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Hello, in this lecture we will be talking about the computational techniques that can be

used to model multiphase flow in micro channels. So, as this course is not predominantly

on computational  methods,  and there is no prerequisite  that one should have a basic

understanding of computational fluid dynamics or other computational methods. So, we

will first look at what computational fluid dynamics is, and then we will talk about what

are the equations that are required to be solved for multiphase flows.

So, what we will be looking at that how our mathematical model can be formulated for

modeling multiphase flow in particular with respect to micro fluidics.
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So, before we do that,  let us looked at look at  very briefly what computational fluid

dynamics  is.  So,  if  we  a  look  at  single  phase  flow,  the  single-phase  flow  under

continuum  assumption  can  be  modeled  using  navier  stokes  equations;  which  are

momentum  conservation  equation,  and  mass  conservation  equation,  and  the  fluid  is

Newtonian as you can see from this term.



So, the mass and momentum conservation equations in this; what we have as unknown is

the velocity vector, and pressure they are our unknowns. So, we have 2 equations in the

vector form you can say, and then we need to solve these equations for obtaining or to

obtain  pressure  and  velocity.  Now  because  this  equation  is  non-linear,  the  equation

momentum equation, the convective term as you can see here is non-linear. So, it is not

always possible to get a solution analytical solution for this partial differential equation.

And we need to use some numerical method to do so.

Only under  certain conditions,  when we can eliminate  or when we can linearize  the

convective term, under those conditions it is possible to obtain an analytical solution for

this navier stokes equation.
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So, there are a number of techniques that can be used, or that have been used to solve

navier stokes equations. We are just describing or I am just going to describe only one

technique very briefly, to give you an idea what are some of the terms that we might be

talking about later on so that you do not feel that you do not know those terms.

So, in computational fluid dynamics in particular the finite volume method, when you

solve a fluid flow first you need to choose your domain of interest or the computational

domain and in the commercial softwares, you need to create a geometry for this domain.

And then as we already have the system of equations. So, if our flow is incompressible



and  isothermal,  then  we  just  need  to  solve  the  mass  conservation  and  momentum

conservation equations. 

If  the  flow  involves  heat  transfer,  then  we  also  need  to  solve  energy  conservation

equations. And the things become more complicated when flow is turbulent, but we will

not  go  in  the  detail  of  turbulent  flows;  more  so  because  as  we discussed  earlier  in

microfluidics flow is often laminar. So, in microfluidics application we are generally not

concerned with turbulence flows.

The domain because it is always useful to have a smaller domain if possible; it is also

good if you can decrease the dimension of the domain from 3 dimension to 2 dimension.

So, if the things are not significant or if the velocity and velocity gradient in the third

direction  are  not  significant,  then  we can  solve  the  problem in  2D in  the  Cartesian

coordinate,  it  is in x and y coordinate and the third coordinate j g coordinate can be

neglected v z is equal to 0, and del by del z for all the variables will be 0. 

Similarly, in cylindrical coordinate system, where if the problem is axis symmetric; that

means, if there is nothing happening along the azimuthal or angular direction,  then v

theta or velocity in the angular direction if it is 0, and the gradients in this direction is 0,

then the problem can be solved as an axisymmetric problem and one need to solve only r

and z equations. And then reduces the number of equations that need to be solved. So,

our computational time and computational cost will be reduced.

So, that is about the computational domain. Now one can also take advantage of the

symmetry  of  the problem, and can just  solve  the problem in half  of  the  domain for

example, a rectangular or square channel. Then one can solve the problem in one fourth

of the domain with the symmetry boundary conditions on these 2 phases. So, once we

have selected a domain,  then we have domain boundaries and we need to define the

appropriate boundary conditions on the domain boundaries. 

For the wall generally, we have no slip boundary condition no slip means, that there is no

slip between the solid wall and the fluid. So, that means, the velocity of the fluid adjacent

to the wall is equal to the velocity of the wall. So, if wall is stationery then the fluid

velocity is also 0. At the inlet we can define either a flow rate or a velocity profile or a

pressure profile. Now velocity it can be uniform or it can be or there can be a profile. 



When you define a uniform boundary condition, say for example, if this is flow between

2 parallel plates and if you define the uniform velocity at this, then there will be a ill

posed boundary condition at these corners. Because the velocity will be 0 at the wall, but

from  the  inlet  the  velocity  is  non-zero.  So,  you  will  see  some  problems,  there  the

pressure take will take pressure will take unphysical values at those points, but generally

this can be handled. 

So, it is always a good idea to define a velocity profile which defines the velocity, or

which has the velocity 0 at the walls. At the outlet one can have 0 gradient; which is

generally  known  as  outflow  boundary  condition,  or  constant  pressure  or  a  pressure

profile at the outlet.

So,  one can one has to  define the domain,  and identify the boundaries and give the

appropriate boundary conditions at the domain. 
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Once we have done that then we have formulated the problem; the equations are there

and the domain in which we want to solve and the boundary conditions are there.

Now,  we  need  to  discretize  it;  so  discretization  is  the  process  of  converting  the

continuous partial differential equation into discrete algebraic equations. So, the process

of  converting  a  continuous  equation  into  discrete  algebraic  equation  is  known  as



discretization. So, when we do it for the terms which have derivatives in a space, for

those we need to divide the domain or discretize the domain into a smaller parts. 

Similarly, to solve in time, we need to have explicit or implicit time marching scheme; so

we need to discretize in time. And there are number of techniques for discretization in a

space;  in  computational  flow dynamics  3 most  popular  techniques  are  finite  volume

method, finite element method and finite difference method. So, FVM is finite volume

method, finite element method and finite difference method.

So, we are not going to discuss finite element and finite difference method we have been

briefly,  look  at  finite  volume  method.  So,  in  the  finite  volume  method;  the  entire

computational  domain,  entire  volume or  entire  area,  depending  on the  problem is  2

dimensional or 3 dimensional is divided into smaller volumes or smaller cells. So, each

the domain has been for example, here has been divided into different cells as you can

see  here;  along  these  lines  and the  center  of  the  cell,  we call  cell  centroid  and the

intersection or these points are called nodes, and there are phases of the cells; this is not

simple terminology.

So, in the continuous domain, or in when we have the partial differential equations, then

we have  the  values  or  all  points.  Whereas  in  computational  fluid  dynamics  we  are

discretizing and we get the values at the center of the cells.
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Apart from that so, what is done in finite volume method, what we have here is a simple

diffusion equation with source term. So, this is the diffusion term, and this is source term

and in finite volume let us say they are 3 adjacent cells for a one-dimensional problem.

So, the length of the name of the cells or the cells enters are P which is point W a point

on west of it and E a point east of it; the phases are being represented by small W and E

small E for west and east sides respectively.

The distance between the points W and P and P and E is delta x; subscript W and delta x

subscript E. Now let us integrate this equation d by dx and when we integrated and put

the limits from west to east. So, this integration when we write then we can put it in this

form after substituting the limits that gamma d phi by dx E minus gamma d phi by dx W

plus integral W t x dx.

Now, when we integrate along these lines, then we need to have a assumption for the

profile inside this, because what is the value of d phi by dx; so, we need to know that

how the or we need to make an assumption that, what is the profile variation of phi in

this at; the surface between W and P and between P and E. So, that can be used to find

out d phi by dx at E and d phi by dx at W. So, if our domain is sufficiently small if our

mass size; if our these elements are sufficiently  small,  then for any profile it  can be

approximated by a linear profile. So, that is what has been done here and phi d phi by dx

is replaced by phi E minus phi P over delta x E similarly, for the other derivative and

then it has been written.

So, when we collect these terms together and then right; so all the coefficients of phi P

has been written into has a P and all the coefficient of phi E as a E all the coefficient of

phi W has a W. And all the constant terms have been collected in b; so what we have

been able to do that, we have been able to convert a differential equation to a algebraic

equation, for one cell. 

And the same exercise needs to be done for all the cells; the treatment will be different at

the boundary nodes because the value at the boundaries will be known. So, we have to

take that into account so that the boundary conditions can be used in the equations and

then these number of equations are solved.

So, that more number of elements we have; the more number of equations we need to

solve;  that  means,  we need more and more computational  time.  That  is  why we are



always concerned about reducing the number of elements or reducing the computational

load. But at the same time as I said that where the gradients are large, or where the curve

is  changing sharply, there we need to  have more grid points to  capture  the accurate

information. 

So,  the  first  process  was  that  we  discretize,  or  first  process  was  we  find  out  a

computational  domain,  define the boundary conditions on this  domain. Now the next

step is discretized the equations. Once the equations have been discretized then solve

these equations.

(Refer Slide Time: 17:32)

So, you have a number of algebraic equations, and then we need to use generally an

iterative solver to solve these equations. And once we solve the equation, what we will

get? We will get the values of the 3 velocity components, or the 2 velocity components

depending on 2D or 3D problem and the pressure.

So, from that once we have solved the equations and got the values, then we can extract

the quantities of our interest for example, wall shear stress if the heat transfer is there

then maybe Nusselt number or pressure drop or vorticity or any other information that

we can construct from this parameters that we have at our disposal. So, this is in very

brief what the idea behind discretization is and how the partial differential equation is

converted to algebraic equation, and what the term mass or an element or grid element

mean.



(Refer Slide Time: 18:48)

So now coming to 2 phase flow, as we discussed earlier that for a single-phase flow; we

need to solve a mass and the momentum conservation equation for an incompressible

and  isothermal  flow. Now, we  have  2  phases  then  we  need  to  consider  one  set  of

conservation equations for each phase. One for the phase 1 and one for phase 2; so, we

have the 2 equations here, the mass conservation and momentum conservation equations

k is phases. So, k represents different phase and it can be phase 1, phase 2; so, k is equal

to 1 and k is equal to 2 and depending on we will have these terms.

(Refer Slide Time: 20:07)



Now,  at  the  interface  because  when  we  have  2  phase  flow,  they  have  the  usual

boundaries of the domain plus 1 boundary is the boundary between the 2 phases and this

boundary would be moving; it is not a fixed boundary.

So, we also need to have the boundary conditions at the interface.  So, as you might

remember  from you are if  you have done a  course  on transport  phenomena or  then

probably  you  would  have  studied.  That  for  2  phase;  2  fluid  system,  the  boundary

conditions, the kinematic boundary condition at the or the velocity boundary condition at

the interfaces, that if there is no phase change or there is no mass transfer at the interface.

So, if this is our interface between fluid I and fluid II. 

And if then the fluid at this region is moving as a normal velocity component as v N;

then this is v 1 N and this will be; sorry this is v 1 and this is v 2 and so, v 1 subscript N

and v 2 subscript N. Now, if there is no phase change of mass transfer, then this interface

will be pushed by a velocity v 2 and by this fluid, and then the same displacement will

happen here.

So, the velocity at the interface or the normal component of velocity at the interface, or

the  velocity  component  normal  to  the interface;  they  will  be equal  in  case of  phase

change or in case when there is no phase change, or there is no mass transfer. If there is

mass transfer, because of phase change or otherwise then we need to take into account

also the flow rate or the phase flow that there are flow that is happening from one phase

to another; that we are not going to discuss here.

Similarly, the velocity on the tangential velocity component v 1 t in fluid 1 and v 2 t for

fluid 2;  they will  also be equal.  So,  the tangential  component  are  equal;  the normal

components are equal, and if you combine the 2, then you can say that velocity vector 1,

and velocity vector 2 at the interface they are equal. So, velocity is continuous now; that

means, the velocity is continuous at the interface, if there is no phase change or mass

transfer in the fluid between the 2 phases.
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Now, the boundary condition for the stresses; so, let us look at the normal stress now.

The normal  stress,  what  we have pressure is  also a  normal  stress.  So,  as you might

remember from surface tension discussion, that the difference in pressure for the static

condition P 1 and P 2; the difference between is equal to sigma kappa. So, the total jump

in the extra tensor is a normal stress tensor. So, pressure as well as normal stresses, that

might be there you could the flow that will be equal to sigma kappa.

Now, if  there  is  Marangoni  convection  which  is  caused  by  the  gradient  of  surface

tension. So, this term is because of so, if there is a surface tension gradient, then we have

jumped this is wrong this is tangential. So, this should have been here, and this should

have been here anyway. So, jump in the stresses normal to the interface, is this where as

in the tangential direction to the interface and crossed t 2 minus t 1 that is the tangential

component of the stresses, that will be equal to del sigma; in case of there is no and this

will be equal to; in case there is no surface tension gradient, when sigma is constant, then

the tangential stress will be continuous in the interface, but there is a jump in the normal

a stress.
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So, for the 2 phase flows; we have written down the equations, and we have understood

the boundary conditions.  Now there can be number of different approaches to model

multiphase  flows.  You  might  have  heard  about  Eulerian  multiphase  flow  modeling

method, or Euler langregian multiphase flow modeling method, or you might have also

heard about the volume of fluid method, level set method or in general the term which is

called interface capturing method which are used to model multiphase flow.

So,  the  question  comes  which  approach  one  should  take  to  model  multiphase  flow

method not a methods. Say in general for the industrial  applications for conventional

multiphase  flows;  the number of bubbles,  the number of  droplets  that  are  there  in  a

system. For example, consider a bubble column which is a column of liquid in which the

gas bubbles are introduced and the number of bubbles are millions.  So, if the one to

capture the bubbles in this column, then we need to have the interface; if you want to

capture the interface at each and every bubble, then we need to have very refined mass.

So, in general in such cases the equations are averaged, and the exchanged between the 2

phases, momentum exchange and if there is a heat transfer or mass transfer exchange.

That is modeled by closure terms; so, that the computational time and computational cost

is reduced and a still one can find useful information about the flow. However, when it

comes to flow in micro channels, then the number of bubbles are limited. 



Flow is  often laminar  and it  is  quite  regular;  so,  in  such cases  we also see that  the

interface is quite large, or the interface is quite big. So, one there is a motive or there is a

motivation to capture the interface and capture the information accurately; rather than

having a closer model which will come from either from the experiments or from some

heuristic or empirical models.

So, generally for most of the cases in micro fluidics one do not need to have one do not

huge  of  Euler;  Euler  method  which  are  generally  based  on  the  averaging  of  the

equations. Rather one usage interface capturing or interface tracking methods; so, let us

look at what those interface tracking methods are. In this case, a single fluid formalism is

applied;  that  means,  only one set  of conservation  equations,  even though we have 2

fluids, or more than 2 fluids, then let us talk about only 2 phase flows. 

So, even though we have 2 fluids, only one set of conservation equations are solved, and

the interface between the 2 phases is captured explicitly. So, such things or such case will

be  well  suited  for  microfluidic  applications  when we have  one  droplet  going in  the

channel or few bubbles going in the channel, and we can capture the flow behavior by

stream lines and the bubble velocity, the droplet velocity, the heat transfer and so on.

So, when we have 2 fluids being modeled by a single sort of equation, then we also will

need something by which we can identify the 2 phases. And we can distinguish between

the 2 phases; for that one additional equation is solved or one additional for the advection

of the interface,  and this  particular  feature distinguishes  different  methods which are

there to model 2 phase flows. For example, in the volume of fluid method, the volume of

fluid that is present in a cell is used as a marker function and that is how one identifies

the interface.

In level set method, the interface is a level set function is solved or the level set function

is equation for the advection of the level set function is used. So, what is level set? That

means  this  is  the  interface,  then  distance  from  the  interface  is  called  level  search

function. 

So, that means that the function when phi is equal to 0 that represents the interface. So,

del phi;  so the equation is  solved for the advection of phi and the phi is  equal to 0

represents  the  interface.  For  solving  multiphase  flows,  one  uses  generally  interface

capturing methods have been used, there are number of other methods, but we are going



to describe the general approach and the leaders are referred or the students are referred

to look at another move scores or look at further literature to know more about these

models.
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So, in the single fluid approach, we treat that all the phases are one material. Now if you

look at  these equations,  in this  we have 2 properties.  One is  density, and another  is

viscosity of the 2 fluids. So, one need to identify, when we have an interface and it this

interface is to be captured than in such case, we will have at any point in a space, except

at the interface; one will have that the fluid is either fluid 1 or fluid 2.

So, if it is in fluid 1, then we use rho 1, if it is fluid 2, then we use rho 2; similarly, for

mu. So, the properties are variable, and we have to define it in such a manner, that if we

have a marker function C, which tells let us say if it is 0, in fluid 1 and it can be 1 in fluid

2. So, once we have identified based on the marker function, that in which fluid we are;

we can use the properties  of those fluids in these equations.  So,  basically  by having

variable properties we are solving 2 equations. Now comes the interface the boundary

conditions at the interface.

So, the boundary conditions that we will use at the interface are if you remember the

boundary conditions that we discussed that the interface,  we need to have a velocity

continuity. Because at the interface; in the absence of evaporation and mass transfer, the

normal components in the 2 fluids are equal tangential components in the 2 fluids are



equal; so, that means, velocity is continuous. In any way, in any case, the velocity for our

system of equation is continuous. So, the velocity continuity is inherently built in this

system of equations.

The next part is the dynamic boundary conditions at the interface. The first one is the

tangential  stresses;  so,  if  there  is  no  Marangoni  stress,  then  the  tangential  stress  is

continuous which is inherently built in the system of equations, the stresses are going to

be  continuous;  so,  fine.  The other  boundary condition  which  we had is;  the  normal

stresses or let us say P 1 minus P 2 is equal to sigma kappa; which is becoming because

of the surface tension. So, and that will also take into account that the surface tension in

the 2 fluids are different.

So, we have a model or a term which can take account take into account this jump in

boundary condition or in the normal stress or tracer at the interface. So, to take that into

account this new term has been added which we call as F SV and we will discuss this in

later  slides.  So,  in  summary  what  we  have  looked  here  is  that  in  the  single  fluid

approach, we still solve the navier stokes equation, only for only one fluid. Now for this

one fluid we have the density and viscosity; these are the 2 properties of the fluids.

Now, the question comes which fluid properties; so, we have a marker function, and we

need to know with this marker function; if we know let us say we know the values of the

marker function in each grid, then we will be able to define that what is the value of rho,

and what is the value of mu at any cell. The cells that have interface in them, in those

cells  we will have the viscosity and density as the average volume fraction weighted

average of the properties of the 2 fluids.
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Now, there are a number of challenges, or number of issues that we need to address to

use a single fluid approach to model 2 phase flow. The first thing is that as we were

talking about that when we have a 2-phase system, and we will have a marker function,

that C is equal to 0 in one phase and C is equal to 1 in another phase. So, we need to

have a marker function; so, we need to solve a equation advection equation in terms of

del C by del t plus v dot; the velocity vector dot del C is equal to 0.

So,  or  we can  say  that  the  material  derivative  of  this  is  equal  to  0  for  this  marker

function. So, the marker function takes different values in different fluids. And each time

the  marker  function  must  be updated  to  account  for  the  moving interface,  when the

interface is moving. So, this is a critical and difficulty step in some cases; we also need

to take into account as we just discussed that the surface tension jump should be taken

into account and how this the term we had F SV in this system of equations how that can

be modeled.

So,  one  need  to  take  into  account  that  the  terms  that  we have  in  the  navier  stokes

equation,  if  we  go  back  to  these  equations  every  term  is  say  for  example,  in  the

momentum equation,  we have  force  per  unit  volume.  The unit  for  each  term in the

momentum equation; if you look at the easiest to look at is rho g. So, if this term is in

terms of force per unit volume or for example, pressure is force per meter square and it is

damage per meter; so Newton per meter cube or forced per unit volume.



So, this is true for a body force the terms are for the different body forces. Now if you

look at  the surface tension;  surface tension is a surface force which acts  only at  the

interface. So, this is basically or it is not exactly a force it is a jump in the pressure or

normal stress at the interphase. So, how do we incorporate this in is equation which has;

which all the terms are body forces? Or how do we convert this into a body force or a

volume force?

So,  this  is  done  using  Green  Gauss  theorem  and  the  surface  integral  is  turned  is

converted into a volume integral using Green Gauss theorem, and then surface tension

force is used as a body force in the momentum conservation equation as a source term.
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So, let us look at the marker function, marker function is that it has one value one in one

fluid  and 0 in  another  fluid.  And when this  interface  moves;  so,  when the interface

moves, the shape of the region changes, but each fluid particle has it is identity so; that

means, this material derivative is 0. So, that is why we have del C over del t plus v dot

del C or DC by DT is equal to 0.

So,  that  is  how  one  more  equation;  so,  we  had  2  conservation  equations  mass

conservation, momentum conservation plus 1 advection equation for the color function

or the marker function. This marker function also known as color function; so, we can

write here that it is also known as color function.
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At the interface, when we want to implement something or when we want to implement

the surface tension force, then we need the curvature. If you remember the pressure jump

at the interface or Laplace spacer is defined as sigma kappa; where kappa is curvature of

the interface.

So, we need to identify the curvature of the interface. And this information can also be

obtained from the color function or from the marker function. So, the unit normal to the

interface; that means, the vector normal to the interface at any our self it can be obtained

by del C over the magnitude of del C vector or the gradient of color pencil vector. Once

we have obtained the normal to the interface, the curvature is obtained by del dot n; if

from the  relationship  the  curvature  is  del  dot  n.  So,  from this  we can  calculate  the

curvature.

So, lot of implementations of a volume of fluid method, the inaccuracies or the problems

that  occur;  they  occur  because  of  the  inaccurate  definition  of  or  the  inaccurate

implementation of n. 



(Refer Slide Time: 43:37)

Having clarified  that  marker  function  or  that  we need to  solve  one equation  for  the

marker function, and how do we find the curvature of the interface. Let us look at how

we can include the surface tension.

So, the surface tension jump or the pressure jump at the interface is non zero at  the

interface only. So, at the interface we will define function which is 0 everywhere else,

and non zero at the interface. So, if we have we have plotting it an on a scale; so, the

value of so, the value of this force is non-zero near the interface, 0 everywhere else. 

And in these methods, one need to appreciate the fact that the interface in reality is of

almost  0  thickness;  however, the  interface  is  fairly  thick in  several  other  cases.  The

interface  is  quite  thick  in  real  (Refer  Time:  45:14)  interface  is  thin,  but  in  the

computational methods it is at least one cell or one element thick because it is being

discretized. So, the interface is what is called the interface is diffused.

So, the surface tension force is also diffused over the area, or it is distributed over the

area  in  which  the  color  function  is  between 0  and 1.  This  surfaces  tension  force  is

implemented only at the interface for the sigma kappa n gives the direction of the force.

And del is dirac delta function, which is non zero at the interface only and this model is

known  as  continuum  surface  force  models  of  the  surface  force  is  converted  into  a

continuum forced and included in the system of equations of the navier stokes equation

as a body force.
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So, what we have described is the general a structure of any single fluid for a formulation

or single fluid approach to model 2 phase flow. In volume of fluid method, this color

function or C is equal to alpha, where alpha is volume fraction of one of the phases. So,

the equation becomes del alpha over del t plus V dot del alpha is equal to 0, and if you

look at this equation what we get is the mass conservation of amount of edges. And alpha

1 plus alpha 2 is equal to 0; so, basically what this gives the conservation of mass for

each phase.

So,  the  mass  of  each phase  is  inherently  conserved which  is  not  the  case  for  other

methods. And in this case once we have obtained alpha, the rho is equal to rho 1, alpha 1

plus rho 2; 1 minus alpha 1. Similarly mu is equal to mu 1 alpha 1 plus mu 2 1 minus

alpha 2; while this is accurate and it can be proved, this is just an approximation. But

generally, works fine for most of the cases. So, you can see that accepted the interface

this rho is equal to rho 1, we have alpha is equal to alpha 1, and rho is equal to where

alpha 1 is equal to 1 and rho is equal to rho 2 and alpha 1 is equal to 0; this is about the

interface capturing methods.
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Now, there are number of other issues other problems that one need to look at when

modeling to phase flows. For example, the contact line or 3-page contact line plays an

important role in number of micro predict flows. So, one need to take into account that

how do we model the contact line singularity near the interface.  Because the contact

lineage move in what is the contact angle and the contact angle it is a dynamic contact

angle; so, one need to have a model for dynamic contact angle.

Sometimes the films are very thin in micro predict flows. So, one need to have the mass

very,  very  refined  so  that  the  thin  film  flows  can  be  captured.  Similarly,  during

coalescence or breakup of the bubbles; the films that form between the 2 phases are very

thin. Sometimes of the order of few nanometers , and one cannot have over cannot afford

to have such small very such a small mass, because that will require over the length scale

changes about 5 to 6 order of magnitude.

So, how one can model such thin films or the thin films that forms during breakup and

coalescence. Heat and mass transfer especially capturing the boundary layers near the

interface accurately when condensation or interface mass transfer or evaporation happens

and similarly, is of for the phase change modeling.

So, in summary in today’s lecture, we have first looked at specially for those who have

not been introduced to computational fluid dynamics. First, we have looked at the basics

of computational fluid dynamics, and then one is encouraged to read through books for;



if they want to study the computational flow in computational fluid dynamics of the book

by pattern curve numerical fluid flow and heat transfer.
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My S. V Patankar can be a good starting point to understand the basics of combinational

flow dynamics especially the finite volume method. 

And then so, we have looked at the basics of or very briefly what computational fluid

dynamics is. And then we have looked at the governing equations for general multiphase

flows or general 2 phase flows and then what are the boundary conditions at the interface

for  these flows.  Then we have  come to the  interface  capturing  method;  so,  first  we

introduced CFD. CFD, and then equations for 2 phase flow and then we have looked at

interface capturing method, specially the VOF or volume of fluid method, in which the

surface tension; how it is used as a body force in the navier stokes equation. So, that is

all.

Thank you.


