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Viscoelasticity: Mechanical Models

Hello  everyone,  in  today’s  lecture  we  will  be  talking  about  the  Viscoelasticity  of

polymeric  materials.  In  the  previous  lecture  we  discussed  mechanical  properties  of

Polymers. So, today what we will do is look at characteristic property of poly materials

which  is  velocity  and  where  we  will  see  that  polymeric  materials  respond  to  a

deformation in a way which resembles both in elastic solid and a viscous liquid.

(Refer Slide Time: 01:00)

In today’s lecture the content will be after an initial introduction to viscoelasticity we

will talk a bit about a couple of experimental techniques which are used to study that

time dependent mechanical response of such viscoelastic polymeric materials. And, then

we will  also  look at  a  couple  of  mechanical  models  that  are  simple,  but  somewhat

effective representation of viscoelastic behavior of polymeric materials. It must be said at

outset that viscosity viscoelasticity of polymers is complex phenomenon, and of course it

is a subject where many advanced text and articles are available.

So, in our discussion today we will the limit ourselves very introductory coverage of this

viscoelastic properties of polymers.



(Refer Slide Time: 01:57)

When we say viscoelasticity it refers to a mechanical behavior or mechanical response to

load or a deformation where the response actually is representative of both an elastic

solid and a viscous liquid. So, the mechanical response of such viscoelastic materials

would have characteristics of the response of an elastic solid material as well as that of a

viscous liquid material. And apart from that it usually is not just a linear combination of

these two responses, but can be more complicated by the fact that the elastic and viscous

responses themselves can be coupled in some cases.

So, viscoelasticity is observed in many polymeric materials and most of the polymeric

materials and it is. Another way to look at it is a time dependent mechanical response to

a deformation. So, if we contrast this kind of a response or behavior to that of a purely

elastic behavior or a purely viscous behavior then we will be able to better appreciate the

this concept.

So, if we consider pure elastic response, so in a pure elastic response if first stress is

applied then the corresponding strain produced in the material is directly proportional to

the stress applied or in other words its materially strained the stress is proportional to the

strain produced. So, that is what the behavior of a purely or perfectly elastic solid would

be.

In contrast,  if  we have  a  purely  viscous liquid.  So in  that  case the response to  any

mechanical deformation is that, stress that is produced in a material is a proportional not



to the strain applied, but to the rate of strain. So, the rate at which the strain is changing

that  is  the  quantity  which  is  proportional  to  stress  for  purely  viscous substance  like

simple  liquids.  Viscoelastic  response  actually  lies  intermediate  to  these  two extreme

responses and this viscoelastic behavior in response is what we will study in more detail

in today’s lecture.

The poly  polymeric  materials  in  general  exhibit  response to  mechanical  deformation

which corresponds to a viscoelastic behavior. And response that we have the response

this viscoelastic response is seem to be dependent both on the time of observation as well

as  the temperature  of  observation  ok.  So,  typically  when we subject  the viscoelastic

material like a polymeric to some deformation or let us apply some load to it to produce

a deformation then it seen that the corresponding response of the material it varies with

time and it can be vary temperature as well.

 And this is something that one would not see in purely elastic solids. For an elastic solid,

if a given the load is applied correspondingly the formation will be produced which will

not vary with time as long as the load itself is not varying with time, whereas, for a

viscoelastic material even if a constant load is applied the corresponding deformation

produced can vary with time. So, in general the response varies with time for viscoelastic

materials and it varies with temperature as well. In the limit when the time of observation

is a short or in other words when the temperature is low. So, in such cases the typically

the  elastic  kind  of  response  is  observed  in  viscoelastic  materials.  And  in  the  other

extreme when the time of observation is large or when the temperature is high in that

case viscous kind of response can be expected. 

So, this short  time behavior which can correspond to high rate of strain applied this

typically  produces  a  kind  of  elastic  response.  And  if  in  the  long  time  limit  when

observation is done for a very long time that is in the strain rate correspondingly is low.

And also at high temperatures the viscous response is what is observed. So, we see that

the behavior of these viscoelastic polymeric materials is intermediate to that of an elastic

solid and a viscous liquid.

So, before we move on to discussing some simple models for this viscoelastic behavior

of  a  polymeric  materials  let  us  first  go ahead and look at  a  couple  of  experimental



techniques which are used to study the this time dependent mechanical response of the

viscoelastic polymers.

(Refer Slide Time: 07:00)

So, the first experimental technique that we will discuss is this creep experiment or creep

loading. And here what is done is the sample is subjected to a constant stress and the

strain corresponding strain or deformation developed in the sample that  is  monitored

with time. So, for a given constant stress that has been applied how the corresponding

strain changes with time. Before, we look at the behavior or response of a viscoelastic

material let us first again discuss what how the response of a purely elastic or a purely

viscous material will look like.

So, if we have a purely elastic material  a perfectly elastic solid, then as soon as this

constant stress is applied instantaneously up corresponding strain will be developed in

the material  and this strain will not change with time. So, since the stress applied is

constant the strain developed will also remain constant and will not change with time.

So, if we try to plot strain so let is represent our strain by some quantity epsilon symbol

epsilon and if we wish to see how it changes with time; then since the applied stress

sigma is some constant value. Then, correspondingly the strain produced will also be a

constant as at some constant value let us say epsilon naught.

And, let us say if the applied stress is removed then instantaneously the strain in the

elastic  solid  that  will  also disappear  ok.  So,  there  will  not  be any residual  strain or



deformation upon removal of the stress applied. So, this creep experiment if let us say if

it is done for a perfectly elastic solid, then it will just produce a constant strain because,

the stress impose is a constant value. If we on the other hand look at the response of a

viscous liquid and how it responds to constant stress that supplied, then in that case the

since for a liquid viscous liquid the stress is proportional to strain rate. So, since the

stress is a constant in the creep experiment the strain rate will be constant, which means

that the strain will increase linearly with time.

So, you in the case of a viscous response so this one is for elastic for the case of a

viscous purely viscous response when the applied stress is constant. So, if we monitor

strain as a function of time we will see that it increases linearly because, an as long as the

stress is a constant stress is applied the strain will keep on increasing linearly. And if let

us say the stress is removed or the load is removed at certain point of time, then the strain

will not decay to zero; the deformation that has been induced due to the application of

that stress that will be permanent. So, if for a viscous material if the constant stress is

applied the strain will increase linearly and if the stress has removed at a point of time

then whatever strain or deformation that has been induced that will remain it will not

decay.

So, that is a pure viscous kind of response; if you look at now a typical response of a

viscoelastic material. There what happens is that the response again we can see as being

intermediate between a elastic and viscous response. So, what we will see is that as the

constant stress is applied to a viscoelastic material the strain actually increases with time,

but  the  increase  is  not  linear.  So,  unlike  a  viscous  purely  viscous  material  for  a

viscoelastic material the strain increase will be there, but it will be non-linear with the

time.

So, the strain will increase with a the applied stress, but the increase is not necessarily

linear and if the strain is stress is removed, in that case the strain can decay in this case

there will not be complete partner and deformation of the material. So, due to the elastic

part of the strain deformation and that will decay if the stress is removed, but the strain

need not decay to a zero value. So, the original again the shape of the material need not

be the recovered and partly permanent deformation might be there in the material. 



So, if we now try to plot this change of strain with time for a constant applied stress that

is of in the case of a creep loading. Then for a viscoelastic material typically the change

in strain with time will look something like this it. Initially it will increase, the strain will

increase at a higher rate and as time progresses the rate of change of strain actually itself

decreases. So, the d epsilon dt actually will decrease with time, but the strain itself will

grow with time as long as a constant stress has been applied. If the stress is removed then

in that case the strain will the decay or start decreasing, but it did not reach zero ok.

So, some permanent deformation might be there even if the stress is removed. This is the

kind of viscoelastic response that one gets for simple polymers subjected to creep load.

And, this kind of a loading is important studying this kind of a mechanical response for

polymers  is  important  because,  there  are  many  applications  in  which  the  polymeric

material might be subjected to, subject to a certain constant load. And it is important to

know what how the deformation in the polymer takes place if it is subjected to a certain

amount of load for a long period of time. So, that is why these creep measurements are

important. 

Another class of experiments are that is important again from the point of view of this

time dependent mechanical response of polymeric materials, is what is called the stress

relaxation  experiments.  So,  in  contrast  to  the  creep  experiments  where  the  stress  is

maintained constant in the stress during the relaxation experiments the constant strain is

maintained. So, the material is strained by a certain amount and that constant strain is

maintained. And the stress required to maintain that constant strain that is monitored. So

that is it seen how that says changes with time.
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So, for a stress relaxation experiment, a constant strain is applied and the corresponding

stress that is monitored with time. Again if we talk about the purely elastic solid so you

first let us look at that limit what happens when the stress relaxation kind of condition is

imposed on a purely elastic solid. So, for such a solid if we apply a constant strain then,

immediately a corresponding constant stress is will develop and as long as this constant

strain is applied the same constant stress will be present ok. So, for a constant strain that

is applied the stress will remain constant with time and let us say if strain is removed at

certain point of time then this stress will again instantaneously become zero. So, that is

the response that one will get from a purely elastic solid again.

And we are talking about the response of purely elastic or purely viscous material just to

contrast  it  with  that  of  a  viscoelastic  material  and  to  emphasize  the  fact  that  the

viscoelastic response typically is intermediate to these two. But, it is not necessarily a

linear combination of these two and it can be more complex coupling of the elastic and

viscous response.

So, now if we try to again draw the change in stress with time so, now since the strain

has been maintained constant at some value epsilon equal to epsilon naught then for a

purely elastic response the corresponding stress will also stay constant with time. It will

not change very with time and if at some point of time the strain is removed the stress

will also come down to zero again. If we have a purely viscous material then, since the



constant strain is applied there is no strain rate there the strain is not changing with time.

So, correspondingly there will not be any stress. So, initially as the constant strain is

applied  at  that  very  instant  sharp  striking  in  the  stress  might  be  observed,  but

immediately it will decay to zero because, the strain remains constant after that so strain

rate is zero and stress also will be zero. If we now look at the response of a viscoelastic

materialso, in that case what happens is a strain is a constant strain is applied, the stress

that develops in a material that slowly decays to zero. 

And stress actually, but for a typical viscoelastic polymers does not decay all the way to

zero it will decay to a small value, but some residual stress might still be present even

after long times. So, if we look at the viscoelastic response as we discussed stress decays

with time, but the stress need not relax completely. What that means, is that the stress

need not go all the way to zero even at long times. So, if we again draw sigma versus

time  or  stress  versus  time,  with  if  a  constant  strain  is  applied  as  is  an  inner  stress

relaxation experiment.

So, the stress will at some initially will be at some value and it will decay with time, but

even after  long times  some residual  stress  might  be present.  So,  this  is  the  kind  of

behavior when a constant strain is present. So it is not that the strain has been removed at

any point of time; even in the presence of a constant strain throughout the stress in the

material actually reduces with time, decreases with time unlike an elastic material where

the stress remains constant with time. 

So, here the stress reduces with time and, but even at the long time some residual stress

might  still  be  present  so  that  is  a  viscoelastic  response.  So,  these  are  a  couple  of

important experimental measurements done to characterize the mechanical response of

this elastic material especially the time dependent mechanical response. Some other kind

of experiments are also typically done where the material is exposed to some kind of an

oscillating stress or strain where the stress or strain might be varying sinusoidally with

time and the corresponding response of the material is observed.

So, such experiments basically come under the class of dynamic mechanical experiments

and in the next lecture we will briefly look at some of the some such experiments and the

corresponding  mechanical  response  of  polymers  under  oscillating  strain  or  stress

conditions. But today from here what we will do is move on to the discussion of a few



simple mechanical models of viscoelasticity. So, we will  restrict  ourselves to what is

called linear viscoelasticity. 
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In that whatever elastic and viscous response that we are considering to and combining

to give the risk elastic response the individual elastic and viscous responses themselves

will be considered linear. And a direct linear kind of combination of these two responses

will be assumed to describe the viscoelastic behavior of the material. So, this kind of

linear viscoelasticity if normally is valid only when the applied strain or deformation is

quite small and as a strain or deformation becomes large this linear kind of this linear

assumption will fail. So, since we our discussion is limited to simple cases in simple

systems, we will talk only about models describing linear viscoelasticity.

So, the assumptions involved here in this linear viscoelasticity is that or the mechanical

models  that  we will  be discussing is  that  deformation  of the polymer consists  of  an

independent contribution from elastic kind of response and a viscous kind of response.

So, an elastic  and viscous component  will  in  independently  contribute  to  the overall

response of the viscoelastic polymer material. And, another simplification that we will

make is that all the deformation of this viscoelastics in the material that will be described

by a combination of Hooke’s law which is valid for linear elastic materials and Newton’s

law  which  is  valid  for  linear  viscous  materials.  So,  we  will  combine  these  two



mathematical simple mathematical laws and try to describe the behavior of viscoelastic

materials.

So, if we talk about Hooke’s law this is something that we discuss in the previous lecture

as well; it is a simple law that just relates the stress to the strain through a linear kind of

relationship. So, Hooke’s law says that the any stress is proportional to strain and this

proportionality constant E is refer to the elastic modulus. So, if the stress strain that we

are talking about the other tensile stress or strain typically this will be the corresponding

Young’s modulus. 

If we are talking about the shear stress the shear strain then even in that case if we can

talk out the kind of Hooke’s law that linearly relates the shear stress or shear strain and in

that case the elastic modulus will be the corresponding shear modulus. So, here the E that

we have it we are not limiting it to any particular specific modulus, but depending on the

type of deformation involved it can be the elastic Young’s modulus for tensile kind of

deformation or it can be the shear modulus for shear kind of deformation.

So,  we know that  this  Hooke’s law describes  linear  elastic  behaviors  of  course,  our

models will only be only be valid where this linear kind of behavior is expected to be

valid.  Similarly for a purely viscous kind of a behavior one can use a Newton’s law

which  again  describes  a  kind  of  linear  viscous  behavior  and  here  the  stress  is

proportional to the strain rate ok. So, the rate at which the strain epsilon is changing with

time,  that  is  what  the  stress  depends  on  and  the  proportionality  this  proportionality

constant in this case that is referred to as the viscosity of the material. 

So, the corresponding symbols are epsilon sigma stress and strain is elastic modulus eta

is the viscosity. The aim of for the any of the simple mechanical models is to try to

combine these two simple laws describing linear elasticity and linear viscous behavior.

And,  to  come  up  with  a  combination  that  can  give  a  reasonable  description  of

viscoelastic behavior.

In the mechanical models of viscoelasticity that will talk about the elastic component or

elastic element is typically represented by what is called a Hookeian string. So, a kind of

a string which has a constant elastic modulus E, the viscous element will have a constant

viscosity eta and the viscous element is actually is normally represented by a what is



called a dashpot, which is kind of a damper kind of a system containing a liquid having

viscosity eta.

So,  typically  these mechanical  models  comprise string as elastic  element  and simple

dashpot as a viscous element. We will the talk about a couple of these simple mechanical

models and what we will  see is that the combination of the viscous element  and the

elastic  element  in  different  ways  that  can  give  us  these  different  models  and

correspondingly that can produce different kinds of responses. And, then we can see how

well  the responses of  these models  compare  with the  response of actual  viscoelastic

polymers.

(Refer Slide Time: 23:29)

So, if connect our elastic element which is a string and the viscous element which is a

dashpot  in  series.  So,  that  is  what  gives  us  the Maxwell  model  of  viscoelasticity  or

Maxwell model of linear viscoelasticity. So, if we typically the spring will be represented

by something like this and then we will have a kind of a dashpot that is represented by

this  symbol.  And, these two combined in series and this  spring will  have the elastic

modulus E, the liquid inside the dashpot will have viscosity eta. So, this combination is

what is called the Maxwell model of a viscoelasticity.

So, a elastic element and the viscous element combine in series. So, now, let us say for

this model if overall stress sigma is applied and correspondingly overall strain epsilon is

produced then what we can say is that the sigma overall stress will be equal to the stress



in the elastic element that is the string and that will also be equal to the stress in the

viscous element which is a dashpot. So, sigma 1 sigma 2 represents the stress in the

string and dashpot the epsilon 1, epsilon 2 represent the strain in the spring and dashpot.

So, epsilon in this  case will  be additive because the system the two elements  are in

series. So, the strains produced in the individual elements epsilon 1 and epsilon 2 when

they are added they will  get  that  will  give  the overall  strain produced in this  entire

Maxwell  model  ok. Whereas,  the stress the overall  stress that  is applied that will  be

identical to the individual stresses present in the two elements because of the fact that the

two are in series or assumed to be in series. So, if we start with these considerations

which is due to the fact that we are using a series model, then we can for the sigma

which corresponds to elastic element we can describe it by the Hooke’s law and sigma 1,

that is, and sigma 2 which is the viscous element that can be described by the Newton’s

law of viscosity. 

So, if we do that sigma 1 we can write as capital E times epsilon 1 where E is the elastic

modulus and this we can just rewrite as epsilon 1 equal to sigma by E. And here we have

removed the subscript 1 from sigma, because we see that sigma and sigma 1 they are the

same they are equal. Similarly for the viscous element we can write the Newton’s law

and again rearrange that, and again instead of sigma 2 we have just written sigma here

and removed the subscript, because sigma 2 is also equal to sigma.

Now, we have these two expressions. Using these two expressions and differentiating

these expressions with respect to time and by combining all of them, we will develop the

equation for the Maxwell model. So, first let us differentiate this expression with respect

to time. So, if we do that we get that the rate of change of overall strain is just the sum of

the rate of change of strains in the two elements. And this first one d epsilon 1 dt that we

can obtain from the Hooke’s law expression directly by simple differentiation. And this

second term here is directly given by the Newton’s law for the viscous element.

So, if we combine the two; then this is the expression that we get and this first term as

we discussed comes by just differentiating this expression, and the second term is what

we have on the right hand side here. So, this is the equation describing the Maxwell

model of linear viscoelasticity. And next let us try and see how this model how good is

this model in predicting the mechanical response of actual viscoelastic polymers ok.



(Refer Slide Time: 27:39)

So, for the Maxwell model let us first see under creep kind of condition or creep loading

condition,  what kind of prediction does a Maxwell  model get and whether that is an

acceptable kind of prediction or not. So, for creep behavior we know that constant stress

sigma naught is imposed on the system. So, if we start with our equation for the Maxwell

model that we discussed in the previous slide. Then, since then the stress now is constant

at sigma naught this time derivative of stress under creep condition will be 0. So, the

maximum model will simply reduce to this equation here and instead of sigma we have

written sigma naught because, the stress is kept constant during a creep experiment.

And we see that this rate of change of strain with time that comes out to be a constant for

from Maxwell model. So, maximum model predicts that the strain will increase at linear

rate with time ok. So, d dt is a positive constant and this kind of prediction is actually

poor prediction for the creep behavior of actual polymeric materials. So, if I draw this the

kind of prediction that we are getting from this equation epsilon versus strain versus

time, then Maxwell model is predicting behavior like this where epsilon is increasing

linearly with time. So, this is the Maxwell model prediction. 

And  the  actual  creep  experiments  done  on  the  viscoelastic  polymeric  materials  the

response produced in such cases is where this actually epsilon is increasing with time,

but the rate of increase of epsilon that actually reduces rate time. So, initially the rate at

which epsilon increases is high and later on it goes down. So, this Maxwell model is not



a very good model for predicting creep behavior of polymer viscoelastic materials. And

next lecture see how will it predicts the stress relaxation behavior. So, we know that in

the stress relaxation experiments the constant strain is imposed in the system and the

relaxation of that stress or how the stress is changing with time that is monitored. So, in

stress relaxation we will say that epsilon is being kept at epsilon naught a constant value.

And then again starting with the Maxwell model equation, if we substitute this constant

value for strain here then this term actually becomes 0 because, the strain is constant so it

will not change.

So, in that case the expression reduces to this and which we can easily rearrange in the

form of this where we have separated the terms containing sigma and taken it to one side

and  the  remaining  terms  are  on  the  other  side.  So,  this  equation  or  can  be  simply

integrated an integration and again and simplification will lead to a final expression that

looks something like this. So, that the time dependence stress that actually is given by

constant stress value sigma naught which is the initial stress multiplied by an exponential

of minus t by tau naught ok. So, we see an exponential kind of decay of this stress with

time in the prediction of Maxwell model.

Here there before we actually see how this stress relaxation behavior looks like for a

Maxwell model let us talk about this tau naught. So, upon comparison one can say upon

comparison with especially this term when what one can say is that this tau naught is

nothing, but this ratio of viscosity and the elastic modulus eta by E and for them this is a

relaxation time for the Maxwell model. And, what it signifies is that if we are talking

about time scales much smaller than a relaxation time then at those time scales Maxwell

model will behave like an elastic solid. And, if the time scales involved are much larger

than the relaxation time then the viscous kind of behavior will be more dominant for

Maxwell model. So, that is the significance of the relaxation time that we have.

The sigma naught that we have here, that is just the initial stress at t equal to 0 and that

we can write as just, the elastic modulus times the strain which is constant in the case of

stress  relaxation  experiment.  So,  if  I  plot  again  stress  versus  time,  so  in  the  stress

relaxation experiment strain is constant stress is where stress is monitored with time. So,

what we will see is that the Maxwell model predicts a kind of exponential decay with

time and at long enough times or at almost time tending to infinity the stress will decay

to 0 ok.



So, what we see is that this stress relates the relaxation behavior this behavior actually as

described by the Maxwell model is a somewhat similar or to a first approximation it can

capture the kind of trend and behavior that is shown by actual viscoelastic polymers. So,

what we can conclude is that for maximum model the stress relaxation predictions are

reasonable. The prediction of creep kind of experiments they are not acceptable ok. So,

the  creep  the  predictions  are  poor  whereas  the  stress  relaxation  predictions  are

reasonably ok.

So, in the Maxwell model the two elements are combined in series. So, in the previous

case we had combined them in series. Now, the natural alternative would be to see what

happens  if  the  two  elements  are  combined  in  parallel  and  that  is  what  the  second

mechanical model that we will be studying talks about.

(Refer Slide Time: 33:33)

So, in this model which is referred to as the Kelvin-Voigt model or many times it is also

referred to simply as a Voigt model of linear viscoelasticity. So, here the elastic element

or that  is  the string and the viscous element  that is a dash part  they are arranged in

parallel. So, in Maxwell they are there they were arranged in series now, here they are

arranged in parallel.  So, now based on again this arrangement let us see. So, you the

arrangement schematically one can represent something like this. So, again the spring

will have elastic modulus E En, the dashpot will contain a fluid having viscosity eta. So,

this is the kind of arrangement that we have in the Kelvin-Voigt model. And, based on



the assignment we can again try to establish or identify the relations between the overall

stress and strain and the corresponding stress and strain in the individual elements ok. 

So, if we do that in this case since our arrangement in is in parallel, the overall stress

actually will be the sum of the stress in the first and the second element whereas, the

overall strain in will be equal to the strains in the individual element. So, epsilon will be

equal to epsilon 1 and epsilon 2 because, they are in parallel. So, any strain produced

overall strain that will be the same as a strain produced in the individual elements. So,

the nomenclature is the same as before and again we can apply the Hooke’s law for the

elastic element and Newton’s law for the viscous elements. So, if we do that Hooke’s law

gives us sigma 1 equal to the elastic modulus times epsilon 1, which you can just write as

capital E times epsilon; dropping the subscript because epsilon and epsilon 1 are equal.

Similarly, for the viscous element Newton’s law of viscosity can be written. So, sigma 2

we can write as eta d epsilon dt; again the subscript 2 has been dropped here because

epsilon 2 is also equal to epsilon ok. So, if we combine these two so now the overall

stress we see is the sum of the individual stresses sigma 1 and sigma 2. So, using this

equation in combination with the Hooke’s and the Newton’s law what we can do is write

them together. And that gives the overall stress as the stress in the elastic element plus

the  stress  in  the  viscous  element  and  just  rearranging  the  terms  we  get  the  typical

equation that is there for this Kelvin-Voigt model. 

And here the rate of strain or strain change in strain with time that d epsilon dt that is

equal to sigma by eta minus this elastic modulus E times epsilon which is the strain

divided by again eta. So, this is the Kelvin-Voigt model equation and again let us see

how this model and now predicts the response when under creep conditions and under

stress relaxation conditions.
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So, if we first look at the creep behavior as tracked by Kelvin-Voigt model; so under

creep conditions the stress is maintained constant at sigma naught. And if we use the

Kelvin-Voigt model equation here then this stress sigma that will be equal to a constant

value the sigma naught in this case and if we do that and rearrange the terms the equation

that we get is of this type. And we can see that this is actually an ordinary differential

equation of first order in epsilon. These kinds of equations can be easily solved by the

integrating factor technique.

So, if the this equation is solved then the corresponding epsilon as a function of time is

obtained as this expression. So, here tau naught is the relaxation time which is again eta

by E and sigma naught is the constants stress applied during the creep experiments. So,

we see that if we look at this equation and see how it describes the creep response then

we see that at time t equal to 0 if time t is 0 then epsilon will come out to be 0 in this case

because, at t equal to 0 the exponential term this term will be 1. So, the bracketed term

will become 0 and the corresponding strain will also be 0.

So, at t equal to 0 the strain will be 0 and as time increases the strain will increase, but

not linearly it will increase in a kind of exponential fashion. So, if we draw again the

change  of  strain  with  time.  So,  in  a  creep  experiment  how  it  is  straight  for  a

corresponding  strain  is  changing  with  time.  Then  the  Kelvin-Voigt  model  actually

predicts kind of behavior that looks like this. So, we see that at least the Kelvin-Voigt



model is able to predict the fact that the strain is not linearly increasing with time, but it

is a the rate of increase of strain with time actually decreases as time progresses.

So, an initial part the strain increases rapidly with time, but as time progresses the rate at

which  the  strain  is  increasing  that  also  slows  down and  ultimately  tries  to  reach  a

constant value. So, what we can comment here is that the Kelvin-Voigt model gives a

better  prediction  of  the  creep  behavior  of  a  viscoelastic  polymers  than  the  Maxwell

model. If we on the other hand try to see how the stress relaxation behavior is directed by

the Kelvin-Voigt model and noting that in the stress relaxation experiments the strain is

maintained constant and epsilon naught. 

Again, then again if we write down the Kelvin-Voigt model equation and identify this

term to be 0, because the strain is now constant. So, in this case the equation simply

reduces to this and this epsilon has been changed to epsilon naught due to the constant

strain.  And,  if  we  rearrange  the  items  ultimately  we  get  sigma  equal  to  the  elastic

modulus times epsilon naught.

So, Kelvin-Voigt model actually predicts the stress to be a constant which is a purely

elastic kind of response. So, we see that under stress relaxation conditions the Kelvin-

Voigt does not capture the viscosity response at all, it just predicts the elastic kind of

response. So, if I draw the stress versus time here in that case Kelvin-Voigt model that is

just predicts a constant value of stress with the value being equal to the elastic modulus

times the constant strain imposed.

So, this prediction from Kelvin-Voigt model is actually quite poor because, it does not

describe the stress relaxation behavior in actual viscoelastic polymer at all where the

stress actually decays with time. So, overall what we can say is that Maxwell model is

provides a decent description of the stress relaxation behavior of viscoelastic polymers

whereas, it  fails to capture the creep behavior properly. On the other end the Kelvin-

Voigt  model  captures  the  creep  behavior  of  viscoelastic  materials  to  a  good

approximation. However, it completely is unable to capture the stress relaxation behavior

so, both models have their advantages and disadvantages.

So, a natural extension of these mechanical models can be to somehow combine these

two models the Maxwell and the Kelvin-Voigt model in such a way that both the creep

responses as well as a stress relaxation response are captured to a good approximation



for viscoelastic materials. So, one such combination that has introduces is proposes what

is called the standard linear model, in that what is done is to a Maxwell element. So,

Maxwell element will actually include a elastic string and viscous dash dashpot in series.

So, if  we consider  these two together  in  series and if  we add another  string to it  in

parallel; so, in that case this represents a standard linear model. And, this kind of this

addition of this parallel string or a parallel elastic element to the Maxwell model that

actually leads to an improvement in the prediction of creep behavior by this model.

So, this standard linear model is a relatively simple model which can capture both the

stress relaxation and creep behavior. Of course, if we can combine more elements in

different kind of fashions to create more types of mechanical models. And of course, as

we  increase  the  number  of  components  in  the  model  the  mathematical  complexity

increases. A general kind of model is what is called the mechanical model, what is called

the  generalized  Maxwell  model  where  many  the  Maxwell  elements  are  actually  are

combined in parallel. So, a maximal element which is a elastic and viscous elements in

series many of them are combined in parallel to create a generalized Maxwell model ok.

So, many such mechanical models are there and they have utility of up to a certain point

in that, they can describe the mechanical response of polymers, but a shortcoming of

these  models  is  that  since  the  models  have  been  developed  from  purely  from  by

mechanical concentrations. So, there is no molecular insight present. So, these models

actually  cannot  give  any  information  about  the  molecular  level  rearrangements

happening  in  the  polymer.  And,  what  are  such  rearrangements  are  relaxations  that

correspondly correspondingly produced a viscoelastic response.

So and no molecular level insight can be gained from these purely mechanical models so,

that is one disadvantage. So, we will conclude this lecture here where we have studied

two very simple mechanical models of viscoelasticity or rather linear viscoelasticity. And

in the next class what we will do is, in the next lecture what we will do is to talk a little

bit about the response of our viscoelastic response to oscillatory stress or strain being

imposed on the system.

So,  if  we have  a  sinusoidal  stress  or  strain,  what  can  a  viscoelastic  response it  can

produce  and  that  comes  under  the  domain  of  dynamic  mechanical  experiments  or

dynamic mechanical analysis.



We look at that in the next lecture and we will also briefly take a look at the fact that the

polymeric liquids like solutions and melts, when they are flowing they typically do not

show Newtonian behavior and many times the behavior is non Newtonian. So, the stress

is  not  linearly  related  to  the  rate  of  strain.  So,  we will  look  at  the  non Newtonian

behavior of this polymeric liquids say, in some detail as well in the next lecture.

Thank you. 


