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Interfaces, Surface Tension and Wetting (Contd...)

Hello. So, in today’s lecture we will be continuing our discussion of Interfaces Surface

Tension and Wetting. In the previous lecture or in the previous discussion on the same

topic, we focused on what interfaces what is the surface tension. And in this lecture and

in the previous lecture, we briefly described about the wetting or the contact angle and

contact  line.  In  this  lecture,  we  will  focus  more  about  the  wetting  the  contact  line

between the 3 phases and the related phenomena.

(Refer Slide Time: 01:18)

So, to review we will look back at the Young’s law. So, Young’s law is that when we

have a solid surface, and there is a 3 phase contact on the surface. So, if we have a liquid

droplet and this outside the moment is gas, then the three different surface tension; we

have here is sigma GL, which is also called simply sigma; this is sigma solid liquid, and

this is sigma solid gas.

So, by using a force balance, we can simply write that sigma as g is equal to if this angle

is theta, the theta is called static contact angle. in this case the solid surface is assumed to



be homogeneous. Now let us see, chemically homogeneous surface this surface is also

smooth. 

So, theta is the contact angle; by having the force balance we have sigma SG is equal to

sigma SL plus sigma GL cos theta or we can simply write that sigma cos theta, we can

just get rid of the subscript GL; that is equal to sigma SG minus sigma SL. So, that is

Young’s law, that we have already seen and it combines or it gives the contact angle in

terms of the surface tension for the 3 phases.

(Refer Slide Time: 04:16)

Now, our next we will look at the concept of work of adhesion. So, as you will know;

that the adhesive force or the adhesion refers to the attraction between 2 different phases,

or 2 different set of molecules or that to 2 different materials.  So, here what we are

looking at that work of adhesion is the work required to separate 2 phases of 2 different

phases. These 2 different phases might be 2 different liquids or it may be a liquid and the

solid phase, and then we have to separate them or the work required to subject them from

one another each what is called work of adhesion. 

So, this is the energy that is released during the process of writing. So, when you have a

solid surface, and when this solid surface is being wetted by a liquid film. Thus, energy

of the system changes; so the energy that is released during the process each work of

adhesion. And you can also think it as the work that is required to separate 2 bodies. So,

you might have seen say for example, in our bathrooms, we generally have a a soap



sometimes we keep it on a smooth surface. And the soap when it is wet it gets step to the

solid surface. 

And if the surface wet there is a small liquid film that forms between the 2 solid surfaces,

and  then  it  requires  significant  amount  of  force  to  separate  the  soap from the  solid

surface.  So,  that  is  a  simple  example  from  our  day  to  day  life  for  this  adhesive

phenomena. Another example is if you have to glass lights, and a small amount of liquid

each tab between them we generally need to do a lot of work to separate these 2 lights

from each other, and that is because of capital.  So, consider that 2 bodies that are in

contact with each other. 

So, let us say this is body one, and another advantage body 2 and the area that they are in

contact edge a as we have seen here.

(Refer Slide Time: 07:18)

So, the surface energy of the contact area, after the contact the surface energy for the

contact area is sigma 1 2 into a; that is the energy when 2 bodies are in contact. before

contact or after this contact has been removed and the bodies are separate, the energy

will be E 1 plus E 2. So, that is sigma 1 plus sigma 2 into A. So, sigma 1 and sigma 2 are

the surface tensions of body 1 and body 2. 

And sigma 1 2 is the surface tension between body one or the fluid 1 and fluid 2, or the

solid 1 and fluid 2. As the case may be; so the work of adhesion is the distance between



2, the delta e. So, that means, it will be equal to delta e is equal to the energy, when

bodies are separated which is E 1 plus E 2, minus the energy when the bodies are in

contact. 

So, this edge the energy released and bodies are in contact. And these body may be a

solid surface one droplet or 2 droplets. So, this is equal to sigma 1 plus sigma 2 into a

which is your a is the contact area minus sigma 1 to A. Remember that the energy for the

other surface area to be same. So, when we get this energy per unit area of work of

adhesion per unit what we get is; sigma 1 plus sigma 2 minus sigma 1 2. So, that is one

we had as work of adhesion.

(Refer Slide Time: 10:31)

Or or is specifically for the contact between solid and liquid, younger Dupre he gave an

equation. So, if we apply the same analysis considering that this is valid for a considering

the case of a solid wall and a liquid. And we can write that this is work of adhesion for

this case is equal to sigma 1 plus sigma 2. So, we have sigma 1 plus sigma 2 minus

sigma 1 2; where let us see this one refers to liquid phase, and 2 refers to gas phase. So,

sigma 1 is  the surface tension,  with the gas  of  liquid  phase,  and sigma 2 is  surface

concern of solid winter gas phase. So, we have sigma 1 plus sigma 2 minus sigma 1 2. So

now, we have solid and liquid phases in context a minus sigma l. 

Now from the Young’s law we had just seen the sigma liquid gas cos theta is equal to

sigma SG minus SL. So, we can substitute this to sigma SG minus SL from here, and we



get work of addition as sigma LG or sigma liquid gas plus sigma liquid gas cos theta. So,

that is simply sigma 1 plus cos theta we have sigma h denoted for sigma liquid gas if we

remove or if we drop the subscripts. And work of adhesion is the surface tension into 1

plus cos theta. We have let us remind ourselves. theta is the contact angle between the 2

phases; so for a super hydrophobic surface.

For a super hydrophobic surface, the contact angle will be theta is equal to pi or 180

degree for a super hydrophobic surfaces. So, that means, cos theta is equal to minus 1.

So, the work of adhesion for a super hydrophobic surface is 0 and you can see from here.

so,  that  means,  that  no  one  is  required  for  a  drop  of  water  to  move  it  over  the

hydrophobic surface. So, the drop of water roles freely over a super hydrophobic surface.

(Refer Slide Time: 13:56)

Now, what  of  cohesion?  So,  as  we  discussed  earlier  that  the  adhesion  refers  to  the

attractive forces between 2 heterogeneous 2 different materials. Now if we are talking

about the does a breakup of a liquid volume into droplets, then the word that will be

relevant here will be what we will call the work of cohesion.

So, in that case what we will have that sigma 1 and sigma 2 will be equal and sigma 1 2.

So, if you look at from the work of adhesion, the work of adhesion then we have is equal

to sigma 1 plus sigma 2 minus sigma 1 2. If 1 and 2 are same, then what we have is this

becomes work of cohesion. 



And in this case because one and 2 are the same; so, we can say that sigma 1 equal to

sigma 2 that is sigma minus sigma 1 2. So, there is no surface tension in the same phase.

So, that is 0; so that becomes 2 sigma; so, that is why we have work of cohesion is 2

sigma. And that then example for this will be say and we want to produce droplets from a

volume of liquid during the spring process and number of other examples. So, that is

work of cohesion.

(Refer Slide Time: 15:54)

Now, we will look at some of the examples of capillary sources. Especially, which are

relevant for microfluidic applications. So, first example in this case is the capillary forces

between 2 parallel plates. So, as we just described that the capillary forces between 2

parallel plates and there are number of real life examples. So, if we draw a picture of

this, let us say you have 2 solid plates which are separated by a distance and the distance

between the plates is as, because of capillarity you might have noticed sometimes that

the shape of this edge current.

So,  if  you  look  at  this  the  liquid  between  the  2  phased  you  will  have  a  interface

something like this, and a solid decision contact with the solid wall and same. So, we can

say that the radius of this and a, and the contact angle here is theta. it is just the distance

between 2 as we have already said that is edge. So, what we need to know is the force

required to separate the 2 phases. Now this is the force will be, there will be a pressure



difference  and  to  go  overcome  that  pressure  difference  the  phase  the  force  that  is

required is to overcome the Laplace tracer. So, this F is equal to delta P into the area.

So, our task is now to find out what is delta P and delta P is sigma kappa. A kappa is

curvature, we can further write this as sigma 1 over R 1 plus R 2 which edge as curvature

is 1 over radius of curvature and the radius of curvature of the surface edge. the sum of

the 2 principal curvature. So, for this surface the 2 principal curvatures, one principle

curvature is this one. And the other one is this. So, the one radius is about so, we will

take this as R, now R 1 is equal to R what remains to be known as what is R 2. So now,

R 2 is we want to find. R 2 is this radius the distance.

From this point to the center of which this coverage apart; so, we know that this is h and

this is h pi 2, and this angle is theta then this angle is 90 degree and this is pi by 2 minus

theta. So, this angle will also be phi by 2 minus theta. So, we can write sin pi by 2 minus

theta is equal to h by 2 divided by R 2 or cos theta is equal to h by 2 R 2 or 2 is equal to h

over 2 cos theta. So, we have the curvature as h over 2 cos theta.

(Refer Slide Time: 21:52)

So, we have delta P is equal to sigma kappa 1 over R, minus 1 over h over 2 cos theta.

So, you might be wondering why we have this as minus. 

This is minus because they interfaced edge the it is is concave in shape. So, to take into

account that into account this is minus. So, we have sigma 1 over R minus 2 cos theta



over edge and as h edge very small compared to R. So, 1 over R can be neglected. So, we

have delta p is equal to minus 2 sigma cos theta over h ok. And when we multiply this by

the cross-sectional area we grant the force required to separates the plates. So, let us just

to have a feel of the numbers that what was the force that will be required to separate the

place. we can calculate F is equal to say for water and air water. 

The surface tension is 0.072 R we can write 7.2 into 10 to the power minus 2. In as a

units cos theta let us say take cos theta an average value of about half. So, half and h

consider the plate distance of about 10 microns. So, 10 into 10 to the power minus 6

meters into 3 0.14 into 10 to the power 10 raised to the power minus 4. So, what we have

is F is about 10 to the power minus 6. This all cancel out; what we have is 2 and 2 also,

cancelling out and the. So, the force in this case is about; that means, the previous edge

by R square (Refer Time: 24:52) distance of 10 microns we have this.

When they coming among 7.2 into 3.14. So, as I said is 7 into 3 about; so, 0. 25 N. So,

let us say this will be about 2.5 you can quite a bit forced to separate the what now

suppose  to  separate  the  2  plates.  So,  this  is  just  to  get  the  feeling  of  the  order  of

magnitude of the forces that is required to separate the plates. We can see that if the

distance between the plates is more than this force will be. So, if it is 100 micron, then

for 100 micron. The force will be 0.25 Newton; so this is the force that is important or

that becomes dominant on given.

The distance between the plates which is more.



(Refer Slide Time: 26:01)

Another  very  popular  and  very  common  example  of  capillary  edge  the  capillaries

arranged in a tube. So, when we have this capillary where is in a tube, some common

examples we always see that the big of a candle we see we burn the candle, and the

liquid  wets  rises  in  the  candle  by  this  capillarity  phenomena  and  then  the  flame  is

maintained at the top. Similarly one of a very complex a phenomena that happens is

when you lighted  a  [FL]  which  is  a  lightening  arkin  lamp,  which  in  India  different

languages we would called it [FL] or [FL] it has a ghee in it. 

And that ghee is in the winter let us say it is wet chilly winter, and then it is in the solids

3. Then the flame can only be maintained when the heat provided by the by the flame by

radiation or convection and conduction combined, it is sufficient to melt this ghee so that

it rises in the by the capillarity phenomena. 

So, this burning of lamp or burning of a candle or burning of a [FL] they are a very

classical  example  of  where  the  capillary  has  edge  a  common  phenomena.  So,

incidentally this capillary rise is the first phenomena of fist well known phenomena of

capillarity, in it was first observed by leonardo da vinci in 14th or 15th century. Now he

hypothesized,  that  the  fountains  that  come  out  from  the  mountains,  they  are  also

deactivated and this happens because of the capillary rise phenomena. But of course, as

we know now that this is of 2. 



So, after that several scientists have looked at the phenomena and had tried and tried to

understood.  A Francis  Hauksbee  was the  first  one  who studied  this  phenomena in a

systemic manner. And he concluded the following. And the rise of liquid occurs in air as

well as vacuum. So, this might look like the trivial region, but before him one of the

scientists gave a notion that the rise of liquid of the it because in the capillary the air

cannot cross flow easily.

So, there is a a small vacuum to fill that vacuum the liquid rises. So, he showed from the

experiments that the liquid rise occurs in air as well as in vacuum. He also showed that

this typical phenomena, because this phenomena is easily observed in glass capillaries,

one because glass is transparent another is glass capillaries are very common in our day

to day life on in laboratories. 

So, he showed that this phenomena is not only limited to glass capillaries or not only

hinted to celebrate with capillaries. It can also be observed it is also observed the. The

liquid rises we have 2 plates in parallel 2 parallel plates or 2 plates in between plates also

then if you tries. he also showed that the height of the liquid rise, it does not depend on

the  thickness  of  the  channel.  So,  as  your  thickness  of  the  tube is  one  mm or  if  the

thickness of the tube is 10 mm it does not depend on it. So, these are some observations

that he made in 18th century.

(Refer Slide Time: 31:19)



Now, the law that determines the height of capillarity rise was given by a physiologist an

English physiologist whose name was James Jurin in 1718. And he found that height that

is reached by the liquid. So, the height of the liquid in a capillary, if you have a vessel or

a tube filled with liquid and then it will capillary kept in that. 

So the height of the liquid that rises which proportional to the 1 inverse with proportional

to the radius of the chain; so that is the first probably the first observation of capillarity

and  then  about  a  century  later  not  last  gain  the  complete  understanding  on  the

phenomena and capillarity surface tension and so on. 

(Refer Slide Time: 32:42)

So,. So, we will look at the rise of capillarity from different angles and try to find the

relationship. So, capillary rise in a liquid if we consider the capillary and consider a point

b here and consider point just below it as point a. And the contact angle is theta. So, the

pressure at point a is atmospheric pressure minus 2 sigma over radius of curvature of this

interface. So, it is a cylindrical tube and this interface it has a a spherical shape, and it

will be a part of a sphere. 

So, if we look at this the radius of curvature, then we can basically find the radius of

curvature from here. So, this angle between this and tangent to it this theta then the angle

between the 2 normals the normal to the tube, and the normal to the interface, then also

be theta. So, we will have this drawn here image, this angle is theta this is tube radius R,

this is the radius of curvature. 



So, we have cos theta is equal to R or curvature. So, we can substitute here PA is equal to

p atmosphere minus 2 sigma cos theta over R. now the pressure at the level of the liquid

in the this vessel or in this stub edge equal to the atmospheric pressure. So, the difference

between the 2 is hydrostatic pressure. So, we can say that PB minus PA is equal to rho

gh. So, we substitute that here, then we have rho gh is equal to pgh atmospheric pressure

minus p atmospheric plus 2 sigma cos theta in. So, these 2 cancel out and we have h is

equal to 2 sigma cos theta over rho gr. So, this derivation of this expression we have

obtained based the arguments for pressure. Now the same expression can be obtained by

assuming the or by you can seek in the force balance. 

(Refer Slide Time: 37:10)

So, if now we look at the capillary, the force acting this will be in this direction on the

contact line. So, there are 2 forces acting on it. The balance between capillary force, and

weight of liquid column; so if the height of this liquid column is h the electrical attempt

this here to make things clearer, it might not be that contact, so if this height of the liquid

column is h then we have weight pi R square h is the volume this liquid into density. So,

that is mass into g. So, that is weight of this liquid column. Now capillary force is equal

to sigma into 2 pi R we can treat it as a tension in the line, but the direction of this force

edge not in the vertical direction. 

So, force balance in vertical direction. And the so, this is F capillary. So, that is equal to

F capillary this angle is theta. So, this angle is also theta. So, we have capillary cos theta



is equal to column width pi R square h rho g. now please do not confuse that there will

be  2  components  of  this  because  the  force  is  acting  everywhere  on  this.  So,  that

combined  is  F  capillary  in  the  vertical  component  is  F  capillary  cos  theta.  So,  we

substitute this F capillary. Here then we have sigma 2 pi R is equal to pi R square h rho

g. pi and pi cancel out R cancel out, um we have h is equal to this is cos theta as so, this

is cos theta.

So, h is equal to 2 sigma 2 sigma cos theta divided by rho gR. So, we can also in the

height of the liquid column from the force balance and what we have learnt and then the

force in these cases we want to apply the surface tension force. Sigma into the radius not

on the radius for the circumference of the interface.

(Refer Slide Time: 42:06)

Now, you can also use the  principle  of  energy minimization  to  obtain the  height  of

capillary rise. So, when we have a liquid rising in a tube then there are 2 changes in the

energy. The system gains some potential energy, which is equal to half pi R square h

square rho g. And the system loses capillary energy which h equal to sigma SG.

So, to remember this when we have their  watch when there is no liquid, than this is

surface and gas or solid and gas. And then it changes then we have a liquid here. So, the

energy changes from solid gas to solid liquid in this case. So, sigma SL sigma SG minus

sigma SL; so, the change in the energy will  be originally  energy one sigma SG, the

surface energy sigma SG into area of the cross section, and then it has reduced to sigma



SL. So, the change in the energy is sigma SG minus sigma SL, and this multiplied by 2

pi rh which is the surface area on the norm.

So, the total change in the system energy e is equal to half um pi by 2 R square h square

rho g. now you might remember that sigma g minus sigma SL from the Young’s law.

sigma SG is equal to sigma cos theta plus sigma SL. So, sigma SG minus sigma SL is

cos theta. So, this is equal to sigma cos theta. So, this is the gain in the energy, and this is

the sigma cos theta into 2 pi Rh. So, this is minus sigma cos theta 2 pi Rh capital here.

And the radius of the channel the 2 pi Rh. Now for minimum energy we have de by dh is

equal to 0; that means, phi by 2 R square 2 h rho g minus sigma cos theta 2 pi R is equal

to 0.

So, we will have 2; 2 is cancel out. then we can divide rho by R. So, w will have h is

equal to 2 sigma cos theta divided by rho g R ok. So, that is the expression of capillary

rise in a cube using the energy minimization.

(Refer Slide Time: 47:37)

Now, let  us just put the numbers here to have an idea about the capillary rise. So, a

typical let us say we take a capillary of 10-micron diameter. So, the radius is 50 micron.

oh sorry um 50 micron or 50 to 10 to minus 6 meters. So, h is equal to for water 2 into

we again take cos theta is equal to half 2 into 7.2 into 10 to the power minus 2 is the

surface transfer for air water cos theta.



We have  taken  to  be  half,  and  rho  for  air  is  about  10  to  the  power  3  at  stake  g

approximately 10 in meter per second square, and cos theta and R edge 50 into 10 to the

power minus 6. So, this to and 2 will cancel out, and what we even end of with 10 to the

power minus 6, this becomes minus 2. So, of this all cancel out, and we have this about

7.2  divided  by  50  meters  or  720  divided  by  50  centimetre.  So,  that  is  about  14

centimetre. So, that is considering the length of the capillary or considering.

The size of the capillary that is quite a large height, if R is equal to say 1 mm. Then this

number will reduce h is about one tenth of it because this is the thousand microns. So,

edges 1.4 centimetre ok. So, that is to give you an idea about the numbers, if this height h

let us say s radius is allowed 1 micron. 

An h for 1 micron capillary h 100 times of this; so, 14 meter of the rise of sap in the

trees; the rise of liquid water in the trees h are determined by the capillarity phenomena.

And so, depending on the size of the capillaries that appear in the plants that determine

the maximum height that the tree can achieve. 

So, we have looked at  2 examples  of capillarity, one is  the force that  is  required to

separate the 2 plates, and other is in the capillarity rise. Now we will look at some effect

of surface in homogeneities.

(Refer Slide Time: 51:17)



So, at the start of this lecture, when describing the Young’s law, we say or we assume

that the surface is chemically homogeneous; that means, it has it is made up of only one

chemical material or one chemical substance. There is no (Refer Time: 51:40) there is no

inhomoge inhomogeneities on the surface. And the it is smooth. So, there is no other

fluids on it.  ideally no matter  what do we do, we will  always have some amount of

roughness. And some amount of chemical in homogeneities or chemical inhomogeneities

caused by the dirt on the surface of the solid. 

So,  we need to  take  into  account  on  of  these  and see  if  the  contact  angle  there  is.

Actually, it  has been seen it  has been observed that the contact angle varies on such

surfaces. So the surface in homogeneities both physical surface inhomogenity in terms of

the roughness and the chemical inhomogenity in terms of the structure of the material or

the different chemicals that are there on the surface, or the different materials that are

there on the surface both of them to contact angle.

(Refer Slide Time: 52:43)

So, 2 different  laws describe the 2 effects  for the first  for the physical  effect  or the

roughness effect, that is given by Wenzel’s law we are not going to derive it here. So, the

roughness roughness is given me.

Let us say here by R and it is the ratio of actual and the projected surface area. So, if the

material is rough and the actual area will of course, the more than the projected surface

area. So, rh always going to be greater than one, and Wentzel derived a relationship that



cos theta star. So, theta star edge the contact angle on a rough surface. So, he said he

derived that cos theta star is equal to R cos theta now if R is equal to one. So, let us

consider the case when material is hydrophilic. So, theta is less than pi by 2 and; that

means, cos theta star is less than cos theta. And as theta increase, cos theta will decrease

so that means, theta star. So, that a what does that mean the cos theta star is greater than

cos theta.

So, theta star is based on theta. Similarly one can show that the hydrophobic material the

theta star is greater than theta. So, for an hydrophobic material, theta is greater than pi by

2.  And  cos  theta  will  be  negative;  so  cos  theta  is  the  will  be  negative  and  if  it  is

multiplied by will be greater than one and it will be less than cos theta; so, that means,

theta will be theta star will be greater that theta. 

So, this says that if the material  is hydrophilic,  it  becomes small hydro for my more

hydrophilic. And if the material is hydrophobic it becomes more hydrophobic. So, that is

what we have concluded here that the roughness. it implies it amplifies or enhances the

hydrophilic or hydrophobic character of the contact.

(Refer Slide Time: 56:30)

Now, coming to the chemical in inhomogenities; so, the material may be made up of a

number of inhomogeneities, but for simplicity let us consider a ball that is constituted of

2 different chemicals. So, the fraction of this the first material is f 1 and second material

is f 2 and of course, if there are only 2 matters and we have F 1 plus f 2 is equal to 1. So,



it can be shown Cassie Baxter law of they have shown some and that cos theta star is

equal to s one cos theta 1 plus f 2 cos theta 2. So, that is the apparent contact angle when

the material is microscopically in homogeneous if we have a number of materials and we

can write this in general cos theta star is equal to sigma as I cos theta I.

Now, in this case, we have 2 assume that the roughness or the size of roughness is small

ok.  So this  property of the material  that  by changing the roughness or changing the

material physically or chemically the surface property. 

(Refer Slide Time: 58:25)

Or the contact angle contact  properties of the material  can be changed. So, different

materials  are used in microfluidic applications depending on what applications where

using. So, for example, um say plastic different kind of plastics which are hydrophobic

materials  and  the  glass  and  marbles  are  hydrophilic  materials.  And  now  different

techniques.  So  with  the  recent  developments  in  material  science  and  microphovbic

micropollars.

Different  normal  materials  are  being  made,  and  now  they  are  used  to  change  the

properties of the material on typical and typical is teflon coating on the frying pans that

we have in our kitchens. So, that can be done by chemically depositing a coating of the

hydrophobic  material  say  if  we  want  to  make  a  hydrophilic  surface  to  be  hydro

hydrophilic surface to be hydrophobic and one can deposit a a chemical coating on the



surface of the hydrophilic material, with the chemical coating which is hydrophobic in

nature. 

Or other way one can have a microstructure patterns or micro fillers or groups on the

surface. For example, all of us have seen of the lotus leaves and seen that the water does

not  stick  to  the  lotus.  Leave  it  just  rolls  to  over  it.  So,  lotus  leave  is  almost  super

hydrophobic surface.

So, by inspired by this phenomena in nature, people have a tried to develop in a surface

edge which are on which can achieve super hydrophobic nature. So, in such cases one

need to take into account they help in lot of research behind that what is the wetting and

deviating nature on such surfaces. 

So, we are not going to cover this. So, one of the questions for example, there will be

that can we directly use Wenzel’s law even than we have micro filler of; so, safe in size.

So, I suggest that you can read the book by designs capillarity and wetting phenomena;

where this has been described in detail or digital micro fluidics and micro drops by. But

here in both the books which has been describes in here it. 

(Refer Slide Time: 61:02)

So,  the  next  topic  that  we  come  here  is  contact  angle  hysteresis.  So,  if  you  might

remember  say probably in  your high school  you might  have studied about  magnetic



hysteresis is that the the phenomena that occurs in one direction does not or cut in the

same way or it it is not contained in the same way in the other direction. 

So, that is what hysteresis  generally  defer to;  so, contact  angle hysteresis  the typical

example think about a droplet being dropped on a solid surface using a prepaid. And

initially what happens as the droplet volume increases as the volume of this droplet is

increasing the contact angle start increasing, and then that the droplet does not move

rather or the contact angles start increasing. And the volume of the propagating integers

as we can see here and then it has you say.

Constant value which is what we call theta a or theta a is called advancing contact and if

then this droplet is sucked back by the prepaid as you can see from here, then first the

angle is reduced, and this angle is called receding contact angle.  So, the angle keeps

reducing and then it achieves a value. So, and then that is theta R and this is theta F.

(Refer Slide Time: 63:48)

So, the aesthetic contact angle is between theta A between theta R and theta A ok. And

the contact angle hysteresis is theta a minus theta R.

The difference between the advancing and receding contact angle is called contact angle

hysteresis. On in good surface which is say are typically smooth and not quite clear, the

hysteresis can be very small say about 5 degree. But it can exceed up to 50 degree on a

rough  and  dirty  surface.  So,  the  surface  properties  can  change  the  hysteresis.  So,



hysteresis can also explain say for example, power many times we see that there is a in

the capillary, there is some amount of liquid that is that is remained they are (Refer Time:

64:36)  So,  if  the  contact  angle  at  this  is  theta  1  and  the  contact  angle  the  another

direction is theta 2. 

Then we can write the balance between the 2 here the um the height of this height of

liquid column can be obtained by the force balance. So, we can write the force on the

wake of this is equal to 2 2 it is pi R square h which is volume into rho into g a h is the

height of this  problem, rho is the density g is the gravity and R is the radius of the

capillary. And that will be equal to the force in this direction will be 2 pi R sigma cos

theta 1 minus 2 pi R sigma cos theta 2. So, we can have h is equal to pi and R are

cancelled. So, here we have h is equal to 2 sigma cos theta 1 minus cos theta 2 divided

by rho gr.

And we can see if theta 1 is equal to theta 2 then here the maximum that because theta 1

is limited by theta R, the receding contact angle, and theta 2 um by at advance in contact

angle. So, the h maximum that can be is t sigma cos theta R minus cos theta 2 cos theta A

over rho g R ok. So, that is about the contact angle hysteresis.

(Refer Slide Time: 67:47)

Now, in the contact angle hysteresis we discussed about that the contact angle may move

when the droplet is being post and the appropriate liquid ha has to made. Now all of us

have seen that for example, when you are travelling on a train and it is raining outside. 



 then the droplets on the train they move and the moving of the droplet or the size of the

droplet will depend on the speed of the train and so on and so forth. And you would have

wondered that what moves these droplets and what controls the motion of this droplet,

and this is governed by the wetting dynamics and the moving contact line. 

So, in microfluidics because the size of the channels are small what we had seen the

number of reflects when the size becomes a small to a push them to number one number

of  capillary  effects  that  roportional  to  1 over  R,  and when the size of the challenge

becomes  a  small  these  effects  become dominant  ok  or  so,  in  microfluidics  the  very

dynamics of the contact line also becomes important.

(Refer Slide Time: 69:14)

Now this is a multi speed problem; so, it involves the number of scales the largest scale

for example, if we are talking about the droplet spreading on the surface, then the largest

scale is say the capillary length scale which is about 1 mm. And the minimum scale is

each element scale for the interface the molecular scale. So, which of the size 100 meter.

So, we can see that this is very visible of of 10 decades.

So, in any study is difficult to dissolve both all all the length scales. it it is a challenging

task. Now the other problem with the moving contact lines is which is called contact line

singularity  or  contact  line  paradox.  Now we apply  all  of  us  know  that  the  no  slip

boundary condition has been found to be valid on the on solid bound. 



So, if it is the movement of a solid solid liquid on a solid or movement of a gas on a solid

we have the no sleep boundary condition which generally say that the fluid that is it

contact with the wall will have the same velocity as the velocity of bond. So, effectively

there is no um relative motion between the wall and the fluid over the wall ok. So, that is

fine, now if we have a contact line. So, for example, on the solid surface we have a

droplet of liquid gas a moment. 

And this droplet is moving in this direction then the contact line moves. So, that means,

there is motion in the near the contact line, then only this fluid can move. So, this is what

the paradox says that the no slip boundary condition not valid or has a discontinuity here.

So, we need to take this and of course, this is coming apart the phenomena that happens

here  is  the  molecular  level  and  the  no  slip  condition  smarty  arty  are  describing  at

macroscopic  phenomena;  which is  or  even that  the continuum is  here.  So,  there  are

different models that had been suggested to take into account this contact line singularity.

(Refer Slide Time: 72:02)

So,  we are not  going to  discuss  those things  in  detail,  and you are suggested to  go

through  this  paper,  on  moving  contact  lines  in  annual  review  fluid  mechanics  to

understand more about it. 



(Refer Slide Time: 72:14)

And we will just summarize some of the things here, that when the contact line moves

when we have a static  contact angle,  then the system is in equilibrium, but then the

contact line is moving. And of course, the system is not in equilibrium anymore and in

that static case because there is no velocity. So, there is no role of viscosity, but the

viscosity becomes important in these cases. And as we move near the contact point the

viscous forces that scale as mu u over R. 

And then R if R is the distance between the contact line, and the solid surface then as we

move towards the contact line this becomes very dominant force. So, this phenomena

this was studied by huh and scriven by assuming a wedge kind of corner flow. So, he

derived an analytical solution, for a planar liquid vapour interface. And then he showed

that on the free surface there is a viscosity induced pressure on the free surface, and this

pressure can only be balanced by the capillary pressure.

And when we have a capillary pressure, then we need that the interfaces carved, and the

curvature is 0 then the capillary force will be 0. So, that means, that the free surface

needs to be strongly curved close to the contact line. So, his assumption or generalises

was limited only when the planar water the interface was cleaner. But it came out from

the  earth.  And  this  is  solution  not  full  solution  because  when we need to  take  into

account the curvature of the interface near the contact line. 



So, one need to take different scales and clear from some of the conclusions from the

vapour that the motion of contact line can be reduced by the balance between power

generated by the capillary forces. And the energy dissipation that takes place at different

length scales. Most of the time this dissipation is the viscous dissipation and it is spread

over 5 to 6 order of different length scales from molecular from 1 nanometer to one

millimeter length scale. 

And the molecular processes they become important only at the cut off to dissipation

only at the 5 nanometer length scale. Another phenomena that can be important unrelated

to this h that; when inertia becomes important when the velocity of the contact line is

very  high.  then  then  inertial  effects  become  important,  and  they  become  to  the

comparable to the viscous effects.

So,  in  summery  in  today’s lecture  what  we  have  studied  is  different  phenomena  of

contact line. 

 (Refer Slide Time: 75:47)

So, the capillaries rise and to plates having a thin film. So, we looked at the to a jump

this where we applied that basement of capillary force to find the liquid rise effect. But

then  we  also  looked  at  the  Wentzel.  And  Cassie  Baxter’s  law,  for  the  surface

inhomogeneities; it may be chemical or physical. So, the Wenzel’s law takes into account

the physical inhomoginities of the surface and Cassie Baxter’s law takes in to account the

chemical inhomogeneities of the surface. Then we also looked at the briefly looked at the



contact line when it is moving. So, we looked at moving contact line in this lecture to

end.

Thank you.


