
Introduction to Polymer Physics
Dr. Amit Kumar

Department of Chemical Engineering
Indian Institute of Technology, Guwahati

Lecture – 15
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Hello, so in the previous lecture, we were discussing about Gelation and Formation of

Network Polymers. Today we will continue that discussion, where we will focus on the

theories that, describe Gelation and also some of the results from those theories. Apart

from Gelation, we will also focus today on the swelling behavior of network polymers.

So, network polymers, when solvent is mixed with them do not dissolve because of the

network and cross link structure that they have.

But they tend to swell in the presence of solvent.  So, we will see how that swelling

behavior can be described. So, in today’s lecture the focus will be initially, on the mean

field model of Gelation that we are discussing in the previous lecture.

(Refer Slide Time: 01:10)

So, we had introduced this, model in the last lecture and today we will focus on the

results related to the degree of polymerization, as well as the number density distribution

that, arise from the mean field model of Gelation.



We will also very briefly look at the some a scaling results, from what is called a six

scaling model of Gelation. So, this scaling model of Gelation is a bit more sophisticated

than, mean field model. So, we are not going to details of this model or any theories

associated with it,  but we will just look at the key results that, this scaling model of

Gelation predicts. And in the later part of today’s lecture, we will focus on the swelling

behavior of network polymers and specifically, we will look at an equation, which is

known  as  the  Flory  Rehner  equation  and  how  that  equation  describes  the  swelling

behavior of a network polymers in the presence of a solvent.

So, to start with this mean field theory by of Flory and Stockmeyer, it can and the results

of this theory can be readily obtained, if we assumes that this polymerization process and

subsequent  branching network  formation  Gelation  these  processes  are  take  are  taken

place on a special kind of lattice called the Bethe lattice. So, this Bethe lattice is a lattice

which has a coordination number equal to the functionality of the monomer, which is

involved in a polymerization reaction.

So, if we consider a Bethe lattice and we if we can say that, each lattice site is occupied

by  a  monomer  species  then,  the  Bethe  lattice  is  a  lattice,  where  the  monomer

functionality that we have that equals the coordination number, that a lattice site has So,

if the monomer functionality, that we are considering is f then, the Bethe lattice will have

a coordination number of f, which means that each site will have a f number of nearest

neighbors  and  any  monomer  present  on  any  given  site  can  connect  with  f  other

monomers present in the adjacent neighboring sites.

So,  we are  not  going to  any  details  of  a  derivation  of  the  results  starting  from the

monomer  placement  on  the  Bethe  lattice  and polymerization  represented  by connect

connectivity between adjacent sites of a Bethe lattice. So, we are we are not interested in

those derivations, but it considering such a lattice results can be readily obtained. So, we

will focus more on the results that we obtained and the kind of scaling behavior that we

get, which again will be further focus of the scaling model of Gelation.



(Refer Slide Time: 03:57)

So,  if  we now consider  the number average  degree of polymerization  below the gel

point.

So, we are still continuing with this mean field model of Gelation and using this mean

field  model  of  Gelation,  the  result  for  the  number  average  degree of  polymerization

below the gel point that is obtained is xn bar is equal to 1 1 over 1 minus pf by 2. And

this is valid for p less than pc, so when we are below the gel point. From this number

average degree of polymerization of course,  one can also obtain the number average

molar mass, simply by multiplying this xn bar by the molar mass of a monomer.

So, if we consider the point, where Gelation transition just takes is taking place or the gel

point, where p equal to pc. So at that condition, we know the from this mean field model

at peak, pc is equal to 1 over f minus 1. So, at p equal to pc, xn bar can be obtained by

replacing this p by 1 over f minus 1. And if we do that the final expression for xn bar that

we get is this. So, at that critical point of the point, where Gelation transition is taking

place, we see that this xn bar or number average degree of polymerization is finite, it

does not diverge or it does not become infinite. 

Ah if we consider the weight average degree of polymerization and again without going

through the derivation, if we just consider the result that we get from this mean field

theory, the weight average degree of polymerization below the gel point, that this p less

than pc is given by this expression. So, here we get a xw bar is equal to 1 plus p, over 1



minus p over pc So, one thing to note here is that, at the gel point when p is equal to pc,

we see that the denominator of in this case becomes 0 and the xw bar diverges, so xw bar

tends to infinity, as we approach the gel point ok. 

So, another result arising out of the mean field theory of a Gelation is that, the number

average  the  weight  average  degree  of  polymerization  diverges,  at  the  gel  point  and

similarly,  the  weight  average  molar  mass  will  also  diverge.  And  this  gel  point  is

characterized by p equal to pc. Now that we have discussed, the number average and the

weight  average  degree of  polymerization  there,  one can just  take  the ratio  to  get  an

measure of the polydispersity index of the sample that we have.

(Refer Slide Time: 06:31)

So, if we do that, the polydispersity in index as you know is defined as a ratio of the

weight  average  molar  mass  to  the  number  average  molar  mass.  So,  which  can

equivalently be stated as the ratio of the weight average degree of polymerization, to the

number average degree of polymerization. And this ratio if, we substitute the expressions

from the previous slide for xw bar and xn bar here and simplified that expression for

polydispersity index, that we get is this and this again is for p less than pc or below the

gel point.

So, now, here we again see that, the denominator is such that at the gel point, when p

equal to pc, this polydispersity index also tends to infinity and it diverges. So, this pdi

also diverges at the gel point ok. Now apart from these quantities, it is useful to define or



introduce a quantity, which measures, how far away the system is from the gel point at a

certain point of time. That is defined by what is called a relative extent of reaction and

which will represent as epsilon.

So, this relative x extent of reaction is defined as p over pc minus 1 and if, we substitute

pc equal to 1 over f minus 1 then, we get epsilon equal to f minus 1 times p minus 1 So,

what does this relative extent of reaction represent? It actually represents, how far or near

we are to the gel point ok. So, if we are exactly at the gel point then, this p will be equal

to pc and epsilon will be equal to 0 in that case.

So, epsilon will be equal to 0 at the gel point and as we go away from the gel point in

either direction whether, above the gel point or below the gel point the value of epsilon

will increase or the absolute value of epsilon will increase. If you have below the gel

point you can notice that, epsilon will be negative. So, below the gel point p will be less

than pc, so this ratio will be less than 1 and epsilon by this definition will be less than 0. 

Similarly, above the gel point, the epsilon will be a positive quantity. So, now, using this

relative extent of reaction, the number average degree of polymerization and the weight

of average degree of polymerization these two can all can be defined. If we consider the

specific case where the monomer functionality is three that is, f equal to 3, so for that

case, xn bar and xw bar are related to this epsilon, using these 2 relations that we have

here. 

So, you notice that we have used the absolute value of epsilon here because below the

gel point the epsilon actually is negative. So, so if we consider these 2 equations and try

to see if the these are consistent with the previous equations that, we had derived in the

last slide for xn bar and xw bar. We can we can do that and we will see that we get the

same results as before if, we substitute epsilon is equal to f minus 1 p minus 1 times p

minus 1, which is the result that we have here.

So, if you substitute that here and also note that, below the gel point this absolute value

of epsilon actually will be minus epsilon because, below the gel point epsilon itself is

negative and this absolute value has to be positive. So, minus of this epsilon which is

negative, will give us a positive value which will be the absolute value of epsilon below

the gel point. So, if we do that so if, we let us say that, xn bar is equal to 4 over 1 minus

3 epsilon for p less than pc.



So, we are below the gel point that is why we have used minus epsilon in place of this

absolute value of epsilon here. And if you substitute now this expression here then, xn

bar upon simplification we will get to be the same as what we got in the previous slide,

so if we do 4 over 1 minus 3 times. And this f minus 1 that we have, this will the in our

case, it will be 2 because f is relating f to be 3, so f minus 1 is 2. So, 3 times this f minus

1, which is 2, so 3 times, 2 times p again, minus 1 in here inside bracket.

So,  these  relations  that  we  have  these  are  consistent  with,  what  we  had  discussed

previously. And these will be valid both below and above the gel point. So, below the gel

point since, epsilon is negative absolute value of epsilon will be minus e above the gel

point since, epsilon will be positive the absolute value of epsilon can simply be replaced

by epsilon itself. So, now that we have define the relative extent of reaction. Let us see

how the distribution or the number density distribution of the change that, we have in the

system, how that changes or what is a relation for that.

(Refer Slide Time: 12:07)

So, if we consider the a number density distribution to be represented by this symbol, n

which is a function of a pN capital N. So, this small N represents the number density

distribution  of  N mers.  This  N represents  that,  we are  talking  about  N mers  or  the

polymer  molecules,  which  have  capital  N number  of  monomer  (Refer  Time:  12:29)

present in them. So, the number density distribution of this N mers at a certain point of

time  and  the  extent  of  reaction  is  p,  that  is  what  we  are  looking  at  when,  we  are



considering this function here. And this number density distribution is defined basically,

as the number of N mers per monomer at a certain extent of reaction ok.

So, now again, we are not going to the a detailed derivations here. One can again starting

from by considering a Bethe lattice and using the mean field model, one can derive an

expression for a general expression for this quantity. And from this quantity, other things

like the degree of polymerization, such things can also be obtained.

So, we will not going to the derivation, we will just state the result that, we obtained for

the case, when we are considering this number density distribution near the gel point in

the mean field model. So, in this mean field model of gelation, if you are near the gel

point which means that, we are talking about a condition where, this epsilon is much

smaller than 1 ok, the absolute value of a epsilon. So, we can be near the gel point from

either direction, whether we are above the gel point or below the gel point, the same

relation applies here. Only thing is that, epsilon should have a very small values should

so and we should be very close to the gel point.

 So, if that is the case then, it can be shown that, the this density distribution of the N

mers at any given extent of reaction p, which is very close to the gel point pc, so that is

approximately given by this relation here. So, this is a kind of a pre factors, so this is not

of that much interest to us. The what is more interesting are these two quantities, so this

is a kind of a power law dependence of this number density distribution on the degree of

polymerization of this N mers. So, if you are considering only N mers, the degree of

polymerization will just be N.

So, this is a power log dependence of this number density distribution on the degree of

polymerization.  And  this  is  a  kind  of  a  function  that  also  contains  the  degree  of

polymerization N. So, this also affects the behavior of this number density distribution

with N. Now if we just focus on the dependence on these two quantities, the power law

as well as our exponential function, then we can write this number density distribution to

be related to the this quantity N through, this power law dependence N to the power

minus 5 by 2 along with a kind of a function.

And this function is a function of N and the another quantity N star which will define

shortly. So, this f plus or minus n over n star, this function is referred to as the cutoff

function and if we consider the form of the equation here then, the cutoff function for the



mean field theory is of the exponential form and it is form is exponential minus N over N

star.

Here the N star is called the character characteristic degree of polymerization. And again

by comparing these 2, we can find that N star will be given by this relation, for through

the mean field theory of Gelation.  The number density  distribution  has a power law

dependence on the degree of polymerization, but that is a kind of truncated by this the

presence of this function, which is the cutoff function ok. And that will be the power law

dependence will be truncated at this characteristic degree polymerization N star.

So, we see that, N star is again a function of this relative extent of reaction epsilon and it

is related to E to the power minus 2. So, as a extent of reaction tends to zero or as we

approach the gel point, we see that this N star actually again diverges. So, at the gel point

this a characteristic degree of polymerization also diverges and since, this N star diverges

or tends to infinity at the gel point, the cutoff function will tend to will tend to 1 ok.

So, we will get exponential of a 0 as a N star tends to infinity, we will get exponential of

0 as a cutoff function which is 1 So, at the gel point the number density distribution just

simply  scales  as,  N  to  the  power  minus  5  by  2,  where  capital  N  is  the  degree  of

polymerization and there is no cutoff function involved. So, this is these are some of the

results, that we obtain if we consider the mean field model for the Gelation transition.

So, next let us look at a different kind of model for this Gelation phenomena, which is

known as the scaling model of Gelation. And the that model is a bit more sophisticated

and advanced than this is the other simpler mean field model.

But we will see that the kind of a dependence that we have obtained from the mean field

model, similar kind of scaling the dependence is also predicted by this scaling model of

Gelation.  So,  we  consider  the  scaling  model  of  Gelation,  which  was  developed  by

through the work of (Refer Time: 18:11) and others.
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If we talk about a number density distribution, which we were discussing in the previous

slide for mean field model and if you talk about the scaling model of Gelation now, then

the number density distribution actually has a similar kind of form as we saw for the

mean field model but there are some important differences ok. So, the number density

distribution that we have actually whether, if we are below the gel point or if we are

above the gel point that actually dictates, what kind of number density distribution that

we have because, the cutoff function in the 2 cases are different, when we are talking the

scaling model of Gelation. In the mean field model of Gelation, that we just discussed

previously the cutoff function is the same whether we are below the gel point or above

the gel point.

But in the scaling model, we have different cutoff function. So, this cutoff function is

basically a symmetric across the gel point. Apart from that we also with this power law

kind of dependence and N to the power minus tau in both the cases. This exponent tau is

the same for the case below the gel point and above the gel point and this tau is referred

to  as  the  fisher  exponent.  So,  in  the  case  of  a  mean  field  model,  the  power  law

dependence that we had was, N to the power minus 5 by 2, here that minus 5 by 2 is

replaced by N to the power minus tau. So, kind of a more generic kind of a exponent

which is and this exponent is referred to as the fisher exponent.



Apart from that the characteristic degree of pollination N star, so this N star scales as this

absolute value of epsilon, which is a relative extent of reaction raised to the power minus

1 over sigma. So, this sigma is again or this 1 over sigma is also an exponent that appears

in this scaling model of Gelation So, if we consider the mean field model, we see that for

the mean field model the corresponding values of tau will be 5 by 2 and sigma will be

just half, so if you are considering the mean field model.

So, if them in the mean field model the equivalent values of tau and sigma are 5 by 2 and

half.  In  the  scaling  model,  actually  the  value  of  tau  and  sigma  it  is,  these  are  not

constants, but depend on the dimension, in which the percolation is taking place. So, the

percolation phenomena which describes this connectivity of the network polymer or the

dimension of a per dimension, in which the percolation is taking place, that will actually

dictate  the  value  of  tau  and  sigma  these  exponents  for  scaling  model  of  Gelation;

whereas, in mean field model these 2 are always taken to be constant at 5 by 2 and half.

So, as we discussed the difference from mean field model is that, the cutoff function here

is more complicated and it is asymmetric with different forms below and above the gel

point. And the cutoff function in the in the mean field model is a simple exponential

function, but in scaling model the exact form of cutoff function, actually is not known.

The  exponents  that  we have  tau,  as  well  as  sigma here  these  are  called  the  critical

exponents; tau has a special name of fisher exponent. 

So, these are critical exponents and these depend on the dimension of the problem. So,

dimension in which, percolation is being considered and dimension which the Gelation is

taking place, that dimension dictates the value of tau in sigma. So, for percolation in 3

dimension approximately, the value of tau is 2.18 and sigma is 0.45 in the scaling model

of Gelation. 

And these values are not obtained from any analytical relation. So, these are not exact

values,  but  these  are  approximate  values  obtained  through,  let  us  say  computer

simulation results. Similarly, if the percolation is happening in 2 dimensions, the value of

tau and sigma will be different from these. If you are considering percolation in some

higher dimension, the values will again be different. And if you are considering a limit

where percolation is taking place in dimensions of 6 or above so high order dimensions



then, the value of tau and sigma actually coincide with the values that we get from the

mean field model.

Now in the scaling model, using the scaling model of Gelation, some other the kind of

scaling relations can also be identified. So, again we will not go into the details of any

derivation here, but just point out a few key important scaling results. So, the gel fraction

the scaling model predicts that, the gel fraction is actually proportional to N star to the

power 2 minus tau; again N star is the characteristic degree of polymerization. 

And since N star itself is a related to the, relative extent of reaction epsilon, through this

relation, so then, the p gel can also be related to the relative extent of reaction, as epsilon

to the power beta. So, this beta is another exponent that comes in here and since we are

talking about the gel fraction, this is all only valid at p above pc because, below the gel

point, there will not be any gel and the gel fraction is 0. So, above the gel point this is a

scaling relation for the gel fraction.

And since, we are above the gel point there is no need to use a absolute value for epsilon

because, above the gel point epsilon will anyways be positive. Similarly, similar kind of

scaling um result can also be obtained for the weight average degree of polymerization,

so the weight average degree of polymerization if we consider, then the scaling result

that we get is, it we xwr scalar a scales as N star to the power 3 minus tau.

So, again N star is related to epsilon through this relation, so we can also say that, x w

bar are the weight average degree of polymerization, that scales as epsilon to the power

minus gamma. Now the beta as well as the gamma, these 2 exponents can be related to

the  other  2  critical  exponents  tau  and sigma through these  two relations  and that  is

obvious, if we consider if we consider either this relation on this relation in conjunction,

with the relation for N star here.

So, if we combine them the then, we can obtain results for beta and gamma in terms of

tau in  sigma.  So, these are some of the important  results  from the scaling model  of

Gelation. And what this scaling model predicts is that, the percolation phenomena the

dimension, in which the percolation is taking place, that basically has a an effect on the

kind of a exponents, that we get in the scaling relations, as well as the form of the cutoff

function that we have. And the form of the cutoff function that actually is different, if we



are below the gel point from that which, if we will be above the gel point, so the cutoff

function is also asymmetric.

So, we will not discuss this model in any further detail, but we will just state that the

model  actually  is  more  sophisticated  and  advanced  than  the  mean  field  model  of

Gelation.  And  it  predicts  some  important  scaling  relations  for  a  various  important

parameters related to Gelation phenomena and network formation. So, the last in the last

part of this lecture, what we will do is focus on this phenomenon of swelling of network

polymers ok. So, we have considered Gelation phenomena, now and the formation of

network polymers.

Now if you have a fully developed network for polymer that has formed, where almost

all the monomeric units are part of this large network. And if we try to dissolve this

network polymer in a solvent, then the since the network is almost infinitely large, this

due to the presence of these cross links the polymer, network will not actually dissolve in

the solvent,  but  instead it  will  swell  in the presence of the solvent.  So,  the polymer

network will imbibe the solvent molecules inside it and that will lead to the swelling of

this cross linked polymer network. 

So, we will next discuss some equations and theories that, that are used to describe such

swelling behavior. So, as we discussed network polymers being a highly cross linked do

not dissolve in the solvent, but this swell in the presence of solvents.

(Refer Slide Time: 26:49)



So, typical examples of network polymers are elastomers and thermosetting polymers.

So, if we consider elastomers, let us say, if we add some solvent to rubber, then that

elastomeric material like rubber will swell ok. So, that the swelling, that is what we were

interested in studying the swelling behavior.

Relatively simple, but the useful theory for describing the swelling behavior is due to

Flory and Rehner. And this equilibrium swelling theory proposed by them is describes,

the  swelling  of  polymer  networks,  when  exposed  to  solvent  to  containing  small

molecules ok. So, if you have a small  solvent having small  molecules and if we are

adding it to a network polymer then, this kind of swelling, that we get that is described

by this Flory Rehner theory. And in this theory, the basically three different kinds of a

factors were considered by Flory and Rehner to come up with, the expression for the

swelling behavior.

So, the different factors, which are considered are that, when we are mixing a solvent

into a network polymer and the network polymer swells then, there are three different

forces, that are at play. One is due to the entropy of a mixing, so since we are mixing 2

different  substances  that,  just  pure  entropy  of  mixing  will  always  a  favor  swelling

because, it will be a negative quantity. So, the entropy of a mixing will favor the selling

behavior.

On the other hand, upon swelling we have a network polymer. So, upon swelling, the

chains basically get kind of stretched the chains are cross linked at different junction

points. So, if in the presence of a solvent the chain the network polymer swells then, the

different chain segments between the junction points they get stretched. And they would

like to come back to their original dimensions and state so, as to increase or maximize

the entropy that  they have.  So, that  stretched polymer chain will  lead to  a  loss in  a

entropy. 

So, entropic factors due to the stretching of polymer chains that will actually not favor

swelling and it will try to bring the network polymer back to its original size. So, that is a

factor  that  is  opposing the swelling behavior. And the third factor is  the enthalpy of

mixing,  so that  will  depend on the interaction between the polymer and solvent  and

depending on what kind of interaction we have. It this factor can either oppose swelling

or favor swelling.



So,  based  on  these  3  considerations  and  using  the  Flory  Huggins  approach  for  the

polymer  solvent  mixing  behavior  and  the  a  kind  of  the  theory  of  a  elasticity  of

elastomers,  for  considering  the  stretching  of  the  net  network  chain  segments  and

considering these two these two theories together, Flory and Rehner came up with the

expression for describing the swelling of network polymers ok. 

So, the Flory Rehner equation, the final equation will not go through a derivation again.

The final equation is shown here and in this Flory Rehner equation the different terms,

some of these terms should be familiar to you. So, this phi 2 is just the volume fraction

of the polymer in the swollen polymer network, so that is phi 2, chi is the Flory Huggins

polymer solvent interaction parameter and that is also a something that we have come

across previously one is the molar volume of the solvent ok.

So, that is also something,  that will  be known and the n is  some n is  an interesting

quantity, so we will discuss what n is briefly. So, as we discussed phi 2 is the volume

fraction of polymer in the swollen state, V 1 is the molar volume of solvent and Chi

Huggins interaction parameter and the quantity n here parameter n this is a sometimes

referred to as, the cross link density. And it describes a number of network segments,

present per unit volume of our sample ok.

So, when we say active network chain segments, these this term basically describes a

chain segments which are between 2 junction points. So, the chain segments connecting

a 2 other chains that is that is, what we mean by this active network chain segments and

this corresponds to a segment of a chain, that is bound at the 2 ends by 2 junction points

ok.  So,  the density  of  such a  network chain segments  per  unit  volume,  that  number

density is what this n is and it is also sometimes called the cross link density. And one

should  note  that,  this  density, number  density  is  actually  different  from the  number

density of the junction points that we will get.

So, if we consider a network polymer ok, and if we consider different kinds of a junction

points  ok,  so  these  are  junction  points  and  this  is  the  network  acting  network  side

segment that we are talking about. So, number of such network segments, these network

segments between 2 junction points per unit volume that is what this n is. And if we are

talking about the density of these junction points number density, then that actually will

depend on the um the functionality of this each junction point.



So, for from each junction point, how many chains are propagating. So, one can have a

tri functional junction point, from which three chains are where three chain, segments are

connecting.  One  can  have  tetra  functional  also  where  4  chains  are  connecting.  So,

depending  on  that  the  junction  point  density  can  be  related  to  n,  so  for  this  tetra

functional kind of case, so the junction point density will just be half of n. 

So, this the cross link density, that we are talking about that, we can obtain if we know

the density or polymer density, as well as the what is called the number average molar

mass of these active network chain segments. So, the a number average molar mass of

these kind of chain segments between 2 junction points, if you are averaging all the all

such active network segments present in the system. So, that molar mass, if we divide the

polymer density by that molar mass then, we will get the this cross link density n ok. 
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So, this n is given by simply rho by M c, where rho is a polymer density, mc is the

molecular weight or molar mass, which is the number average quantity between of the

polymer active network segments between different junction points ok. Now the swelling

behavior that we have, of course one can obtain, in the previous expression we saw that,

the Flory Huggins interaction parameter also appears. So, the swelling behavior can be

used to obtain the Flory Huggins interaction parameter data.

And if let us say we have a system where, the Flory Huggins interaction parameter is

known then, the swelling behavior actually can be used to obtain the elastic modulus of



this polymer net network or polymer gel ok. So, let us see how that that is done. So, if we

want  to  obtain  the  modulus  from  swelling  behavior  then,  we  will  need  to  use  an

expression that, describes the relation between the stress and strain. So, without again

deriving we will just write down this expression for which relates the stress and the what

is called the extension ratio lambda, which is a measure of the strain.

And we see that this number n, which is the same as this n here that appears in this

relation ok. So, what this suggests is that, if we have this a value of this n for from the

swelling behavior then, that can be used to obtain a modulus from an equation of this

kind ok. So, this equation we have not derived, but we will try to briefly consider this

later and in this course when we talk about rubber elasticity.

So, through theories of rubber elasticity, one can show that an expression like this under

the certain assumptions is valid So, if you have this expression and this is the retractive

stress, if the sample is being extended then, the retractive stress developed in the sample

that is sigma. Lambda extension ratio is just the final length at any point divided by the

initial length of the sample and it is a measure of the strain. And this front factor is this

ratio, which is generally equal to 1, but can be different from 1 also in some cases.

And a here these 2 quantities, it is a ratio of these 2 quantities, so R square i is basically,

a kind of a mean square,  end to end distance of a active network segments between

different junction points in the network polymer. And this R square naught is just the

mean square into an distance, if these if these network segments were not bound at the

junction points, but if their ends were free and if they are isolated and then, in that case

what mean square into n distance they would have that is this r square naught.

And from this relation, we can a one can actually obtain the Young’s modulus directly.

So, the Young’s modulus from this relation again will not go into the derivation, but then

Young’s modulus, that we get is this and for a small strain, where the extension ratio

lambda is close to 1. So, if lambda is approximately equal to 1, which corresponds to

small strains we will get this track rate term as just 3. So, we will get this as the Young’s

modulus.

So, if we know n again from the swelling data of the polymer network then, Young’s

modulus can be estimated using this kind of an expression ok.
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So, before we conclude we will just talk about a couple of other aspects related to, so are

related to polymer network swelling So, a quantity known as the equilibrium swelling

ratio Q that can be defined as the volume of the polymer network or polymers gel, when

it is swollen and when it is at a equilibrium, divided by the volume of the dry polymer

sample network polymer sample ok.

So, if you have dry network polymer and if, we add a solvent, it will take in some solvent

somehow, the  solvent  and it  will  swell.  So,  the  Veq  is  the  volume of  that,  swollen

polymer network and V dry is the volume of the dry polymer network in the absence of a

any solvent in the system ok. So, what we can do is, identify a relation like this between

the dry volume of the network polymer, as well as the volume fraction of the polymer ok,

for any amount of swelling that has happened.

So, let us say if, you have a partially swollen sample, which has not fully swollen it is not

yet had attained its equilibrium swollen volume. So, this even then the dry volume can be

written  to  be equal  to  the  volume of  this  partially  swollen  polymer  sample  network

polymer  sample,  multiplied  by  the  volume  fraction  of  the  network  polymer  in  the

sample. And this can be done because, swelling is taking place only because of the extra

volume of the solvent, that s coming in the volume of this polymer itself is not changing

ok.



And let us say that initially instead if instead of starting with a dry polymer in initially at

the initial point, if the volume if the polymer itself had some solvent present and then,

more solvent has added to swell it to a larger volume So, if initially the volume of a

partially it is a swollen polymer or a polymer having some solvent is V naught and the

corresponding volume fraction of polymer is phi 2 naught then, this product will also be

equal to V dry. So, at any point, during the swelling behavior the V dry will be equal to

just  the  corresponding  volume  of  the  swollen  gel  times  the  corresponding  volume

fraction of polymer in that swollen gel.

So, as we discussed this phi 2, we have already discussed in phi 2 not being the volume

fraction of polymer in swollen gel,  when the volume is  of gel  is  V and the volume

fraction initially this phi 2 naught, when the gel volume is and initially if the polymer is

dry then of course, this phi 2 naught will be 1 ok. So, if the polymer is entirely dry, there

is no solvent present in the volume fraction of polymer in the gel in that case will be just

1.

 So, if the polymer is completely dry initially, this is 1 and without going into too much

details, what we will do is, just identify a kind of a scaling relation again ok, between

this equilibrium swelling ratio and some other quantity of interest for the particular case

of a theta solvent ok. So, if we have a network polymer and in the presence of a theta

solvent then, the kind of swelling that we get, that swelling equilibrium swelling ratio is

actually related to this quantity n and phi 2 naught through these exponents ok.

So, if the phi 2, if the initially the polymer sample is dry phi 2 naught is just one, so in

that case so for the completely dry case, Q will simply scale as this n to the power 3 by 8

ok. And this n is the average number of monomers in the network strand. So, if you are

considering network strand between the different two different junction points, so the

average number of monomers present in such a strand that is what is this n represents.

And we see that, the equilibrium swelling ratio q actually scales as n to the power three

by eight or in other words n is related to will scale as Q to the power 8 by 3.

 So, if we have an idea of the equilibrium swelling ratio for a given from given swelling

experiment, then we can estimate or get a measure of the average number of monomers

present in a given network strand, between two junction points. One last thing to identify

here is that, if we look at this equilibrium swelling ratio and if we consider phi 2 at



equilibrium so, when the swelling complete swelling has taken place and we are at an

equilibrium condition,  then the corresponding volume fraction of the polymer in that

swollen gel equilibrium swollen gel, we can we can identify that is just equal to 1 over q

and that can be done by looking at this relation, as well as this relation here.

So, if you substitute this V dry here and we consider in case of this V the equilibrium

swollen volume and this phi 2 then will be the volume fraction at in the equilibrium

swollen gel. So, that will give us this kind of a reciprocal relation between, the volume

fraction of polymer in the equilibrium swollen gel and the equilibrium swelling ratio Q

ok. We will conclude our discussion of swelling of a network polymers here and before

concluding the this lecture, will just let us just review and recap the different things, that

we studied in during this week related to branching of polymers and Gelation.
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So, with regards to branching we discussed that, branching occurs when we have at least

a  monomer having a functionality  greater  than 2 ok.  So,  at  least  f  greater  than 2 is

required for branching. The in for a special case of kind of a monomer type, where we

have a ARB f minus 1, type of monomer, where f is a functionality and A and B are the

functional groups, that react. We can get a hyper branch polymer, so it will not form

network polymers or will not result in Gelation, but we will get hyper branch polymers.

Similarly if we have a AB ARBF minus 1 plus RB n kind of monomer combination, then

under  control  conditions,  if  properly  done  we  can  get  the  highly  ordered  polymer



structures,  branch polymer structures,  called dendrimers ok, so that is what,  we have

here. We also have discussed Gelation or a network formation and Gelation in this week,

so  with  respect  to  network  formation,  we  discussed  that  if  we  have  a  monomer

combination of this type then, network formation can take this through the formation of

junction  points.  And this  is  not  the only combination of monomer that  will  result  in

network formation. 

So, if we just have a monomer RA 3, that will upon where, a can react with itself. So, if

we have a some kind of polyol with where,  the oh groups can react  to form a ether

linkage let us say. So such cases also can result in the formation of network polymers so

this is a one example, but apart from this with other monomer combinations like RA 3

and some other combinations some can result in network form formation ok.

 So, we discussed that, network formation is associated with this Gelation transition. And

this Gelation is a transition from a sol to like state to a gel like state, where a system

spanning large are almost infinite kind of molecule first appears, during this Gelation

transition.  And  this  assessment  planning  molecule  has  a  connectivity, um across  the

entire microscopic system. And the gel point is a point, that marks its Gelation transition

and it is the extent of reaction, corresponding to the gel point is referred to as a Pc.

The mean field model predicts this pc’s 1 over f minus 1 and then, the mean field model

can be used to obtain others kind of a relations for the number average and a weight

average  degree  of  polymerization,  as  well  as  the  number  density  distribution.  Most

sophisticated scaling theories also are there and we have briefly discussed some results,

some  scaling  results  from  those  theories  in  today’s  lecture.  And  finally,  we  have

considered consider the case of the swelling of network polymers in the presence of a

solvent.

So, network polymers do not dissolve, but swell in the presence of solvents and such

swelling behavior can be described by the Flory Rehner equation. So, these are some of

the  topics  that,  we  have  considered  under  the  branching  and  network  formation  of

polymers and we will conclude this lecture at this point.

Thank you. 


