they can

adopt  different  torsion  angles  and  this  flexibility  in  adopting  multiple  torsion  angle

actually leads to flexibility of the polymer chain itself.

So, before we move ahead it is important to describe what a torsion angle is because in

some of the models that will be discussing later on in this lecture the concept of torsion

angle will actually arise.
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So, when we talk about a polymer long polymer chain polymer chain will be constituted

by atoms which are bonded to each other forming a long sequence. So, the bond lengths

in a polymer chain are typically fixed. So, if we take the example of polyethylene then

the C-C single bond along the backbone that bond length is pretty much fixed at around

1.54 Armstrong they might be some small fluctuations due to thermal vibrations, but that

the fluctuation is not large enough to impart any flexibility to the polymer chain itself.

So, bond lengths are pretty much fixed. The bond angles also in the case in the case most

of the polymer the bond angles are also fixed. So, if we again talk about the case of

simple case of polyethylene in that case the bond angles the carbon carbons are basically

tetrahedrally  arranged.  So,  the  bond angle  is  typically  close  to  the  tetrahedral  angel

which is around 109 degrees.

So, there also the bond angles are pretty much fixed they might be against some variation

in the bond angle,  but  that  is  not  enough to impart  enough flexibility  to  the overall

polymer chain. So, before we move on it is important to mention that in this course the

symbol  theta,  that  we have  here  this  symbol  theta  will  primarily  be  used  for  angle

between  bond  vectors  and  this  angle  between  bond  vectors  is  actually  some  more

different from the convention definition of a bond angle.

So, if we let say consider a bond like this two bonds like this which form an angle. So,

so, let us say the first bond is defined by this vector in the second bond by another vector,



the angle that we drew here. So, the angle that we draw here this angle here that is

conventionally referred to bond angles in many text.

So, in this course we will be using a slightly different angle for our purposes. So, if we

extend the first bond like this then the angle that the extension of first bond the angle that

it forms with the second bond vector which we can show like this here, this angle this is

the one that way call as theta in this course. So, the conventionally defined bond angle

actually will be 180 minus theta. So, so any time we are talking about the angle theta

between bonds it is actually the angle between the adjacent bond vectors.

Next let us move on to torsion angle which is also referred to as dihedral angle. So, just

like we have bond angle defined by the presence of two bonds, a torsion or a dihedral

angle is actually defined by three consecutive bonds in a polymer chain next let us look

at a schematic of a typical polymer chain and let us focus on three consecutive bonds of

this polymer chain and let us see how using this three bonds torsion angle is defined.

(Refer Slide Time: 09:09)

So, if we look at this chain it is it the part which is shown in bold consist of four atoms A

i minus 2, A i minus 1, A i and A i plus 1 and the bonds connecting these four atoms we

have three bonds one is r i minus 1, one is r i, one is r i plus 1. So, with these three bonds

connecting these four atoms and of course,  the polymer chain is much longer. So, it

continues in either direction which is shown through dotted lines. So, in the torsion angle

is  defined  as  the  angle  formed  between  two  planes;  so,  the  first  plane  is  the  plane



containing the bond vectors r i minus 1 and r i. So, these two bond vectors basically form

a plane the other plane can be defined using bond vectors r i and r i plus 1.

Now, the angle between these two planes basically that is the torsion angle. So, now, if

we look at the schematic here then the if we consider the bond vector r i plus 1 again and

if we consider it is rotation about fixed standard A i and if we consider that it is free to

rotate in space only maintaining a constant bond angle theta i then the angle pi i that is

shown here that is the torsion angle. So, that is how torsion angle or dihedral angle is

defined and for polymer chain these torsion angles actually can take multiple values.

And,  the  that  is  the  origin  of  the  flexibility  of  polymer  backbone.  So,  again  if  we

consider the example of polyethylene then in that case the backbone basically consist of

groups of CH 2 CH 2 groups bonded together in a long sequence. 

So, for polyethylene basically if we consider torsion angles for polyethylene then there

are three torsion angle values which correspond to a potential energy minimum. So, these

three torsion angle values actually are 0 degree plus 120 degrees and minus 120 degrees

and that torsional states associated with these angles are referred to as trans state for the

0 degree torsion angle and gauche plus state for plus 120 degree state and gauche minus

state for the minus 120 degree states.

So, these are the three torsion angle values if we consider any three consecutive bonds

along the polyethylene  chain.  So,  these are  the three  torsion angle values  where the

potential  energies shows a minimum or shows minima and specifically the minimum

energy at the trans state is actually lower than those for the gauche state. So, the gauche

plus gauche minus states basically represents secondary minimum whereas, a trans state

is the lowest energy state, with that introduction to torsion angle and the fact that the

variation in torsion angle is responsible for the flexibility of polymer chains.
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Let us move ahead and discuss different conformations that an ideal chain can possibly

adopt.

So, in our discussion let us say that the we are considering a polymer chain which has n

number of bonds. So, the number of bonds represent that by small n and let say that the

all the bond vectors have the same length represented by small l. So, in the model that we

are  using  or  to  describe  polymer  chain  conformation,  we  will  consider  only  linear

polymers having fixed bond length l and having a number of bonds equal to small l. So,

if we consider now this quantity which is referred to as a end to end vector. So, this end

to end vector it is represented by the symbol R n it is a vector and it is basically the sum

of all the bond vectors in the polymer chain. So, it is vector sum of all the bond vectors

in the polymer chain and it is so, in that sense it can be defined in this way.

Now, if we look at the schematic of this typical polymer chain conformation, here the

polymer chain or the bond vectors in the polymer chain are shown as arrows and the dots

basically correspond to the atoms which these bond vectors are connecting. So, the small

r  r  i  which shown as r  1,  r  2 or r  n minus 1 and r  n here,  these correspond to the

individual bond vectors and the end to end vector is basically this R n capital R n which

connects the two ends of the polymer chain. So, if we construct a vector staring from one

polymer chain and ending at the other chain end then that vector is referred to as a end to

end vector as a name suggests and as we see here as we see in the schematic here, it



basically can be just represented as a vector sum of all the bond vectors present in the

chain.

So, here in this case this is very representative drawing of a typical polymer chain where

the polymer chain has been shown through only a few bonds and this dash bond here

basically represents the that, they are polymer chain is actually long and we have broken

it and shown only the initial  and the final parts of this chain because that is what is

relevant to the discussion of this end to end vector.

Now, as we know because of the flexibility of the adopting different torsion angles the

polymer chain can display many different conformations. Number of conformations that

typical polymer chain can display is very large and each of the conformation actually

will  have  a  different  end to  end  vector.  So,  for  a  even  single  polymer  chain  if  the

conformation changes the end to end vector will change both in direction and magnitude

and since a number of conformation is very large and number of possible end to end

vectors that is also very large.

So, inst ahead of defining a single end to end vector, what we can do as we did for the

case of polymer molar mass is that we define a kind of average measure of this end to

end vector. So, one way to define that average is through what is called an ensemble

average.  So,  in  this  case  what  is  done  in  an  ensemble  averages  you  consider  large

collection of same polymer chain in different conformations and you basically add up the

all the different end to end vectors that this polymer chains have and finally, take the

average.  So,  this  kind  of  ensemble  average  basically  is  typically  represented  by this

angular  brackets  that  are  shown here.  So,  anything  within  these  angular  brackets  is

basically denotes the ensemble average of that quantity.
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So, next if we look at the typical some of the typical conformation that polymer chain

can  adopt  then  here  only  five  conformation  of  representative  polymer  machine  are

shown. So, if we look at all these five chains. So, if we look at all these five chains then

in all of them the initial the first few atoms are basically exactly the same arrangement.

So,  these  different  conformations  have  result  just  by  changing  the  changing  the

arrangement of the atoms towards the very other end of the polymer chain.

So, if  we look at  the first  case here then the last  five atoms or the last  4 bonds are

arranged in a certain fashion in the second case the last five bonds are arranged in a

different fashion the first last four bonds, the first few bonds are arranged identically to

the  first  case.  Similarly,  in  the  third  case  also  it  is  only  the  last  few bonds  whose

arrangement has been changed in all these cases.

So, in all these cases we see that just by changing the arrangement of few bonds the

overall end to end distance actually changes. So, next if we just draw the end to end

distances for all these different polymer chains one by one, we see that there is a large

variation in not just length of the end to end vectors, but also in the direction of these end

to end vectors. So, what this suggest is that just by looking at very small sample of the

different conformations that are possible, what we can say is that there is a wide variation

in  the  end  to  end  individual  end  to  end  vectors  for  different  polymer  chain

conformations.



So, if we just for clarity if we just remove the polymer chain and leave the end to end

vectors then it will be clear as to the wide distribution of the length and direction of these

end to end vectors. So, just by these five representative cases what we have been able to

show is that the end to end vectors basically they can vary in length or magnitude as well

as in direction significantly and for a typical polymer sample, which will have a large

number of polymer chains. The chains will typically will be in different conformational

states and will be having different end to end vectors.

So, ultimately what that suggests is that if we have very large collection of such chains

and the end to end vectors can assume different lengths and different directions then if

we just take the direct average ensemble average of these end to end vectors, then it turns

out that that average is actually 0 provided the collection is quite random and isotropic.
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So, as we just discussed for an isotropic collection of chains multiple chains each having

n backbone bonds. So, inst ahead of atoms it should be let say bonds. So, for a isotropic

collection of chains having n backbone bonds as the collection of isotropic that is no

preferred directions. So, the end to end vector the direct ensemble average of the end to

end vector actually comes out to be 0, because in a large enough collection the different

vectors will have different directions and different magnitudes and the overall vectors

sum it is not the scalar sum it is a vector sum. So, overall vector sum actually will turn

out to be 0.



So, and this is the true for any general ideal chain models that will consider. So, what

they suggest is that this measure of the polymer size which is the end to end vector this is

not a very effective measure simply because and we cannot many end to end vectors and

the  average  value  for  a  large  enough collection  of  polymer  chains  will  be 0.  So,  in

essence it does not tell us anything about the size of the polymer chain. So instead of just

considering the average of the end to end vector what we can do is consider the mean

square end to end distance. So, the instead of just the average on a direct vector, we can

consider the average of its square.

So, it turns out that is the simplest non zero average that we can define for the end to end

vector. So, the mean square end to end distance which is just the mean of the square of

this end to end vector. So, we will represent this mean square end to end distance by this

kind of a notation here just R square inside again angular brackets. So, denotes that it is

also an ensemble average which means that, it is the average mean square mean square

end to  end distance  for  all  the  different  polymer  chains  present  in  a  given polymer

sample.

Next, if we consider mean square end to end distances just square of the end to end

vector then that can again be represented as a dot product of the end to end vector. So, R

n dot R n that is just R n square and that is what the mean square n to n distance that is

what the mean square n to n distance which we are discussing. So, now, if we represent

this R n, so, the capital R n basically the end to end vector as we discussed earlier that

the end to end vector is nothing, but the sum vector sum of all the bond vectors present in

your chain.

So, if we replace the end to end vector by the corresponding sum of all the bond vectors

in the in the equation that we have here like this and so, in that case the mean square end

to end distance basically becomes equal to a double summation of the dot product of the

bond vector and again we are considering the an ensemble average of dot product. So,

whatever dot products we are considering it, we are averaging it over all the different

possible polymer chain conformation that are there.

So, next as we discussed earlier in our treatment of this conformations of polymer chains

as we discussed all the bond lengths are assume to have the same length small l. So, the

bond length is nothing, but the magnitude of this bond vector. So, essentially all the bond



vectors their  magnitude magnitudes are also equal to the small  l.  Next, if  we let  say

represent the angle between the two bond vectors r i and r j small r i and small r j, if we

consider these two bond vectors and if we define the angel between them as the theta i j,

in that case the dot product can simply be written by the definition dot value we can

simply write it as l square times cos theta i j.

So, one thing to note here is that is that the r i and r j. So, the r i and r j that we have in

the expression here these are  not bond vectors corresponding to adjacent  bonds,  and

therefore, the theta a j is also not something related to bond angle. So, r i and r j can

actually be two bond vectors in different locations along the polymer chain and theta a j

just the angle between these two. So, let us say if we consider small part of a polymer

chain  and  we  have  these  five  bond  vectors  as  shown  here  the  first  bond  vector  is

represented by r i and the fourth one by r j.

So, whatever the angle there is between these two vectors that is the theta i j and as we

have a double summation here then as i and j change basically the bond corresponding

bond vectors also change. So, the point that I am trying to impress upon here is that r i

and r j are not adjacent bond vectors, they can be one vectors some distances apart along

the polymer chain and theta i j is also not related to a bond angle it is just the angle

between any two bond vectors r i and r j in the polymer chain.
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So, now that we have these two expressions the dot product is just one square cos theta

by j and the mean square end to end distance, that is a double summation of the sum on

average of the dot product of bond vectors. So, if we combine these two if we combine

these two expressions we end up with a relation between the mean square end to end

distance and the sum or average of angle between different bond vectors as shown here.

So, this is how we have simplified our expression for mean square end to end distances.

Now, all the discussion that we had till now is valid for any ideal polymer chain model.

Now, next we will make a certain assumptions so as to develop what is called the freely

jointed chain model. So, the assumption that we make next basically defines ideal this

ideal  chain  model  has  a  freely  jointed  chain  model  and  the  assumption  is  that  the

directions of different bond vectors are not correlated with each other. So, if the we have

different  bond  vectors  in  a  polymer  chain  and  if  their  directions  are  completely

correlated, there is no there is no connection or no relation between the direction of given

bond vector and direction of some other bond vector in the same polymer chain.

So, if they are completely uncorrelated then the model that we get is called the freely

jointed chain model and because the bond vector directions are completely uncorrelated

there is no actually fixed bond angle as well. The reason for this is if we just consider

two bond vectors adjacent  bond vectors.  Now, since the direction of these two bond

vectors are completely uncorrelated so, the whatever direction of the first vector we have

the  second  vector  can  take  any  direction.  So,  since  the  second vector  can  take  any

direction independent of the direction of the first vector, there is no fixed bond angle and

bond angle also you can take any value.

So, in this freely jointed chain model basically at the joints at these joints the bonds have

been basically connected freely. So, they can have any orientation irrespective of the

orientation of the adjacent bonds. So, now, since this no correlation between the direction

of different bond vectors what mathematical that what that implies is that the ensemble

average of this quantity cost theta i j this ensemble average actually becomes 0 if i is not

equal to j. 

So, if we are considering two vectors where r i and r j are not equal it is two different

bond vectors distinct bond vectors. Since in this model they are directions are completely

correlated. So, cos theta is actually can have any value between minus 1 and plus 1. So,



since the cos theta i j can have any value minus 1 and plus 1, for if we average over a

large enough collection of conformations then in general this summation will come out

to be 0 if i is not equal to j.

On the other hand when i is equal to j this means that we have we are talking about the

same bond. So, when i and j are equal r i and r i r j are the same and we are talking about

the dot product of a bond vector with itself. So, when i is equal to j when we are talking

about same bond then of course, the cos theta i j will be one and ensemble average. So,

all the cos theta i j values of such kind will be 1 and hence the ensemble average will

also be 1.

So, for i equal to j cos theta i j will be 1. Now, we need to determine how many terms are

present in this summation here. So, in this summation that we have shown how many

different  terms  are  present  where  i  equal  to  j.  So,  just  by  looking  at  this  double

summation we can what we can claim is that actually n such cases where i is equal to j.

So, when i and j both are equal to 1 or when i and j both are equal to 2 or when i and j

both are equal to 3 and so on up to when i and j both are equal to n. So, all these different

cases are the only cases when i and j will be equal.

So, we have basically n terms where i is equal to j in that double summation and the cos

theta i j value is one for all the other terms i will not be equal to j and the ensemble

average  of cos  theta  i  j  will  be 0.  So,  they will  not  be contributing  anything to  the

summation that we have. 

So, we these observation we can simplify the relation for mean (Refer Time: 30:51) and

distance further and the final expression that we get for a freely jointed chain is that the

mean square end to end distance is equal to n l square. So, here the what is important

note here is that if you let us say consider a polymer chain, which it can be described

freely jointed module which is of course,  not very realistic,  but let  us hypothetically

consider polymer chain which as side by the free freely jointed chain model.

So,  the  maximum  length  that  this  polymer  chain  can  have  is  when  the  chain  is

completely stretched and all the bond angles are 180 degree. So, in that case when the

chain  is  completely  stretched  all  bond  angles  are  180  then  the  in  that  particular

conformation the end to end distance be just n times l because n number of bonds and

each bond has a length l and all are aligned next to each other. So, the overall length will



be n l.  So,  that  is  the maximum length  that  this  polymer  can attain  if  we stretch  it

completely.

On the other hand typically on an average what the, this expression tells us is that the

mean square end to end distance is n l square. So, so, the square root of this quantity

which will be a measure of average measure of the end to end distance that we just be

square root of n times l.

So, we see that the average size of this polymer is much smaller than the fully extended

size and the difference will be the larger the value of n or number of bonds present the

larger  this  difference will  be between the dimension of fully extended chain and the

average dimension that the polymer chain adopts.
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So, before moving let just summarize what we have discussed for freely jointed chain

model. So, freely jointed chain model just as an additional information it is also referred

to as random fight model simply because from as we go from one bond vector to the next

the orientations are pretty much random. It is the orientation of a given bond vector is

completely in independent of what the orientation of the previous bond vector was and

so on.

So, it is also called a random fight model and in this model the bond length is fixed let us

add the value small l the bond angle is free to have any value and the torsion angle is also



free to have any value. So, in this in the simplest ideal chain model that we have which is

a freely jointed chain model we have fixed bond length, but free bond angles in torsion

angles and it is most flexible case that one can have. So, you have flexibility basically at

every bond linkage or connection and also there is no correlation between the direction

of the bonds as discussed earlier. 
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Next let us talk about freely another model which is called freely rotating chain model.

So, when we discuss freely jointed chain model there we said that the bond angles are

not fixed they can take any value, ok. So, that is not very of course, not realistic kind of

assumption because in most of the typical polymers bond angles also have some certain

fixed values.

So, that restriction is basically relaxed in this freely rotating chain model this model is

also referred to as the valence angle model and in this model apart from the bond length

which is again fixed at value of l. The bond angle or the angle between the bond vectors

theta that is also fixed. 

So, these two quantities are fixed in this model, but this again no restriction on the values

that are torsion angle can take. So, torsion angle is free to take any allowable value in

this model again. So, the due to the fact that the bond angles are fixed in this case at

certain value theta due to that the direction of bonds actually in this model are correlated

up to certain distance.



So, in a freely jointed model there is no direction correlation in bonds bond direction, but

because the bond angles are fixed in this freely rotating model. So, the bond direction are

correlated  up  to  a  certain  distance.  So,  a  measure  of  the  distance  over  which  these

correlations  decay  out.  So,  that  kind  of  measure  is  provided  by  what  is  called  a

persistence length.  So, we will  not going to the,  into the rigorous definition of what

persistence strength is, but it this quantity can be thought of measure of lengths scale or

length or distance over which the correlations in the direction of bond vectors decay.

So, again for this model also the mean square end to end distance and expression can be

derived starting from basics, but we will not going to those details we. So, the expression

for the mean square end to end distance for freely rotating chain model is shown here

directly without any derivation and we see that the mean square end to end distance R

square that is again proportional to n l square.

So,  for  the  freely  jointed  chain  model  R  square  was  equal  to  n  l  square  here  it  is

proportional to n l square, but there is another factor that comes in here which is which is

related to the fixed bond angle in this model. The previous model the freely rotating

chain model actually as fixed bond angles were torsion angles are free to have any value,

but again in realistic polymer cases the torsion angle is not free to have any value. So,

this  restriction  on  the  values  torsion  angles  can  take  also  due to  static  hindrance  in

similar effects.
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So,  to  account  for  such effects  the  next  model,  that  we discuss  which  is  called  the

hindered rotation model. In this model what is done is again the bond length and bond

angle are kept fixed, but the torsion angle is not allowed to have any free torsion angle is

not allowed to have any value that is possible. So, torsion angle actually can have values,

which is related which is given by a certain kind of probability in this model, but the

torsion angles are still independent. So, what the torsion angle define by a given set of

three bonds will be is independent of what the previous torsion angle was along the chain

or what the next neighboring torsion angles are.

So, torsion angles in this model are also independent, but they are not free to have any

value and the probability with which a torsion angle can occur along the chain that is

related to what is called the Boltzmann factor. So, that Boltzmann factor is given by

exponential  of  negative  of  kind of potential  energy which dependents  on the torsion

angle divided by k B T where k B is a Boltzmann constant and T is a temperature.

So, in this model the rotation of torsion angles is not free, it is actually hindered by the

presence of the potential given by U here and only when for a certain torsion angle phi i

only when the value U are the potential  energy is  small  only then in that  case such

torsion angles will have high probability of occurrence as the value of this energy U goes

high. So, the probability of occurring of such torsion angles goes down significantly.

So, again the mean square end to end distance without going to the derivation for such

models, the mean square end to end distance is related to n l square through this equation

that shown here. So, again we see that the R square and n l square are proportional, but

we have two terms which relate the mean square end to end distance to n l square one

term contains the bond angle and another term contains an average of the cosine of the

torsion angle.

So, how is this average defined? So, the average is can be defined the average of the this

cosine of the torsion angle can be defined by multiplying it by the Boltzmann factor and

integrating from 0 to 2 pi and then again normalizing scaling with the integral of that

Boltzmann factor itself. So, this is the hindered rotation model.



(Refer Slide Time: 40:12)

The next model which is the most sophisticated, but the most complex of all the models

that we have discussed is what is called the rotational isomeric state model. So, this

model is quite successful in naturally describing the conformation of polymer chains and

it is widely used as well, but the model itself is quite complex. So, will not going to into

the details of this model or will just briefly discuss some of the important points related

to this model.

So, here the bond angle and bond length again are kept fixed in this model. The torsion

angle is not free against. So, just like hindered rotation model torsion angle is not free to

take any value, but the difference between the hindered rotation model in this model is

that the successive torsion angles in this model are also to independent. So, given torsion

angle  values  will  depend on what  the  torsion angle  value  of  the,  what  the  previous

torsion angle values  along the chain.  So,  torsion angles  are not independent.  So,  the

torsion angles are allowed to only take certain discrete values. So, if we look at it so,

only discrete torsional states are allowed as just mentioned and these discrete torsion

angles basically correspond to minima in the potential energy.



So, for the case that we discussed earlier also when we are talking about example of

polyethylene chain let us say if we have three torsion angles states defined by trans state

t and gauche plus state and gauche minus state g plus and g minus which (Refer Time:

41:44) corresponds to torsion angles are 0, plus 120 and minus 120 degrees.

So, for each torsion angle each torsion angle can be one of these three states according to

this model. So, if we have a chain which contains n bond vectors. So, if a chain contains

n bond vectors and again we are talking about linear chain. So, all the discussion that we

are having apply is only to linear chains. So, if we it has n bond vectors, then it will have

n minus 2 successive torsion angles, n minus 2 successive torsion angles can be defined.

Now, each of these n minus 2 torsion angles can have one of these three discrete values

trans gauche plus or gauche minus.

So, so, the total number of possible torsion states in for such a chain is actuated 3 to the

power n minus 2 because for each torsion angle three possible values are defined and if

we have n minus 2 torsion angles in a given chain then 3 to the power minus 2 such

states are possible. But, this is actually not the total number of states that this model will

predict because that torsion angles are not independent of each other and all the states are

not equally probable.

So, if we have a let us say sequence of torsion angles where a gauche plus and gauche

minus  or  gauche  minus  and  gauche  plus  occur  consecutively  then  in  that  case  the

probability of such sequence occurring is very low, because such arrangement actually

leads to steric overlap and high energies. So, the torsion angles are not free to have any

value and the there the value of it given torsion angle depends on the value of torsion

angles in the value of neighboring torsion angles.

So, if we talk about a trans and gauche plus gauche minus state states here it might be

useful to just illustrate that through simple plot or graph. So, let us say in the y axis we

are plotting potential energy which is the function of torsion angle and x axis we are just

plotting the torsion angle. So, for a typical case of let  us say polyethylene the graph

might look something like this. So, let us say this is 0, this correspond to the gauche plus

and  this  will  correspond  to  the  gauche  minus  state  and  this  0  torsion  angle  will

correspond to the trans state. 



So, we see that the potential  energy actually shows minimum values that these three

states  that  is  those  minimum  value  potential  energy  torsion,  torsion  states  are  only

considered in this model.
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So, we have talked about various different models, now, let us also discuss quantity or a

parameter  that  is  important  in  describing  how stiff  given  polymer  chain  is.  So,  this

characteristic ratio which is, which gives indications about the stiffness of the polymer

chain that is defined for long ideal polymer chains this characteristic  ratio is defined

through this equation.

So, for any long ideal polymer chain the mean square end to end distance is equal to the

characteristic ratio multiplied by n times l square. So, one can also think of characteristic

ratio, as the ratio of the mean square end to end distance for a given ideal polymer chain

divided by the mean square end to end distance for freely jointed polymer chain. So, this

what this implies is that C infinity is equal to mean square end to end distance by n l

square and this n l square is nothing, but the mean square end to end distance for a freely

jointed chain.

So, as discussed so, this c infinity the value actually depend depends on local stiffness of

the polymer chain and the stiffer the polymer chain typically the higher the value of this

C  in  quantity  C infinity  will  be  or  the  characteristic  ratio  will  be  and  the  value  of

characteristic  ratio  for  all  the  polymers  is  always  greater  than  1,  for  highly  flexible



polymers  value can be in  the range of 4 to  5 whereas,  for  rigid polymers  it  can be

actually the value can be very high. So, for let say polystyrene, which has a bulky side

group and makes the polymer chains stiff. So, for such case such a polymer the values

actually close to 10.

Now, if we look at the different chain models that we have discussed and try to find out

what  the  expression  for  this  characteristic  ratio  will  be  for  a  freely  jointed  chain  C

infinity actually will be will have a value of just one for a freely rotating chain model the

C infinity value will be 1 plus cos theta by 1 minus cos theta where theta is again the

bond angle between the successive bond vectors. And, finally, for the hindered rotation

model the C infinity is given by the expression that is shown here.
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So, the last topic that will cover today before concluding is the concept of an equivalent

free freely jointed chain. So, we discussed different chain models today, the first one and

simplest one is freely jointed chain, but that model if directly applied is quiet unrealistic

because actual real polymer chains have fixed bond angles and have some restrictions on

the torsion angles as well.

So, for ideal polymer chains which are not freely jointed so, let us say polymer chain that

is  described by the freely rotating  model  or rotation  isomeric  state  model,  for such

polymer chains the one can actually define or map an equivalent chain whose bonds are

freely jointed. So, this equivalent freely jointed chain is an equivalent chain which can be



mapped on to any ideal chain and this equivalent freely jointed chain has a property that

the bonds are the equivalent bonds that we get are freely jointed.

So, this equivalent freely jointed for any chain for any ideal chain the equivalence is to

establish by these two conditions; one is that the mean square end to end distance of the

equivalent freely jointed chain that we are defining that should be equal to the actual

ideal chain on which we are mapping this equivalent chain and the other is the maximum

end to end distance. For this equivalent freely jointed chain that should also be equal to

the maximum end to end distance of the actual ideal chain, which we are trying to map

with this equivalent freely jointed chain.

So, let us say that the equivalent freely jointed chain has number of bonds capital N and

let us say the bond length is represented by b. So, these quantities actually have. So, the

bond length of effective bond length of an equivalent freely jointed chain is referred to as

a Kuhn length  and the N which is  capital  N, which is  the number of freely  jointed

effective bonds in this chain that is referred to as an number of Kuhn monomers present.

So, now using these two conditions that we have here let see how we can come up with

expression for Kuhn length and the number of Kuhn monomers present.
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So, we have for a equivalent freely jointed chain the maximum chain length is simply

given by the number of bonds multiplied by the bond length because if the chain is freely



jointed, then it is one can completely stretch it and the maximum length possible is just

the number of bonds multiplied by the length of each bond.

So, that is R max and the mean square end to end distance that for a freely jointed chain

equivalent freely jointed chain that we will simply be given by capital N b square by

capital N is number of equivalent bonds and b is the length of our equivalent bond for

this freely jointed chain and we also know that for any ideal chain this R square is also

equal to C infinity n l square. So, using these two equations one can basically derive

expressions for capital N which is a number of Kuhn monomers and also small b, which

is a Kuhn length.

So, these two quantities are basically characterized the equivalence freely jointed chain

and capital N is by using these two equations here we can basically take the square of

this first equation and divide that by this second equation. So, doing that will basically

give us an expression for N is R max square by C infinity n l square and similarly the

expression for b is  small  b also can be found out  by using the above equations  and

finally, this r max that we have here the R max is actually the maximum chain length

maximum chain length for the actual polymer chain on which we are trying to map this

equivalent chain.

So, so, as we discuss is a chain is freely jointed then the maximum chain length is just n

times l, but if the chain has a fixed bond angles or the angle between the adjacent bond

vectors if they are fixed then in that case R max basically is given by in expression like

this it is given by n l cos theta by 2 and we can basically visualize this in this fashion. So,

let  us say we have. So, the for a any polymer chain having constant bond angle the

maximum possible length is possible when all the torsion angle are in the trans state and

the entire polymer chain actually lies in the single plane in zigzag kind of conformation.

So, if we consider that conformation then the length of individual bonds is l and we want

to find out the R max which is the end to end distance in this conformation, ok. So, if we

consider this part here. So, this distance from here to here this distance since this the

angle that we have here this will be theta by 2. So, this the distance shown by these

arrows here that distance from standard trigonometry, that will just be l cos theta by 2.

So, each bond basically contribute a length l cos theta by 2 to R max and if we add up the



contribution of all the bonds present along the polymer chain then we will get n times l

cos theta by 2 as the value of R max. 

So, with that we will conclude today’s lecture on ideal polymer chains. So, all these ideal

polymer chain models are characterized by the fact that the monomers that are next to

each other monomer units are atoms which are next to each other they interact in some

way to different levels, but a monomers which are far the apart along the chain they do

not show any interaction with each other. So, basically if we have a polymer chain like

this such a conformation is allowed where distant monomers basically overlap with each

other. So, in ideal polymer chains such overlap is allowed because distant monomers are

not interacting with each other.

So, in the next class we will discuss some other concepts related to ideal polymer chains

and then we will move on to the discussion of real some real polymer chain models or

typical real polymer chain model, which is actually built upon these ideal polymer chain

models which, but which incorporate what is called excluded volume repulsion. So, so,

what that means, is that two monomer units basically cannot occupy by the same space

same regional space. So, due to this polymers segment, segment repulsions inside the

chain the overall size of the polymer chain in many case gets expanded from what the

ideal chain sizes are.

So, in the next lecture we will be discussing a real chains behavior and conformations in

slight more detail.


