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Lecture – 12
Smooth Interface Laminar-Laminar Annular Flow

Hello, in today’s lecture, we will be looking at annular flow. In particular we will look at

an ideal case of annular flow, where the interface is smooth and the film thickness or the

size of the code, or the radius of the code is same throughout the channel. Ok?

(Refer Slide Time: 01:04)

So, let us draw a configuration of an ideal annular flow. We have a channel. Let us say

this  is  a  cylindrical  channel  and  in  this  cylindrical  channel,  the  interface  is  located

somewhere here. So, this is phase 1. Let us consider gas liquid annular flow.
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So, gas is at the code and liquid is on the sites. Ok? And the radius of the channel is

capital r and the radius of the interface, let us name it as I and we have properties of

liquid Rho l and Rho g and mu l and mu g are the density and viscosities of gas and

liquid. Now, this configuration, when we look at the flow regimes in gas liquid flow in

micro channels, we often encounter annular flow, but this is really the annular flow that

we see in gas liquid flow, in micro channels it is really a smooth interface annular flow.

We generally see the presence of waves on this annular flow, but to understand this, let

us consider a case, where for which we can obtain an analytical solution and can get

relationship,  say for example,  between pressure drop and film thickness or interfacial

radius and the flow rate of the phases. So, this is the case that we are going to consider in

this lecture..

There can be annular flow or what is termed as in general, core annular flow for in the

reference of liquid flow. So, they are depending on the viscosities and densities of the

two fluids plus hydrophobicity or hydrophilicity of the two liquids. One phase will be at

the core and another phase will be these properties. We will determine which phase will

be at the core and which phase will be near the wall. Ok?

So, we are looking at this. We will use the terms for rho l and rho g or mu l and mu g;

however, the same terms can be used with reference to liquid 1 and liquid 2. Ok? So, we

will solve the mass conservation and momentum conservation equations and because this



is a cylindrical configuration, so we will prefer cylindrical coordinate system. So, where

we have r theta and z? So, z is the direction, r the radial direction and when we say that

the flow is Ax symmetric; that means, there is no flow in the angular direction and no

gradients in the angular for azimuthally direction.

So; that means, v theta is equal to 0 and del over, del theta is 0. So, this is the cemetery

configuration, ax symmetric configuration at steady state; that means, the dou by dou T

term is equal to 0 study, means as you will know that steady means the properties, the

things, the configuration does not change with time. So, all the variables with respect to

time are constant. So, that is why dou by dou T term in the conservation equations will

be 0, flow is laminar and we do not need any models for turbulence and we consider

fully developed flow here.

So, when the flow is fully developed, we can say that del v z over del z is equal to 0; that

means,  the  velocity  profile,  whatever  the  velocity  profile  be  obtained  at  one  axial

location,  a  similar  velocity  profile  will  be  obtained  at  another  location.  So,  the

corresponding difference delta v will be 0 or delta v z will be 0. So, the flow is fully

developed  or  that  is  the  definition  of  a  fully  developed  flow. Now, let  us  write  the

conservation equations. So, coming to the continuity equation, let us write a continuity

equation in the cylindrical coordinates.

So, that is del rho by del T plus 1 over r, del over del r rho v r plus 1 over r, del over del

theta rho v theta plus del over del z rho v z is equal to 0. Now, because this is at steady

state, so, this term will be 0 and ax symmetric. So, this term will be 0. Now, what we

have is del v z over del z is constant, because of fully developed flow. So, this is because

the flow is ax symmetric and in this case, this says that fully developed flow. So, del v z

over del z is 0 the flow. We consider in this case that the flow of both the phases is

incompressible.  So,  we can add the assumption of incompressible  flow. So, rho h is

constant in these cases. So, that is why we can neglect this term.

Now, what we have from this, that del over del r of rho v r is equal to 0 or v rho sorry,

this is rho r v r, here, rho r v r and; that means, r v r is equal to a constant and v r is equal

to constant over r, but v r needs to be finite. So, that r is equal to 0, v r is finite. So, the

term v r will be 0; that means, that is obvious from the flow configuration itself, because

if  the flow is  happening in  the radial  direction;  that  means,  the interface  radius will



change,  because some flow will  happen along this  direction  and the radius  interface

radius will have to change to accommodate that flow.

So, because we do not have any such acceleration flow, so, the radial component of d

will 0. So, the only component of velocity that we have non - 0 is, v z h non – 0 and v r

and v theta, they are 0. Ok?.
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Now, let us come to the r momentum equation. So, for the cylindrical coordinate, the r

momentum equation is rho del v r over del t plus v r, del v r over del r plus v theta over r,

del v r over del theta plus v z, del v z over del z minus v theta squared over r is equal to

minus del P over del r plus mu, del over del r 1 over r, del over del r of r v r plus 1 over r

squared del 2 v r over del theta 2 plus del 2 v r over del z 2 minus 2 over r squared del v

theta over del theta.

We do not consider gravity. So, we can say right gravity effect is not considered, if we

take horizontal  flow, then the flow will  not be ax symmetric.  If  the gravity effect  is

considered,  but  remember  that  in  micro channel,  where  the  channel  5  is  sufficiently

small, the effects of gravity are anyway negligible. So now, we can neglect or we can

strike out the terms which are not relevant for this is at steady state. So, this term will be

0, v r is 0. So, this term is 0 v theta is 0. So, this is 0 del v z over del z is 0. So, this is

also 0 and v theta is 0. So, this is 0 and because v r is 0, so, this term is 0. This is again 0

because v r and this is because v theta is 0.



So, what we have is del p over del r is equal to 0; that means, v is not a function of r of

pressure is same at a particular cross section in the radial direction.  So, you take the

pressure here and the pressure here, it is independent of the location, but remember for

the two phases, what these equations we are writing general equation for phase 1 and

phase two, but when we consider the boundary conditions, we will have a place of at the

interface. So, you will discuss that, but for a phase inside one phase, pressure is not able

to follow. Right?

Now, for theta momentum term, what we have is , rho del v theta over del T plus v r, del

v theta over del r plus v theta over R, del v theta over del theta is v z, del v theta over del

z plus v r v theta over r is equal to minus 1 over r del p over del theta plus mu del over

del r 1 over del over del r r v theta plus 1 over r squared del 2 v theta over del theta 2

plus del 2 v theta over del z 2 plus 2 over r squared del v r over del theta. Ok?.

So, in this again, we neglect the terms. This term is 0 v theta, is 0. So, this term is 0 v

theta is 0 v theta is 0. So, all these terms are 0 and again, we will have this is 0, because v

r is 0. So, we will have that pressure is not a function of theta so; that means, pressure is,

if it is, then it is a function of that only. So, let us look at the z momentum equation.

Right?

(Refer Slide Time: 16:18)

When we write the z momentum equation Rho del v z over del t plus v r, del v z over del

r plus v theta over r, del v z over del theta plus v z del v z over del z is equal to minus del



p over del z plus mu 1 over r, del over del r, del v z over del r plus 1 over r squared del 2

v z over del theta 2 plus del 2 v z over del z 2.

I have been very careful while writing these equations; I would request you to recheck

these equations from a standard book. The book from which I have taken the equations is

transport phenomena by Bird Stewart and light foot from the appendix B, you can see all

those equations are in the chapters where the Navier Stokes equation have been derived.

So, again del v z over del t, because it is at a steady state and this term will be 0, because

v r is 0, this term will be 0 because v theta is equal to 0 and this term is 0, because del v z

over del z is 0.

Now, this is 0 because gradient in theta direction are 0 and this is 0 because flow is fully

developed. So, del v z over del z. It is minus del v by del z is equal to mu 1 over r, del

over del r, del z over del r. So, we will, for clarity or for convenience, we will assume

that minus del p by del z is equal to b. Note, that this can be written. Now as minus dp by

dz, because it does not depend, the pressure depends only on z. So, it is equal to the

partial derivative is equal to the total derivative and the v z, we will write as v only, now

onwards because for our convenience. Ok?
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So, we can write this equation later on for both the phases. Let us look at the boundary

condition. So, the configuration we look at again. So, this is our interface in the centre.

So, at r is equal to capital R, which is general wall. We will have v of liquid, because this



is liquid phase and this is gas phase. So, v L is equal to 0 at r is equal to 0, which is at the

axes. We will have v gas to be finite. So, if you use this condition or then, we will also

have an r is equal to R, i which is at the interface..

There are two boundary conditions, the velocity continuity. So, v liquid at R, i is equal to

v gas at R i and we will also have shear stress continuity, mu l, del v L over del z and R i

is equal to mu g, del v G over del z R i. We will also have a boundary condition for

normal stress and that will be a jump in pressure. So, we will have p l minus p G is equal

to sigma, kappa and kappa is 1 over R i in this case. So, we can have sigma over R i, but

R i is constant throughout. So, we can say that d p L over d z minus d p G over d v z is

equal to 0, so; that means, because R i is not a function of z.

So, that we can say the gradients in the both the phases are same. So, we can have B L is

equal to B G from here.

(Refer Slide Time: 23:05)

Now, the equation, if we look at this equation again, mu over m r del over del r are mu

over r, del over del r, del v over del r is equal to minus del p by del z or d p by d z, which

we have named as B now. So, we will have, when we integrate this equation, we will get

del r, r del v r over del r is equal to B R over mu which will give us Del, sorry, this is not

v r, del v over del r is equal to this, will be r and this will be equal to B R square over 4

mu.



So, we can write del v over del is g plus. A constant of integration, let us say, this at C 1.

So, del v over del r is equal to B R over 4 mu plus C 1 by r and now, we can write the

same equation  for  gas  and liquid  phases,  using  the  shear  stress  continuity  boundary

condition at the interface, we will have mu gas del v g over del at R, i is equal to mu l,

del v l over del r at R i. So, if we substitute here, we will have four constants, basically

when we integrate this fellow.

So, we will have this term, written for two, sorry, term T is constants as C 1 l and C 2 l

for two different things. So, when we multiply by Mu, we can have B R i over 4 and mu

will cancel out plus mu G C 1 G divided by R i, similarly we can write B R i by 4 plus

mu L C 1 L by R i. So, B R i by 4 B R i by 4 will cancel out and what we will have as the

boundary condition, that mu G C 1 G is equal to or from this boundary condition, we will

get mu G C 1 G is equal to mu L C 1 L. Ok?

So, we have a relationship between the two constants for two phases, C 1 G C L. Ok?

Now, we can integrate this equation.

(Refer Slide Time: 27:27)

So, we will have del v over del r is equal to B r over 4 mu plus C 1 by r, when we

integrate, we get v is equal to, sorry, this is, this will be B r by 2 Mu. So, when we

integrate this further, we will have B r squared over 4 mu plus C 1 l n r plus C 2 and now,

we can write the same equation for gas phase and liquid phase.



So, if we use the boundary condition for gas phase at the axis at r is equal to 0 v G is

finite or defined. So, then because l n 0 is not defined for C 1 G has to be 0 so; that

means, we have B G is equal to B r square by 4 mu plus C 2 G. Ok fine! So, now, we

need to find out the constant C 2 G. Ok?
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For liquid phase again, we can write the same velocity profile. So, if C 1 G is equal to 0,

this will make C 1 L is equal to 0 too. So, we will have v L is equal to B r square over 4

mu L plus C 2 L and at r is equal to capital R, that is at the wall, we have a v L is equal to

0. So, the substitute 0 is equal to B capital R square by 4 mu L plus C 2 L. 

So, by subtracting these two equations, we can get the velocity profile or we can get rid

of C 2 L v L is equal to B over 4 mu L small r square minus capital R square. Now, to

obtain v G, we will apply velocity continuity at the interface; that means, v L and R i is

equal to v G at R i and we substitute that, we will get the liquid velocity, we have already

got.

So, the gas velocity, we will get after substitution and manipulating the algebra, we will

get v G is equal to B over 4 mu gas small r square minus capital minus capital R i square

plus B by 4 mu L into R i square minus r square. So, I request you to go through this step

and do the required algebra. So, we have got the velocity profile in the gas phase and

velocity profile in the liquid phase for a smooth interface annular flow.
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Now, once we have got that, then, we can get the by integration, we can get the Q L and

Q G. So, Q L will be integrating v G 2 phi r d r from R i to R Q G will be equal to 0 to R

i, sorry, this is v L and v Q G, will be equal to v G 2 phi r t are integrated from 0 2 R i.

Now, from this  we can  also  find out  the superficial  velocities.  So,  when we do the

substitution and the superficial velocity of the liquid phase will be Q L over Pi r squared..

So, 1 over Pi r square and U G is equal to Q G over Pi r square. So, 1 over Pi r square

and by substituting the values and do the necessary integration, we will get U G is equal

to minus B r square over 8 mu L into mu L over mu G minus 2 into R i by R raised to the

power 4 plus 2 R i square over R squared.

Similarly, U L can be written as minus B R the square over 8, mu L into 1 minus R i

squared over R square. So, now, in general for any annular flow or for any experimental

conditions, for in any experiment, what we will know is the gas and liquid flow rates, if

we want to obtain the velocity profile; the problem for us for the velocity profiles are

that,  they are functions of B, which is  pressure gradient  and R i  which is interfacial

radius. Now, we do not know both of these. So generally, what we have Q L and Q G or

U L U G, these are the superficial velocities.

So, you can just note that U L U G are superficial velocity are generally known for a

flow. So, by knowing this we have two equations and we can solve an equation, let us

say, A and equation B to obtain B, which is pressure gradient and R i.
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So, we can look at this in the ideal annular flow, these are the U L and U G, the two

phase flow rates and the superficial velocities, which we have solved, just solved for and

now, when we solve for pressure gradient and interfacial radius.
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So, we can rearrange these two equations to in such a manner that it becomes a quadratic

equation, in sigma i R square, sigma i square where sigma i is equal to R i by capital R.

Ok?



Sorry, this is not sigma, this is phi and so, phi I is equal to R i by R. So, once we solve

that, we can obtain what is phi i square and from that, we can obtain in the roots of it.

Generally, with my experience, I have observed that one root is always greater than 1.

So, we know that is unphysical. So, we will have to choose phi i with the condition that

phi i is between 0 and 1. So, we can get what is phi i and when we substitute back in the

pressure gradient, we will get the pressure gradient.

So,  basically  by  solving  what  we  have  done  today, is  solve  the  ideal  annular  flow

equation starting with a basic Navier Stokes equation, we have neglected the terms the

relevant terms in the R theta and z system of the equations and in the continuity equation

and finally, after  integrating we got the velocity  profile,  which had 4 constants;  two

constants for the liquid phase and two constants for the gas phase..

And then, we had four boundary conditions, one is at the axis, that the velocity gradient

should be finite and L N, it should be defined at the axes. Then, we had two boundary

conditions at the interface, the interface continuity and shear stress continuity and one

boundary condition at the wall that the liquid velocity at the wall is 0. So, by solving that

we could obtain the velocity profiles in terms of the pressure gradient and the interfacial

radius. Once, we have done that, then we integrate it and obtained the flow rates of the

two phases or from the flow rates, we can also obtain the superficial velocities and from

solve, by solving these two equations, we could get the pressure gradient and R i or

interfacial radius..

So that we can get the velocity profile for any given gas and liquid phase flow rates.

Now, this ideal annular flow, there is lot of literature on the stability analysis non - linear

and linear stability analysis of the annular flow, this is subject to a different interfacial

instabilities.

So, if you remember the capillary instability, which we discussed in the previous class.

So, in the capillary instability A z disintegrates into smaller droplets. So, following that,

the annular flow is at lower velocities, it becomes Slug Flow or Taylor Bubble Flow and

there are generally, what we see in practice that, there are always waves present at the

interface and that is because of probably at the Kelvin Helmholtz instability, which is

that, when there are two parallel liquids flowing. There are waves generated or there are

small perturbations, they grow up to become wave to make the interface maybe ok,



Thank you.


