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Mechanical Properties of Polymers

Hello everyone. So, today we will be talking about Mechanical Properties of Polymers.

So, in this lecture we will first talk about the some of the basics basic definitions related

to some Mechanical Properties.

(Refer Slide Time: 00:49)

So, we will start off with the definition of Stress; what are the different components of

Stress that can be identified and similarly, we will also talk about the concept of Strain.

So, Stress and Strain are some things that might be familiar to many of you, but we will

talk about it in a more general sense and see that for in any given material there are many

a different components of stress and strain that are possible.

And then, we will talk about the relationship between stress and strain. So, how a stress

and strain are  related;  what  kind of different  mechanical  properties  like the different

moduli which can the can be identified based on the relationship between different types

of  stress  and  strain.  Then  towards  the  end  of  this  lecture  will  focus  on  the  elastic

deformation of polymeric materials; so, stress strain behavior of polymer materials of

different kinds, that is what we will focus on towards end of this lecture.
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Stress as many of you might know is generally defined as a force acting on a unit area.

So, force per unit area that is acting on the surface. So, it is acting across a surface. So, if

we talk about let us say solid material and we take a section across the solid material and

we focus on one of the surfaces.

Then, the stress basically can be identified as the force per unit area being exerted by part

of  this  solid  material  or  the  collection  of  molecules  within  the  solid  material  on  a

different  part  of or adjacent  part  of the solid  material.  Similarly, for fluids also such

internal stress can be identified, it will have units of force per unit area which in SI units

is Pascal or Newton per meter square.

So, if you have force acting per unit area on a when given surface as a definition of

stress, then depending on the orientation of the surface relative to the direction of force

that is acting; a several different components of a stress can be identified. So, if we talk

about the stress at a given point in a given coordinate axis; so, if we let us say have a axis

system defined by these three axis, where we will call them x 1 x 2 and x 3 and one can

equality call them as xyz also.

So, that does not change anything about the fundamental definitions, if we consider any

point in this coordinate system, then the stress around that point can be defined by first

let  us  say  constructing  a  small  kind  of  cubic  element  around  this  point,  and  then,



identifying the different stress components that are acting on the different phases of this

cube.

So, if we talk about this phase, the phase which is perpendicular to x1. So, if we have

some force acting on this phase in some arbitrary direction, we can resolve that force into

3 different components that is the components along the x 1 x 2 x 3 directions. And then,

we can calculate the appropriate stress components by dividing the force components

that we have identified by the corresponding area of the phase on which the force is

acting.

So, on this front phase which is perpendicular to a this x 1axis, if we have some force

affecting due to let us say the presence of surrounding material. Then this force can be

broken down into the 3 components F x 1 F x 2 and F x 3, let us say which are the

components along the 3 coordinate axis that we have drawn here. So, F x 1 will be the

force component parallel to the x 1 axis, now the surface that we are talking about is

perpendicular to the x 1 axis.

So, this force component F x 1 will also be perpendicular to the surface that we are

talking about. So, this F x 1 force is the normal force on this surface; whereas, the other

two forces F x 2 and F x 3, these will be parallel to the x 2 and x 3 axis and the again the

surface that we are talking about this surface is also parallel to x 2 and x 3 axis.

So, the forces F x 1 F x 3 are actually parallel to the surface on which they are acting. So,

these forces will are referred to a shear forces; so, the and the corresponding stresses due

to these forces will be the shear stresses. So, the once we have broken down the forces

into  the  different  components,  then  the  force  per  unit  area  for  each  of  these  force

components will give the corresponding stress components.

So,  the  nine  stress  components  that  we  have  written  down  here;  these  nine  stress

components corresponding to basically the normal as well as shear stress components

that  that  will  be acting  on let  us  say surfaces  that  are  perpendicular  to  x 1,  surface

perpendicular to x 2, this 1 as well as this top one surface perpendicular x 3. So, if we

identify all the stresses acting on these surfaces, we will end up with nine such distinct

components ok.



A typical stress description of stress in a given material involves nine different stress

components. So, stress is normally called as a Tensor quantity and this Stress Tensor,

which we have denoted as this bolt sigma here, this stress tensor can this be represented

as a matrix of all the nine stress components that we have identified.

If we talk about let us say the stress components sigma 11 that will correspond to the

force acting normal to the surface that is perpendicular to x 1. So, if we have this surface

perpendicular to x 1 here, then the force normal force acting on this surface that will be F

x 1. So, F x 1 divided by the surface surfaces area that will correspond to sigma 11.

Sigma 12 will correspondingly be a stress component on that same surface, but due to

the force F x 2 which is parallel to the surface area. So, sigma 12 will be a shear stress

component.

Similarly, sigma 13, 21, 23, 31, 32 these will be shear stress components and 11, 22 and

33 these will be the normal stress components, because here the force is acting normal to

the surface ok. So, normal stresses as we have identified as sigma 11 sigma 22 sigma 33

and these are the diagonal elements in this stress tensor and the off diagonal elements

constitute at called the shear stresses. So, if we have we have pressing against the surface

in this way, then the corresponding stress being generated is a shear stress.

So,  it  is  a  acting  parallel  to  the  surface  and  normal  stress  due  to  force  acting

perpendicular to the surface. We have 6 such shear stress components and 3 normal stress

components. One thing to note again is that the shear stress all these 6 components are

actually not independent of each other it turns out that the stress tensor is symmetric

what; that means, is that sigma ij equal to sigma ji

or in other words, for this the stress tensor that we have written here the sigma 12 will be

equal to sigma 21, sigma 23 will be equal to sigma 32 and same for sigma 13 and 31. So,

this is a condition that results if an applies the a condition of rotational equilibrium on a

given element and then, that equilibrium condition leads to the fact that the shears sorry,

the stress tensor is symmetric and the shear stresses are not independent of each other;

only three shear stress components are independent they are the shear stresses are related

in this way to each other.

Another important thing to note about these normal stresses that typically when we talk

about pressure lets inside a fluid; so, hydrostatic pressure inside a static fluid. So, that is



also related to the normal stresses and the relation between the normal stresses and the

hydrostatic pressure which is p is just 1 by 3 times sigma 11 plus sigma 22 plus sigma

33.

So, hydrostatic pressure can be thought of as just the average of the normal stresses at

any point inside a fluid. And as we have already mentioned the shears the stress tensor

has only six independent  components  because shear  stress components  are  related to

each  other. So,  this  is  some fundamental  material  about  the  quantity  stress.  Another

important  quantity  that  is  that  invariably  comes  up  when we  talk  about  mechanical

properties is what is called the strain.

(Refer Slide Time: 10:30)

So, strain is again something that you would have come across earlier also. So, it can be

thought of as a deformation resulting from the relative movement of particles  or our

atoms and molecules considering a given solid due to the action of certain let us say

external element like external force or anything like that. And strain is typically defined

as the change in the in any dimension produce divided by the original dimensions. So, if

we are talking just about a simple Uniaxial tensile force acting on it is something.
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So, if we have let us say have this rod and if it is being pulled down along a fixed axis let

us along the axis of this sort in a using a tensile kind of force it is being pull down. So,

the  corresponding  strain  produced  will  simply  be  the  ratio  of  the  change  in  length

divided by the original length of this rod.

So, for simple cases if we let us say have as we discussed have a rod of original length L

and it is extended to a length L prime due to the action of some external let us say tensile

force. Then the strain is simply defined as the change in length divided by the original

length.

But in general so, the strain can be thought of as a change in dimension divided by in the

original dimension due to the action of some external applied stress. So, this is a simple

definition of strain and is fine if you have a very simple kind of system where only at

elongational kind of tensile force is acting and the deformation of the body is only along

one direction.

But in general one can think of as a combination of stresses normally acting on given

body, whether we can have either tensile or compressive stresses acting simultaneously

in different directions along with shear stresses also acting on a material.

So, if you have such a general kind of case where many different kind of stresses are

acting together on a given body, then the corresponding strains produce strain produced



will also cannot also be defined by a single quantity, but instead it will also have many

different components. So, in general a deformation can involve various different types of

stresses and thereby, various different directional deformations. So, we can have shear

deformation, extension compression in various directions.

 Due to this proper description of strain in a material can be given by identifying again

nine different components of strain and that is done through this strain tensor. So, strain

tensor is also a tensor quantity and both stress and strain tensor has referred to as what is

called the second order tensor; both of them have nine elements.

So,  again  if  you  talk  about  the  diagonal  elements  say  epsilon  11 22  and  33;  these

correspond to the normal strain. So, due to a normal forces or normal stresses acting

whereas, the combination of stresses where shear stresses also might be present that can

also produce angular deformation along with linear deformation.

So, this angular deformation are characterized by these in shear strains that we have here.

So, again we have a three normal or tensile strains corresponding to the deformation in

the 3 axis that we have defined. And we can also have shear strains which will be due to

the action of usually shear stresses and these will correspond to some kind of angular

deformation of a body.

So, if again we have a this rod if you have pull down the that will induce a normal strain

in this material. On the other hand, if we have some again somebody like this and if we

shear it by applying a shear stress on this surface and the body which initially is this it

deforms changes its shape. So, that change in shape will correspond to some kind of an

angular deformation and that will that is quantified by this shear strains here.

So, again like shear stress, the shear strain strains are also not independent. They are also

related to each other and the strain tensor is also symmetric. So, sigma 21 and sigma 12

are equal sigma, similarly sigma 31 and 13 are equal and 32 and 23 are equal. So, strain

tensor  is  symmetric  just  as  a  stress  tensor  is  symmetric  and  we  have  these  three

conditions. So, again only three shear strain components are independent and overall we

have only six independent strain components so, the strain tensor only a six independent

components.



So, now that we have some idea about the stress and strain and the different components

that are necessary to describe stress at a point of strain at a point inside body, we can

move ahead now and talk about the relationship between the stress and strain ok. So, if

there is a certain kind of external force applied resulting in certain stress in the material

what kind of strain correspondingly will be produced and so on.

(Refer Slide Time: 15:55)

So, a very simple kind of relationship between stress and strain is something that most of

you would have come across even in high school physics and that is what is referred to

as the Hooke’s law. So, Hooke’s law is a linear relationship between the stress and strain.

So, on the application of a certain force on a given body will which produce a certain

amount of stress a proportional amount of strain is produced a that is what this Hooke’s

law predicts for elastic materials.

And  what  is  observed  is  that  for  many  materials  is  this  kind  of  a  law  this  linear

relationship or a direct proportionality  between stress and strain is found to be valid

provided that the amount of strain produced is small. So, for small strains this kind of

Hooke’s law is obeyed by many different materials including many different polymers as

well..

However, if the strains are large then deviation from Hooke’s law and deviation from this

elastic kind of a behavior is commonly observed. For low strains we can say that for



many polymers this kind of Hooke’s law behavior or a linear relationship between stress

and strain will be observed.

So, if we are again talk about a by simple kind of deformation where we have a uniaxial

tension or compression. So, uniaxial means in one direction, and again if we consider a

this rod then, then tensile is the force will be would be something that pulls it is this rod,

whereas,  the  compressive  force  will  be  something  that  pushes  on  this  rod,  but  this

extension  or  compression  that  we  are  talking  about  is  only  uniaxial  so  only  in  one

direction.

So,  if  we  have  such  a  case  then  the  Young’s  modulus  can  be  defined  as  the

proportionality constant between stress and strain. So, if Hooke’s law is valid and if we

are talking about the uniaxial kind of deformation either extension or compression, then

the stress is equal to the Young’s modulus times the strain. In other words the Young’s

modulus’s defined as the ratio of stress by strain stress and strain, of course within the

limits of the validity Hooke’s law this Young’s modulus will have a constant value.

So, now we have talked about the way again a very simple case where we are only we

have only discussed a uniaxial  kind of deformation.  In general,  again we can have a

deformation which can have many different components; so we can have deformation in

different directions including both normal stresses as well as shear stresses. So, we can

have a shearing shear stress action that can change the shape as well as we can have a

normal stresses that can change the linear dimensions.

So, all these together when consider in combination for such a general case this simple

kind of example that we have shown here will not work, and more generalized version of

Hooke’s law is needed. In general, the relationship between stress and strain components

in tensor notation is written like this. So, this stress tensor is related to the strain tensor

through another quantity C which itself is a tensor in this C is actually a fourth order

tensor. And it can it contains all the stiffness constants that relate the stress components

through the strain components.

So, such kind of description is commonly referred to a generalized Hooke’s law because,

in now we have considered all the kinds of deformation and the corresponding relation

between all the stress components and strain components. So, here what is assumed is



that  all  the stress components  actually  are functions  linear  functions  of all  the strain

components are represent.

So, if we talk about sigma 11, one can say that it will be related to strain component

epsilon 11 by some quantity a 11 which will be a corresponding stiffness constant. And

it, but it would not just be related to this single strain component it will also be related to

other strain components. So, a 12 epsilon 12 plus a 13 epsilon 13 and so on and so forth

all the way up to a let us say a 32 epsilon 32 plus a 33 epsilon 33.

So, we will see that there are actually for the description of this single stress component

terms of all the strain components their costed correspondingly 12 3 and if you count all

the items say they actually 9 such constants. So, there will be nine constants these 9

constants are the 9 what you call stiffness constants or elastic constants and similarly for

sigma 12 as well as similarly the relationship with all the different strain components will

be there including other stiffness constants.

So, for sigma 11 we have 9 such constants appearing first in the expression for sigma 12

also 9 different constants  can appear in for sigma 13 again 9 different  constants can

appear, because we are assuming that all the stress components are linear functions of all

the strain components present. So similarly if we go on in this way, we will see that

actually 9 times 9 that is 81 different stiffness constants or elastic constants are possible

in this generalized Hooke’s law kind of description of stress and strain relationship.

So, 81 stiffness constants are possible, but it turns out that we have seen that sigma and

epsilon are actually symmetric tensors. So, the symmetry conditions actually reduced a

number of stress stiffness constants that are independent to only 36 and then some further

considerations are there which actually reduce a number of these stiffness constants to 21

independent constants.

So,  ultimately  if  we take  into  account  the  fact  that  the  stress  and strain  tensors  are

symmetric  and  the  some other  considerations  then,  it  turns  out  that  only  21  of  the

original  81 stiffness constants are independent.  So this,  21 independent  constants are

other relevant part. Now depending on the specific to crystalline material that we are

talking  about  the  crystal  structure  that  it  has  the  symmetry  of  the  crystal  structure

actually can further reduce the number of independent elastic or stiffness constants.



So,  crystal  symmetry  can  further  reduce  the  number  of  stiffness  constants.  And  for

example, if you are talking about the cubic crystal system then, the symmetry of this

cubic crystal  system results  in having results,  in the fact that  only three independent

stiffness constants or elastic constants are present all the others are basically dependent

on these three independent constants.

So, for a cubic crystal system only three independent elastic constants are there, for a

another kind of crystal system which is not as symmetric that is the orthorhombic crystal

system. There 9 independent elastic constants are there. And there these 9 independent

elastic  or  stiffness  constants  are  required  to  describe  the  elastic  behavior  of  such

orthorhombic crystals.

So, again depending on what kind of crystal system we have in how much symmetry it

has the number of elastic constants actually goes further down, the another special case is

if we have a material which is isotropic elastically. So, when we say isotropic elastically

where we what is the mean is that in terms of the elastic properties a material is isotropic

that is a elastic properties of the material are direction independent. The different elastic

properties of the material do not depend on the direction in which the property is being

measured.

So, if you have such isotropic elastic solids then that case only two independent stiffness

constants or elastic constants actually exist all the others are dependent on these two. So,

we when this isotropic it  is a material  which whose properties do not depend on the

direction in which the property is being measured.

So, some examples of polymer systems which can be considered kind of a elastically

isotropic is a glassy polymers as well as a semi crystalline polymers. So, semi crystalline

polymers  also  to  some extent  can  be  considered  as  isotropic,  because  of  course  the

amorphous matrix in that material will be a kind of isotropic material. And we can think

of the crystalline domains as just randomly and regularly distributed in this amorphous

matrix in the semi crystalline polymer. And overall we can think of this material as being

kind of elastically isotropic as well.

So, glassy polymers are semi crystalline polymers can be thought of as isotropic elastic

materials. And when we say glassy it is important to note that glassy is still a completely

amorphous material it does not have any order of crystallinity.
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 Now if he focused specifically on elastically isotropic solids. So, let us first define a few

quantities which character is a mechanical properties of materials. And then we will try

to  relate  or  will  discuss  the  relationship  between  these  quantities  that  is  valid  for

elastically isotropic solids. So, the first continue that will define is what is called the

shear  modulus  of  a  material  and the  shear  modulus  is  defined  as  the  linear  kind  of

proportionality constant between the shear stress acting and the corresponding what is

call shear strain that is produced. So, specifically the ratio is between shear stress and

what is called the angle of shear so, as we discussed this a shear kind of deformations are

actually angular deformation.

So, if you have a surface if it is been sheared it will be angularly deformed in a way. So,

this kind of angular deformation can also be quantified by what is called the angle of

shear and represented by the symbol gamma here and this angle of shear is nothing, but 2

times the corresponding shear strain.

So, for a shear stress in the material represented by sigma 23; so sigma 23 will be a shear

stress where the force is parallel to the force is parallel to let us axis x 3 that we have

discussed earlier  and the surface itself  is  also parallel  to this  axis  actually  what  is  a

surface is perpendicular to axis x 2.

So, the corresponding shear stress due to this kind of a force and surface arrangement

that is where the sigma 23 and corresponding shear strain is epsilon 23 and the angle of



shear which will be just twice of this shear strain that is gamma 23. So, this ratio is how

the shear modulus is defined, and of course then can have other kind of shear stresses

also so, this is the only one component of shear stress we have actually three independent

shear stresses.

So,  their  corresponding ratio  the  corresponding shear  stress  and the  a  corresponding

angle of shear they will also constitute this shear modulus and since we have a elastically

isotropic material. All these shear moduli measured using different components of the

shear  stresses  they  were  they  should  come  out  to  be  equal  because,  the  material  is

isotropic.

So, in general this shear modulus is a shear stress by angle of shear where angle of shear

is directly related to the shear strain by a factor of two. In many cases, where this instead

of angle of shear the shear strain itself is considering this definition and there in such

cases the shear strain that is defined is equivalent to the angle of shear that we have

discussed here. Another kind of important mechanical property of a material is what is

called the bulk modulus and it is represented typically  by K and it is a ratio for the

hydrostatic pressure and what is called dilatation.

So, dilatation is basically a change in volume or the fractional change in volume due to

the action of this uniform surrounding pressure on the material. So, if we let us say have

a body and we submerge it in a fade, then typically in a static case uniform hydrostatic

pressure will be acting on this material on from all directions in a compressive way and

that will tend to or try to compress the material and reduce its volume.

So, the pressure acting divided by the fractional change in volume that is produced that

that  is  what  this  bulk  modulus  measures.  And  we  have  already  discussed  that  the

hydrostatic pressure is the average normal stress at a point. And these dilatation are the

fractional change in volume that is in that can be given by just the sum of the all three

normal strains produced.

So, this ratio is where the bulk are the bulk modulus is defined similarly, we have already

discussed  Young’s  modulus.  So,  if  a  body  is  subjected  to  a  uniaxial  extension  or

compression then, the normal stress divided by the corresponding normal stress in the

direction of extension that that is how the Young’s modulus is defined. So, it is a stress

by strain and if let us say deform if we are deforming the body along the x 1 axis.



So, the corresponding normal stress is sigma 11 and the normal strain or tensile strain is

sigma epsilon 11 and their ratio corresponds to the Young’s modulus one more important

property is what is called a Poisson’s ratio. So, Poisson’s ratio this is represented by a nu

and it is defined as the ratio of the lateral or transverse strain produced by the way by the

longitudinal or axial strain produced.

So, in general case if again we consider this as kind of a rod and if you are pulling it

down, then some longitudinal or axial strain will be produced in the this direction and

direction of the force that is acting, but that can also lead to transverse strain produced in

a perpendicular plane ok. So, the longitudinal or axial strain will be produced like this,

but the corresponding transverse or lateral strain in a perpendicular plane is can also be

produced. So, the ratio of this lateral to longitudinal strain that is what this Poisson’s

ratio is a measure of.

And if we have a longitudinal strain which is positive. So, in the case of tensile stress in

that case usually the transverse strain will be negative.  And on the other hand if the

longitudinal strain is compressive then usually the transverse strain will be positive. So,

there is a minus sign here and in most of the cases the sign of the transverse and axial

strains are opposite. So, Poisson’s ratio many times is positive.

So, these are some of the important mechanical properties which are related to the stress

and behavior of a material and for elastically isotropic solids as we have discussed there

are only two a independent stiffness or elastic constants. So, using that condition what it

can be shown that these four properties are actually related to each other.

So, will not going to the derivation of those relations, but we will just write down the

relationship between these properties that is valid for isotropic elastic solids where only

two independent stiffness constants are present. So, the relationship between the shear

modulus and the Young’s modulus is through this expression where the Possion’s ratio

appears here.

The relationship between the bulk modulus and Young’s modulus also is through this

relation expression and here Poisson’s ratio again appears here. So, these are some of the

important a mechanical properties of a material related to the stress strain behavior and

we see that for elastic isotropic solids. These properties are actually are not independent,

but are interrelated. And we have also discussed that certain kind of polymers like glassy



polymers  or  some  semi  crystalline  polymers  can  be  thought  of  as  behaving  like

elastically isotropic. So, for such polymers such expressions I expected to hold.

Next, let us talk about the elastic response of these polymeric materials and different

types of polymeric materials. So, when we say elastic the responsible elastic deformation

when specifically talk about the elastic deformation of these polymeric materials; what

we mean is how the stress and strain are related to basically.

So, basically a stress strain kind of a diagram where the strain measure is a measure of

the deformation and stress is measure of the amount of force were being a subjected or

applied on the polymeric material.
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So, if we consider the first the case of what is called the single crystal polymer fibers. So,

these are polymer fibers where the chains are highly oriented along the fiber axis ok. So,

again if we can say this has a fiber the polymer chains are oriented along the fiber axis

and the polymer chains are in a crystalline kind of arrangement. So, these are highly

crystalline  materials  where the  chain polymer chains  are  also highly oriented  in  one

direction.  So,  because  of  the  this  strong  chain  orientation  the  axial  direction  this

materials  show  the  stress  strain  behavior  where  very  large  amount  of  stress  only

produces very small amount of strain.



So, the deformations produced for large amounts of forces are acting on it will still be

very  small  for  such  materials.  So,  these  materials  typically  will  show  the  kind  of

behavior that is shown here and at high enough stresses they will exhibit failure which

means  that  mechanical  fracture  of  this  material  will  take  place  if  the  applied  stress

exceeds a certain point. But, we will see that even at the failure point the amount of

strain or elongation produced in the material is very small ok. So, these are very rigid

kind of materials.

Next we can consider the case of glassy polymers. So, we have talked about to glassy

polymers when we discussed a glass transition temperature in the amorphous phase of

polymers. So, these glassy polymers are amorphous polymer structures which are rigid

because, the polymer chains are kind of trapped in due to the absence of enough free

volume and the polymer chains are mostly immobile and this leads to a kind of hard

regent kind of these glassy polymers. So, this glassy polymers again show a behavior

where the stress large amounts of stress a also do not produce significant amount of

strain,  but  compared  to  this  single  crystal  polymer  fibers  the  corresponding  strain

produced for a given stress is higher as we can see here.

So, if we consider a particular value of stress the strain produced in this polymer fiber is

here whereas, the strain produced in the glassy polymer is here. So, we see the larger

amount of strain is produced but still these middles are quite rigid. And if enough stress

is applied ultimately the material will fail or exhibit mechanical fracture.

 Another kind the class of important polymeric materials has semi crystalline polymers.

So, we have discussed the fact that most of the polymers or most of polymers in use can

be  thought  of  a  semi  crystalline  polymers  where  which  have  different  degrees  of

crystallinity  and  the  polymer  itself  consists  of  amorphous  phase  along  with  the

crystalline phase present together.

So, first semi crystalline polymers the stress strain behavior actually is a bit different and

initially if we see there is a linear kind of stress strain relationship. But beyond a certain

amount of stress the linear stress in relationship does not hold and the elastic instead of

an elastic kind of deformation we see a inelastic or plastic kind of deformation of the

material.



And material can another long elongations and ultimately might exhibit failure at high

enough strains although the stress is address the failure is exhibited need not be very high

ok.  So,  another  important  class  of  polymers  is  elastomers  which  are  this  rubbery

polymers could be cross linked kind of polymers, and these polymers are captures way

fact that they show a large amount of reversible extensibility or reversible elongation.

So, here we see that even for small amount of stresses in the case of elastomer a very

large  strains  can  be  produced  and  up to  very  high  strain  values  are  actually,  if  the

external force is removed the material will revert back to it is original dimension. So, the

elongation is reversible at work quite a large strain value.

But at again high enough stresses and correspondingly large enough strains the material

will exhibit failure. So, typically in the stress strain curve that we have shown here, if we

measure the slope of this curve side very small values of strain that slope will correspond

to  the  Young’s  modulus  of  this  material.  So,  typically  for  elastomers  the  Young’s

modulus is of the order of 1-10 mega Pascal.

So, we see that the initial slope is quite small and the Young’s modulus also is quite small

for elastomeric materials. For semi crystalline polymers the Young’s modulus is typically

in the range of 100-1000 MPa, where MPa is mega Pascal. So, 100 MPa is essentially

one Giga Pascal.

Now, the depending on the whether the semi crystalline the amount of crystalline crystal

phase present inside the semi crystalline polymer. As well as whether the amorphous

phase is in a glassy kind of state or not these are the factors that will dictate exactly what

will be the Young’s modulus, but typically the range observed is of is between 100 and

1000 mega Pascal.

For glassy polymer the Young’s modulus is generally high and it is of the order of 10 to

power 3 mega Pascal which is equivalent to 1 Giga Pascal. For polymer fibers, we see

that it the curve shows a very high slope or very small strains at even very high stresses

so, here the Young’s modulus is of the order of 10 to the power 2 Giga Pascals or 10 to

the power 5 mega Pascals.

So, this is just the order it is not the exact value the values of Young’s modulus lie in this

order of magnitude. So, far crystal the further polymer single crystal fibers an important



thing to note is that although we have written the Young’s modulus to be of the other 100

100’s of Giga Pascals, but that is valid only in the longitudinal direction or in the fiber

axis direction because, that is the action which the chains are oriented or aligned.

So, that is the direction which shows a high Young’s modulus, but this polymer crystals

this fibers are quite an isotropic and if one measures the transverse elastic modulus or the

kind  of  Young’s modulus  in  the  direction  perpendicular  to  the  fiber  axis.  Then  this

transverse modulus values actually are much lower transverse modulus values are of the

order of 1 Giga Pascal, whereas, the axial or longitudinal modulus as of the order of

100’s of Giga Pascal.

So, due to the strong anisotropy moduli  measured in different directions for polymer

fibers are actually different. And finally, will just discuss the case of semi crystalline

polymers in a bit more detail,  because in many cases the polymeric material actually

exists as a semi crystalline a polymer where both amorphous and crystalline phases are

present.

(Refer Slide Time: 40:55)

So, if we consider a few examples: so, in national level it has been observed that if we

have  a  completely  on  alpha  sample  of  natural  rubber,  it  shows  let  us  say  Young’s

modulus of the order of one mega Pascal. But, if we if crystallization takes place and if

the degree of crystallinity increases to let us say 20 or 25 percent in this natural rubber.



Then the Young’s modulus has been shown has been seen to increase by as I as much as

a 100 times.

So,  this  presence  of  crystalline  phase in  the polymer actually  can lead to  significant

change in the elastic properties, especially the Young’s modulus. And another example

would be as order as a semi crystalline polymers like polyethylene where, clearly the

increase  in  the  degree  of  crystallinity  in  the  material  has  been seen  to  a  lead  to  an

increase in the Young’s modulus of the material.

So, what we can infer from these observations is that the elastic property is or elastic

behavior of this polymeric semi crystalline polymeric materials actually depends on the,

stronger depends on the degree of crystallinity in the material  as well.  Normally, the

overall elastic property of the material, let us say the Young’s modulus of the material

that will  be a reflection of both the elastic modulus of the amorphous phase and the

elastic modulus of the crystalline phase in the semi crystalline polymer.

Semi crystalline polymer can be thought of as behaving as composites where both the

crystalline and amorphous phases they contribute to the elastic overall elastic modulus of

the material. But the way in which the in individual elastic moduli of the amorphous and

the crystalline phases combine to produce the overall elastic modulus of the material,

that usually is something that that is not known and it that is not something which can be

readily a predicted.

So, that is a challenge so, the overall modulus is a combined moduli of both the phases,

but  how these  two  combine  that  is  something  which  is  not  known for  most  of  the

materials.  If we talk about few specific cases, because if you have a semi crystalline

polymer then depending on the size of the crystalline phases present the also the shape of

the crystal phases present and other factors the individual behavior can vary significantly.

So, what we will do is just focus on a couple of specific cases and try to see, try to

discuss  a  couple  of  equations  that  to  some  extent  can  model  the  Young’s  modulus

behavior of this semi crystalline polymers. So, if you are talking about system where we

have five the crystalline phase exists as a semi a single crystal fibers and it is embedded

in an amorphous matrix.



So, if you are considering a case where the crystalline phase exists as a in the fiber kind

of  morphology and it  is  assumed to be embedded in the polymer matrix  which  is  a

otherwise amorphous. So, for such a case the Young’s modulus of the semi crystalline

polymer E p that can be related to the Young’s modulus of the crystalline part and the

Young’s modulus of the amorphous matrix, as well as the volume fraction of crystalline

part by what is called this Voigt model? So, this Voigt model can be used to relate or

estimate the Young’s modulus of semi crystalline polymers of this kind of a morphology.

So, as we have discussed the symbols have the corresponding meaning so, just written

here.

And this kind of model can be thought of as representing a case where we have a two

components in our system. So, our semi crystalline polymer we consist of as having a

crystalline component and an amorphous component. And in this Voigt model what is

assumed  is  that  when  its  subjected  to  a  stress  then  the  strain  producing  both  the

components is equal. So, for such a case an equation like this can be shown to be valid,

but it must be mentioned that such equations can only approximately model this kind of

semi crystalline polymeric morphology. And exact are very quantitative mash may need

not may not be obtained.

Finally, if we it or consider a case where the crystalline phase exist as paralytic kind of

domains. So, that is what we discussed in mostly in the previous lecture that in most of

the  cases  and  polymeric  is  crystallized  from  a  melt  spherulitic  kinds  of  crystalline

domains basically grow and impinge on each other.

So, if we have a case where the crystalline domains has spherulitic and of course, we

have an amorphous polymer matrix as well and this crystalline domains are assumed to

be embedded in this amorphous phase. So, that we have this two phase semi crystalline

polymer then, this Reuss kind of model is something that that can gives some reasonable

estimates of the Young’s modulus of the semi crystalline polymer.

So, here we see that the reciprocal of the Young’s modulus of a semi crystalline polymer

is related to the volume fraction of the crystalline part by the Young’s modulus of the

crystalline part plus, this volume fraction of the amorphous part by Young’s modulus of

the amorphous matrix. These are some of the models which are not really that accurate,



but  which  allows  some  kind  of  rough  estimation  of  the  Young’s  modulus  of  semi

crystalline polymers.

So, in today‘s class what we have done is just gone through some fundamental concepts

related  to  mechanical  properties  and  then  we have  briefly  discussed  the  mechanical

properties and the elastic deformation behavior of polymeric materials. In the next week

the material that will cover we in that material will draw upon some of the concepts that

we have discussed today.

 And  we  will  specifically  discuss  some  interesting  mechanical  behavior  and  flow

behavior  exhibited  by a  polymeric  materials.  So,  we will  talk  about  the  visco visco

elasticity, as well as the non Newtonian flow behavior of polymer solutions and melts

that say. And we will also discuss the case of rubber elasticity which is exhibited by

elastomers ok. 

These some of the things that will be discussing in the next week, and hopefully the

material that we have covered today will come in handy in understanding those concepts.

Thank you.


