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Lecture – 07
Viscometers and Rheometers

Hello, until now we have been looking at the fundamentals of rheology, what rheology

basically  is,  the  properties  of  different  time  independent  non-Newtonian  fluid  and

different simple models which can model the non-Newtonian behaviour of complex fluid

including that of blood. Now, all these models are need to be validated, the parameters in

these models are need to be found out. So, this is done by doing careful experiments to

measure the viscosity or apparent viscosity of complex fluids. In this lecture, we will be

looking at the, a simple and frequently used viscometers and rheometers specially in the

context of blood.
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So, the measurement of viscosity or apparent viscosity, we will discuss in this lecture

three different viscometers or rheometers. So, there are three viscometers that have been

listed  here  -  capillary  viscometer,  concentric  cylinder  viscometer  and cone and plate

viscometer. You might wonder the difference between viscometer and rheometer. So, the

viscometer in my opinion is an instrument using which the viscosity of a Newtonian

fluid can be measured; whereas, rheometer is a general term by which the rheological



characteristics  including  non-Newtonian  viscosity  or  apparent  viscosity  which  is

generally defined as the ratio of shear stress and shear rate is measured

So, the difference between viscometer and rheometer essentially is that viscometer, the

term viscometer is used for measurement of the viscosity of Newtonian fluids because

their viscosity is constant at any particular temperature; whereas, rheometer is used for

non-Newtonian fluids. So, the three viscometers that we have listed here are capillary

viscometer, concentric cylinder viscometer and cone and plate viscometer.

Capillary viscometer is it basically works on Hagen-Poiseuille principle that a known

amount of liquid is flown, the liquid flows through a small capillary, so that the capillary

is small or channel is small, so that the Reynolds number is small flow becomes fully

developed and the exit and entrance effect can be neglected. And when the time of the

flow of  a  fluid  is  measured,  and  this  time  of  flow of  a  known volume  of  fluid  is

compared with the time required for the flow of a known fluid or the flow of a fluid of

known viscosity at the same temperature. And then by comparing the times for the flow

of that two fluids, one can define or one can find out the relative viscosity of the fluid.

So, it is generally used for Newtonian fluids.

The next viscometer that we will discuss in this lecture is concentric cylinder viscometer

in which they are two cylinders which are concentric, they have same axis. And the gap

between the cylinder is very small  when it  is compared with the radius of the either

cylinder. One of the cylinder  generally  it  is  the outer  cylinder  is  rotated at  a known

angular speed by doing which one can impart a known amount of shear rate. And the

torque on the inner cylinder which is fixed is measured. By doing this, one can calculate

what is the shear stress being exerted on the inner cylinder and by comparison and by the

ratio of the two shear stress and shear rate one can measure the viscosity of the fluid.

Another very popular and frequently used viscometer  or rheometer  is cone and plate

viscometer in which a cone and plate arrangement is there. Over a flat plate a cone of

very high apex angle is rotated. So, again the flow the cone rotates and by this rotatary

motion and from the angular velocity the shear rate is defined and the shear stress over

the cone for this particular shear rate is measured. And from the ratio of two the viscosity

can be found out.
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So, we will look at this it a bit in detail now. So, capillary viscometer first. So, this is a

simple diagram of a capillary viscometer in which a known amount of liquid it flows

through a channel.  What  is the driving force here? The driving force here is gravity

driven. One can also have another or an external pressure difference to drive the flow.

When it is gravity driven, then it is very important that the orientation of the channel

should be vertical; if not vertical then the angle that it makes from the vertical direction

is required, so that if the effective value of gravity can be used in the calculations.

However, this problem can be eliminated if the experiments are done for the standard

fluid  which  is  used  for  the  calibration  and for  the  fluid  of  which  viscosity  is  to  be

measured. If they are done at the same orientation of the viscometer, then the orientation

effect can be ruled out. So, the capillary viscometer is based on Poiseuille law. You might

remember in the previous lecture we looked at Newtonian fully developed and laminar

flow in a circular channel, the flow was steady. So, we derived the following relationship

for  the velocity  profile  in  the  channel.  One can  then  calculate  the  flow rate  by just

integrating this 0 to R v z 2 pi r dr. And if we do that we will end up with R square over 4

mu minus dp by dz integral 0 to R r minus r cube by r square dr. We can take 2 pi

outside. So, this will give us 2 pi R square over 4 mu minus dp by dz. And if we integrate

this that will be and put the limits we will get R square by 2 minus R is to the power 4

divided by 4 R square which will be R square by 4 effectively this will be 4. So, that is

equal to sorry, so this is R square.



So, when we change this, this will become R square by 4. And we will get 8 pi R raise to

the power 4 divided by sorry pi R to the power 4 divided by 8 mu minus dp by dz which

is volumetric flow rate through the capillary. So, you might notice that R is a property of

the capillary, and this will remain fixed for a given capillary tube; dp by dz in our case is

equal to rho g.

(Refer Slide Time: 12:44)

So, one can see that Q which can be written as V over t, where V is equal to volume of

fluid generally in a viscometer the volume is fixed between these two points. So, the

volume is fixed. Q is equal to V over t pi R to the power 4 by 8 mu minus d p by d z.

And so one can see that t is directionally proportional to mu. And if the measurements

have been done for a fluid already, then one can just simply use formula t 1 by t 2 is

equal to mu 1 by mu 2 to calculate the viscosity of a fluid.
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So, this equation can be rearranged to obtain the viscosity.

(Refer Slide Time: 13:53)

Now as we have seen that we can use capillary viscometer to measure absolute viscosity

coefficient  as  well  as  relative  viscosity. Generally, it  is  the  relative  viscosity  that  is

measured using capillary viscometer. The pressure gradient it might be applied externally

or gravity can act as a pressure gradient to drive the flow. In simple viscometer which we

use in our undergraduate labs or in our day-to-day simple experiments, it  is capillary

viscometer in which the flow is driven by gravity. However, this instrument has some



limitations  of  the  pressure  gradient,  some  of  the  energy  of  the  fluid  because  the

gravitational energy in our case some part of it will be used to impart the kinetic energy

to the fluid.

Then as you might notice that the flow happens from a bulb into a capillary, so in at the

entrance,  there  will  be  entrance  effect;  similarly,  on  the  other  side,  there  will  be

divergence effect  or the streamlines  are going that  way. So, there will  be divergence

effects. So, these entrance and exit effects are neglected. We have not discussed in the

previous class, but one useful relation that you might have or you probably would have

studied  in  your  undergraduate  fluid  mechanics  course  that  for  developing  flow in  a

channel,  the  development  length,  which  is  required  for  the  flow  to  become  fully

developed is equal to 0.05 Re into diameter  of the channel.  So, this tells  us that we

should keep Reynolds number sufficiently small, so that the flow quickly becomes fully

developed. So, it is important to take into account all these errors while measuring the

viscosity into capillary viscometer.

Another important point here is that as we said earlier that in a capillary, the velocity

profile is parabolic.  As you might remember, v z is equal to v z max into 1 minus r

square by capital R square, where capital R is radius of the channel, and r is any arbitrary

radial coordinate. So, we can quickly see that tau r z or the shear stress which is equal to

minus mu del v z over del r that will be not a constant, but tau r z is proportional to it is

proportional to r. So, the shear rate is not constant. So, if the viscosity of the fluid is

shear rate dependent, it varies the shear stress varies with the radius.
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So, if the viscosity of the fluid is dependent on the shear rate, then in such a case it is

important  that  the  viscosity  whatever  viscosity  that  we  measure  using  capillary

viscometer that will not give us the correct value of viscosity. Because viscosity is a

function shear rate and shear rate is a function of radius in a capillary viscometer, so the

viscosity will be varying across the cross section in the viscometer. So, generally it is

useful to have capillary viscometer to measure the viscosity of a non-Newtonian fluid of

or a Bingham plastic fluid.

(Refer Slide Time: 19:15)



Then another viscometer that we are going to discuss is coaxial cylindrical viscometer.

So, in the capillary viscometer, the problem is that the shear rate is proportional to the

radius. Whereas, by the arguments that we have made just now we would prefer to have

a flow in which shear rate is not constant. So, let us go back to our undergraduate fluid

mechanics  knowledge,  and try to think that which is the flow in which shear rate  is

constant.  So,  if  you  remember  the  flow  between  two  parallel  plates,  so  two  plates

infinitely long plates which are parallel to each other there is no pressure gradient in the

flow, but the upper plate is moved with a velocity let us say capital V subscript z.

If the upper plate is moved with a velocity V z, there is no pressure gradient to drive the

flow then this flow is known as Couette flow. After Couette in such case one can show

that the velocity if the distance between the plates is h, and this coordinate is z and this

coordinate is y let us say, then in such case the velocity profile V z will be equal to

capital V z which is the velocity of the upper plate divided by h into y. So, that means, V

z is proportional to y which in terms mean that tau is a constant.

So, in this case in Couette flow the shear rate is constant, so sorry tau is equal to so in

this case V z is proportional to y that means, del v z over del y is a constant independent

of y. So, tau is also a constant the linear relationship between shear stress and shear rate

is not valid it is that shear rate is constant. So, tau is proportional to mu, the tau is equal

to mu gamma dot sorry Newtonian fluid. So, how can we realise this in practice?
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Because it is not easy to have two infinite plates in parallel or the a simpler arrangement

is  when  two  infinite  cylinders  they  are  moving  relative  to  each  other.  So,  this

arrangement is often used for designing a viscometer, and this is also called bop cup

viscometers.  So,  in  this  case there  are  two concentric  cylinders  the outer  cylinder  is

known as cup, and the inner cylinder is known as bob. And the outer cylinder with the

help of a shaft  is  rotated with an angular  velocity  omega.  And because of this  fluid

motion, the torque that is imparted on the inner fluid is measured by this torsion wire. So,

from this one can measure the viscosity.

So, let us look at how this is done. There are two concentric cylinders. The flow between

two concentric  cylinder  is  known as  Taylor  Couette  flow. And  in  this  case  the  gap

between the two cylinders R 2 minus R as we see from this figure is very very small

from either of course, R 2 or R. So, we assume in this case we make some assumptions

to derive the relationship between the torque and the angular velocity and find out the

viscosity from there. The flow is steady which is when we do the measurements, then the

flow has become steady the flow is tangential. So, there is only V theta component of

velocity is there V that means, V r is equal to 0 and V z is equal to 0, and the flow is

laminar.
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So, let us look at the governing equations conservation of mass momentum in r, theta, z

which is cylindrical coordinates.
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And try to look at different terms so because the flow is steady. So, all time dependent

terms will become 0, there is no r. So, all terms containing v r or v z will be 0. So, this

term goes to 0, this is 0, this is 0, this is 0, this is 0, because this is del v theta over del

theta is equal to 0. And from here we can see that del v theta over del theta is equal to

zero; that means v theta is not a function of theta v z is here. So, this is 0, v r is here, so

this is 0. V r is here, so this is also 0; v z is here, so this term becomes 0; v z is here, so

this term becomes 0.

Now, the gravity is acting in the z direction so these two terms become 0. Tau x y is

proportional to del v y over del x plus del v x over del y. So, using this principle, we can

say that if v r 0 then tau r r will be 0; tau theta r will be 0, because it is del over del theta

del over del z tau z r this is 0. Tau theta theta will be 0, tau theta theta will be 0 tau z

theta will be 0; tau theta r will be equal to tau r theta because their stress stands for

symmetric, so this term will be 0. And tau r z is zero because v r and v z r 0, v theta and v

z, so this will be zero because v z is 0, and v theta over v z is 0; similarly tau z z is equal

to 0.

So, finally, we will end up with these terms. From the continuity equation del v theta

over del theta is equal to 0. From r momentum equation, we get minus rho v theta square

over r is equal to minus del p over del r, so that shows that how does the pressure vary in

the radial direction and it is dependent on v theta. V theta is not a function of theta you



can see from here. Now, v theta equation, so there we get the del p over del theta is equal

to 0; we have not done this in the previous slide. So, we can just note that del p over del

theta is equal to 0, because there is no pressure gradient in the angular direction and the

flow is happening because of the outer rotating cylinder. And in this we can replace tau r

theta with minus mu r del over del r v theta over r.

And the third equation from the z momentum equation is minus del p y del z plus rho g is

equal  to 0,  so that  is  basically  for the hydrostatic  pressure or the dependence of the

pressure  in  the  z  direction.  So,  if  we want  to  find  out  the  velocity  profile,  we can

substitute this here. Let us look at that we can substitute tau, r, theta. So, we will get r

square tau r theta is equal to a constant say c 1 dash. And when we substitute tau r theta

is equal to minus mu r and with r it becomes r cube del over del r v theta over r is equal

to a constant let us say this so c 1 dash. So, we get this is equal to minus mu r cube, we

can now remove this from here. So, we get v theta over r is equal to minus c 1 over mu r

raise to the power minus 2 divided by minus 2 plus a constant c 2, so that gives us v theta

is equal to c 1. Let us call this c 1 dash 2 mu into 1 over r plus c 2 dash let us say c 2

dash r.

(Refer Slide Time: 31:29)

So, if we look at this equation C 1 by 2 mu 1 over r plus C 2 r. Now, we have two

constants C 1 and C 2. So, to find out this we need two boundary conditions and these

two boundary conditions within will be the no slip boundary conditions on the two walls



so; that means at r is equal to capital R, and at r is equal to kappa R. Let us say that the

radius of the outer cylinder is R, and the radius of the inner cylinder is kappa times R.

So, kappa will be less than 1. So, at r is equal to capital R, which is the outer cylinder, it

is rotating with a velocity omega. So, the v theta will be equal to omega into capital R;

whereas, v theta is equal to 0 at the inner cylinder which is fixed.

So,  you might  notice here that  we have applied  no slip  boundary condition,  but the

velocity at the wall is not essentially 0 in this case. So, if one substitute these values here,

then one will get at r is equal to capital R, v theta is equal to omega R is equal to C 1 by

2 mu 1 over capital R plus C 2 capital R. And at r is equal to kappa R the velocity is 0 C

1 2 mu 1 over kappa R plus C 2 kappa R.

Now, this gives us a relationship between C 1 and C 2. So, we can say that C 2 R is equal

to minus C 1 by 2 mu 1 over kappa square R. And if we substitute this in this equation

then we will end up with omega R is equal to C 1 by 2 mu 1 over R this is 1 minus C 2 R

will be C 2 r is minus C 1 2 mu 1 over R into 1 over kappa square. So, this is 1 over

kappa square is there. So, this gives us C 1 over 2 mu is equal to omega R square divided

by you can take kappa square into kappa square minus 1. So, C 1 by 2 mu is equal to

omega R square kappa square divided by kappa square minus 1. You might notice that

kappa is less than 1. So, this term is going to be negative. So, one might want to write

this in this form.
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So, let us look at after substitution, one will get the velocity in this form. And from that

we can get what is tau, tau r theta is equal to minus mu r del over del r v theta over r.

(Refer Slide Time: 36:03)

So, we can calculate v theta over r is equal to omega kappa capital R over 1 minus kappa

square 1 over kappa R minus kappa R over r square. Now, if we want to differentiate it

then del over del r over of v theta over r is equal to omega kappa R over 1 minus kappa

square this is a constant. So, this becomes 0 minus kappa R r to the power minus 3

multiplied by minus 2. So, we take all this into account we can make this as plus, this

also can go and this two can come here. And tau r theta will be equal to minus mu r

omega kappa square R square divided by 1 minus kappa square into r cube.

Now, if you one want to find out the torque, where T is torque on the inner cylinder. So,

T is equal to force into distance. So, this force is tau r theta at the inner cylinder. So, tau r

theta at r is equal to kappa R into the radial or the circumferential not the circumferential,

but the lateral area of the cylinder 2 pi kappa R L which is the area multiplied by the

radius which is kappa R. So, this  becomes minus mu this  is this  can be reduce to r

square. So, let us just get rid of this. So, minus mu omega kappa square r square divided

by 1 minus kappa square kappa square R square into 2 pi kappa square R square L. So,

kappa  square  kappa square  cancels  out.  So,  the  torque  that  we obtain  is  the  two is

missing here. So, we substitute this two, so 2 mu. So, this is 4 pi mu omega R square



kappa square divided by 1 minus kappa square into lL, so that is the torque on the inner

cylinder.

Now, if  you see kappa and R are from the geometry of the cylindrical  arrangement.

Omega is the velocity, which imparts the shear rate, which is proportional to the shear

rate. And L is the length of the cylinder. So, again this is also a geometrical parameter.

So, we can say that tau torque is a constant times mu into omega. So, by measuring

torque and omega, one can find out the viscosity of the fluid that is there in between the

two cylinders.

(Refer Slide Time: 41:25)

So,  again  we have  made  some assumptions  here,  because  this  relationship  has  been

derived for the flow of fluid between two infinite cylinder, but in practice what will we

have is the outer cylinder in which there is an inner cylinder. So, there will be the effect

of top surface plus there will be end effect at the top because at the top because of the

mean viscous for a non viscoelastic fluid, the fluid surface will look something like this.

So, the surface area covered by the outer and inner cylinders will be different. So, we

might need to consider the relationship might be valid somewhere in between. So, such

corrections need to be taken into account when using coaxial cylindrical viscometers.
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So, the another and the third important viscometer is cone and plate viscometer in which

there is a flat plate and over which a cone which has very large angle which is this is

called apex angle. And this apex angle is very small, this angle psi sometimes as low as

one  degree.  So,  the  cone  of  very  large  apex  angle  and  its  flat  surface  this  is  the

arrangement. And the cone is rotated with a constant angular velocity so which gives us a

constant shear rate, and the torque require to turn the cone is measured. So, from the

torque, one get tau principle it is very similar to coaxial flat plate arrangement.
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For very large apex angle, one can find out the velocity distribution that and from that

the torque and one get that torque is proportional to gamma, and the viscosity is the

proportionality constant. So, one can measure the velocity here. And from that one can

again calculate the torque. So, this is shear stress and the torque.
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So, let us do a simple question and example. Let assume that it is a capillary viscometer

and the yield stress of the blood is about 0.07 dyn per centimetre  square.  There is a

capillary viscometer which has a length of 20 centimetre and the radius is 1 mm. And

what we need is we need to calculate the required pressure difference for the blood to

start flowing. So, if we remember the relationship between shear stress and pressure we

can write this pressure gradient in terms of pressure difference. So, we can write let us

say this as delta p which is the pressure difference and L r by 2.

So, if we take this  shear stress on the wall  because that is when the fluid it  is  start

flowing and in this case r will be equal to the capital R of the channel. So, in this the

shear  stress  is  0.07  dyn per  centimetre  square  and that  is  equal  to  delta  p  which  is

pressure difference. L is 20 centimetre, R is the radius of channel so let us write this also

in centimetre, so that is we get everything in CGS units. And this gives us delta p is equal

to 0.07 into 40 divided by 0.10 dyn per centimetre square, so that will be 28 dyn per

centimetre square or 2.8 Pascal. One can then change it to rho c using rho Hg, one can

then change it to mm Hg and the final answer will be 0.021 mm of Hg.
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So, in summary, in this lecture, we have looked at the capillary viscometer the coaxial or

Couette flow viscometer, and cone and plate viscometer. The capillary viscometer is very

simple easy to use, and it can be used very accurately for measuring the viscosity of

Newtonian  fluids,  but  it  is  not  useful  for  measuring  the  viscosity  of  non-Newtonian

fluids  because  of  the  region  that  the  shear  stress  varies  with  radius.  Then  Couette

viscometer they can be useful for measuring shear-dependent viscosity, because the shear

rate is constant in the Couette viscometers. Finally, the cone and plate viscometer; cone

and plate viscometer are most popular or most accurate among the three and they require

small  amount  of samples.  So,  for measuring the viscosity of the samples,  which are

costly they are used.


