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Lecture – 06
Blood Flow in a Channel

So, in this lecture we will look at flow of blood in a channel or flow of fluid in a channel.

As we know that in our cardiovascular system. There are number of channels of different

diameters. So, it is important to understand flow in a channel problem. So, in this lecture

what we will look at is fully developed flow of a Newtonian fluid and fully developed

flow  of  a  Casson  fluid,  which  can  represent  or  which  can  model  the  rheological

behaviour, or the viscosity, or the viscous behaviour of the blood in a channel. 

So, you must have studied in your basic fluid mechanics course that the flow of fluid can

be  modelled  by  the  conservation  equations  and  if  we  want  to  model  the  full  three

dimensional  flow  of  a  fluid,  we  can  represent  these  conservation  equations  in  the

differential  form and these are the conservation of mass and momentum, if  the fluid

properties  are  dependent  on  the  temperature  then  energy  equation  also  needs  to  be

solved, but since in our case the flow is isothermal and the fluid is incompressible, that is

blood is incompressible. 

So,  the  properties  are  independent  of  temperature.  So,  we  just  need  to  solve  two

conservation equation, conservation of mass and conservation of momentum. So, let us

look at the general form of these conservation equations first.
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The mass conservation equation is written in this form. The first term in this equation is

rate of increase of mass per unit volume, the first term and the second term is the mass

that is being convicted or need net rate of mass addition per unit volume by convection.

So, if you consider a control volume which might be a part of the channel or a channel.

So, the first part represents, you must see here that these equations are in terms of per

unit volume. 

So, that is why it is rate of increase of mass per unit volume, which will be 0 in our case,

because the density of the blood is a constant and the second term, it represents the net

rate of mass addition that is provided by the convection. So, that is flow coming in and

the flow going out from the boundaries of the domain. So, that is mass conservation

equation and for an incompressible fluid which has a constant density this equation this

term becomes; so the first term becomes 0. So, this equation can be given by divergence

of velocity, vector is 0. 
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The  second  conservation  that  we  consider  is  momentum  conservation  and  in  the

momentum conservation, the general momentum conservation equation looks like this.

The first term represents the rate of increase of momentum per unit volume. So, again

this is in terms of per unit volume, rho v is the momentum per unit volume. So, rate of

increase of momentum per unit volume, first term. The second term is rate of momentum

addition by convection per unit volume here, the first term on the right hand side is the

rate of momentum addition by molecular transport per unit volume and the last term is

body forces of the gravitational force or any other force. So, this can be gravitational

force or any other body force.

This  term  includes  the  molecular  transport  per  unit  volume,  where  p  is  the

thermodynamic pressure which is normal stress and t is the tau is the viscous stresses, it

can have it, will have normal as well as shear stress components.
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So, for a fully developed pipe flow, let us consider a circular cylinder, a cylinder which

has  circular  cross  section  and  flow  has  happening  in  the  axial  direction,  which  we

represent a z direction here and the radial coordinate is r and angular coordinate is theta

and, because there is no flow in the angular direction so, that velocity will be 0. So, let us

try to understand the assumptions that will be involved in it, the flow is incompressible

so; that means, the density is constant t z steady state so; that means, the del by del t term

will be 0 things, do not change with time. 

We do not  consider  any body forces  including  gravity, in  this  analysis  and we also

neglect the entrance and exit effects which means the flow is fully developed. So, what

fully developed flow means that with increase in distance or with distance the velocity

profile do not change; so, if I plot velocity profile at z is equal to z 1 and if I plot a

velocity profile at z is equal to z 2, it remains unchanged. So, what does it essentially

means that z velocity at z 1 and velocity at z 2, they are same. So, if we take a first

approximation to the gradient, then this will be 0 so; that means, del v over del v z over

del z is equal to 0 for a fully developed flow.

There is no tangential flow; that means, there is no flow in the angular direction and

there  is  no radial  flow, as you can see from here,  that  if  there is  flow in the radial

direction then the velocity profile in the z direction will not remain same. So, v theta

tangential flow is 0 so; that means, v theta is equal to 0, there is no radial flow, so; that



means, v r is equal to 0 and the gradients in theta direction are also 0, so; that means, v z

or z component of velocity or the axial component of velocity is independent of theta.

So, v theta is 0 and del by del theta is also 0 for the tangent, the no tangential flow.
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So, let us look at the conservation equation again in the expanded form in cylindrical

coordinate. So, what we see here is the continuity and three components of momentum

equation r theta and z coordinates and let us try to see different terms in these equations,

because flow is a the steady state. So, all the transient term will go to 0 v r and v theta r

0. So, all the term having v r and v theta will go to 0 we neglect body forces now the

shear stress is a function of velocity gradient. 

So, if v z is non zero, this term gives us that del v z over del z is equal to 0 from here we

can see that all the stresses except tau or tau r z will be 0, because tau r z have v z over v

r all other stresses will be 0 in this case. So, tau r r is 0 tau theta r is 0 tau theta. Theta is 0

tau r, theta is 0, this is 0, this is 0, this is also 0 tau z, z is 0, because it will have v z over

del z. So, this we have seen then this is also 0. 

So, this component is also 0 tau theta z is 0, because del by del theta is 0. So, only 2

components remaining again this will be again 0, because tau z over del z and the shear

stress will not vary, because the flow is fully developed. So, shear stress will not vary in

the axial direction. So, this is also 0.
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So, if we write down the non 0 terms in all the equations, we will end up this, with this

we have already said that if the flow is fully developed then del v z over del z is equal to

0, so; that means, v z is not a function of z. So, from our two assumptions that says that v

z is a function of r only, because it was not a function of theta and it is not a function of

z. 

From these two equations, we see that p is not a function, is constant with respect to r. It

does  not  change  along  the  radial  coordinate  and  p  does  not  change  along  the  theta

coordinate. So, that again means that p is a function of p z. So, this partial derivative, we

can change it to tangents, total derivative. You can see here in this equation, this has been

rearranged. The second term has been brought towards left hand side and we see that one

over r del, over del r r tau r z is equal to minus d p by d z.
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So, let us try to integrate this and if you integrate this, what we will end up with r tau r z

is equal to minus d p by d z del by del r of r tau r z is minus d p by d z into r so; that

means, r tau r z is equal to minus d p by d z into r square by 2 or tau r z is equal to minus

d p by d z r by 2. So, this is a general equation and we get relationship between the shear

stress and pressure gradient and the radius of the channel or radial coordinate. 

(Refer Slide Time: 14:27)

So, this relationship we can also look at a force balance in a channel. So, let us see if you

have a fluid element, which has a length of d z and the pressure at the two ends is p and p



plus d p the radius of this fluid element, is cylindrical fluid element. The radius is r and if

sorry. This is p plus d p and we write the force balance that, this will be acting in this

direction in the element. 

So, minus d p into pi r square that is equal to tau into 2 pi r d z. So, pi cancels out r

cancels  out  and  tau  is  equal  to  minus  d  p  by  d  z  r  by  2  and  this  is  an  important

relationship between the shear stress and the radial coordinate and this is independent of

the constitutive equation of the fluid. It is true for a Newtonian as well as non Newtonian

fluid.
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So, let  us look at  now, for the fully  developed flow of a Newtonian fluid and for a

Newtonian fluid, the shear stress is proportional to the shear rate. So, that tau is equal to

minus mu del v z by v r. So, we substitute this here, we will end up with minus mu del v

z by del r is equal to minus d p by d z into r by 2 and if we bring mu on the other side,

then it will be 1 over mu d p by d z r by 2. So, let us integrate it and we will get v z is

equal to 1 over mu d p by d z r square by 4 plus c, where C is a constant. So, this has

already been integrated for us. So, we here, end up with this equation for v z.

So, having obtained the velocity profile in a fully developed pipe flow for a Newtonian

fluid now, we can also derive the flow rate in the channels.
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So, flow rate using this profile we can say the volumetric flow rate, which is q is equal to

integral 0 to r v z into 2 pi r, which is the area of a differential element that we will take

on a cross section into d r. So,  after  the integration,  we will  obtain this  relationship

between  flow  rate  and  the  pressure  gradient.  This  relationship  is  known  as  Hagen

Poiseuille law, which says that for constant pressure gradient, Q is proportional to r to the

power 4 for given pressure gradient, for given d p by d z q is proportional to r to the

power  4  or  for  given  q  delta  p  is  proportional  to  or  delta  p  y  l  for  that  matter  is

proportional to r to the power 4, because r is a, because l for a channel. 

If it is a constant, then we can say the pressure drop is proportional to r to the power 4 for

given flow rate. Now, this has very interesting implications in blood flow. We can show

using this relationship that delta q over q is proportional to 4 delta r over r; that means, a

very small change, only 1 percent change in flow rate will cause 4 percent change sorry,

1 percent change in the radius will cause 4 percent change in the flow rate.

Similarly, if the flow rate is constant then very small change in the radius will cause

significant change in the pressure drop. So, this is for given pressure drop, whereas, this

is for, given of a constant flow rate. So, this is an effective way in the cardiovascular

system  to  change  the  blood  pressure.  So,  the  hypertension  is  generally  caused  by

narrowing of the blood vessels. Blood vessels become narrow and the pressure increases

significantly. Similarly, the muscle tension or the pressure hypertension can be reduced



by  smoothing  the  muscles.  So,  Hagen  Poiseuille  flow  has  a  number  of  interesting

implications in the cardiovascular system.
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Now, having looked at the flow, in a of flow, of a Newtonian fluid in a circular channel.

Now, let us consider the case of a non Newtonian fluid. So, we will consider the flow of

a  Casson  fluid.  Now, why  Casson  fluid?  Because  the  first  and  foremost  reason  is,

because blood is a non Newtonian fluid, which follows the Casson model or which has

shown that Casson model can be used to model the flow of blood accurately, the another

reason is, because as you can see in this relationship Casson model includes a yield stress

behaviour as well as a power law kind of behaviour. 

So, by understanding how we can model flow of a Casson fluid. We can also use the

analysis or some parts of the analysis to model of the fluid, which show yield stress

behaviour. For example, Bingham plastic fluid or we can model the flow of a power law

fluid, using the similar methodology as we will use for Casson fluid. So, the fluid shows

a yield stress and as we have seen in the previous slide that for all the fluids tau is equal

to pressure gradient into r by 2; that means, tau is proportional to the shear stress.

So, if I plot this on a x y graph let us say on the y axis, I show radius as shown in this

figure and tau.  So, from this  relationship tau will  be 0 at the centre and then it  will

increase and become maximum at the wall. So, let us call this value as tau wall. Now,

yield stress means that below yield stress, there will be no flow or the shear rate will be



0, if there is no flow. So, if because as we can see from this plot that the shear stress is

maximum at the wall. So, if the value of the yield stress is more than the wall shear stress

then there will be no flow in the channel, even if some shear stress less than the yield

stress are being applied.
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So, now if the yield stress is more than stress on the wall; so, let us draw this plot again,

where we plotted yield, the stress verses r curve if tau y, which is yield stress is less than

tau wall, then it will fall somewhere in between. Let us say, that at tau is equal to tau y at

this point where the shear stress is tau y. Let us say the radius, we call it r c or the core

radius, why do we call it core, we will be looking at it in a minute if the radius; that

means, that below r c or when the radius is less than r c in that region, the stress is less

than. So, we can have two regions, this is core and in this region tau is less than tau y

whereas, in this region tau is greater than tau y.

So, when the tau is greater than tau y; that means, when the radius is between r c and r

then fluid will follow, root tau is equal to root tau y plus root m gamma dot m gamma,

where gamma dot is the shear rate. Now, if the radius is less than r then the shear rate

will be 0; however, that does not mean that there will be no flow at the wall. So, let us

draw this picture of the channel again and this is r c. 

So, we will have a velocity profile something like this, in the region where r is greater

than r c. now, at this point at the interface or at r is equal to r c from this equation. We



will be able to find out what is the velocity and the velocity in this region, in the core

region will be the same. So, the fluid will have two kinds of regions; one is the core

region, where the fluid moves like a rigid body, move like a plug or a piston and there

will be gradients in the near wall annular region. 

So, we can analyse the flow field for a Casson fluid by considering these two regions,

separately  a  similar  approach  is  required  while  considering  the  flow  of  any  non

Newtonian  fluid,  which  shows  the  yield  stress  behaviour.  For  example,  a  Bingham

plastic fluid or a Herschel Burkley fluid; so, let us consider the region, where r is greater

than r c it will follow this law.
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So, if we rearrange this,  we will obtain this relationship that is work out the step in

between. So, we will have root m gamma dot is equal to root of tau minus root of tau y

and if we square on both the sides, then we will get m gamma dot is equal to tau plus tau

y minus 2 root tau tau y.

So, we have obtain a relationship between the shear rate and the shear stress, we have

shear stress in two terms on the right hand side and one is the shear stress only in the

other term has root of tau there. So, now, because our objective is to find out the velocity

profile; so, we will substitute the shear stress as a function of radius, which also include

d p by d z for all these cases d p by d z is a constant. 



So, the pressure is, we are varying linearly or the pressure gradient is a constant. So, if

we substitute these here, what we obtain is this? We can substitute that shear rate is equal

to minus del v z over del r is equal to one over m as it is in place of tau we substitute

minus d p by d z r by 2 plus tau y. We will not touch it as of now, 2 again we substitute

the value of shear stress as minus d p by d z r by 2.
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So,  let  us  now  integrate  this  equation,  because  the  right  hand  side  have  only  r  or

constants, because yield stress and the pressure gradient both are constant in independent

of the radius. So, we can integrate this, to obtain v z is equal to minus 1 over m within

bracket minus d p by d z r square by 4 plus tau y r minus 2 root of tau y minus d p by d z.

Now, one over root 2 r to the power 3 by 2 divided by 3 by 2. So, if we write this down

this is what we get and then integration constant.
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Now, we apply a no slip boundary condition on the wall, so that we can find out this

integration constant c. So, we can substitute and get the velocity profile. So, we can write

that v z at r is equal to capital R is equal to 0, because of the no slip boundary condition

and we substitute r is equal to capital R in the equation. So, minus d p by d z capital R

square by 4 plus tau y capital R minus root of 2 tau y minus d p by d z capital R to the

power 3 by 2 plus integral constant. 

So, if we say this equation as a and this equation as B or we can do to eliminate C is a

minus B , if we do that v z minus 0 is v z minus 1 over m and now, we can subtract the

terms 1 by 1. So, minus d p by d z minus d p by d z multiplied by r square minus capital

R square by 4 plus tau y r minus capital R minus this all root 2 tau y minus d p by g d z r

power 3 by 2. What we have missed here is, this is divided by 3 by 2 here. So, this will

be 2 by 3 and this all inside.
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Now, we look at this further these equations. So, v z is equal to the same equation and

now, we can substitute this in terms of r c tau y is minus d p by d z r c by 2. So, we

substitute and obtain this in terms of r c the radius of the core. So, we will get velocity

profile v z is equal to minus 1 over m minus d p by d z and this will be r square minus

capital R square by 4 plus minus d p by d z into r c by 2 multiplied by r minus capital R

minus 2 by 3 root 2 minus d p by d z, we have 2 d p by d z. 

So, its square into r c by 2 here and this is multiplied by r power 3 by 2 minus capital R

power 3 by 2. So, if we take 1 by 4 minus d p by d z out from this bracket minus 1 by 4

m minus d p by d z .What we are left with is minus r square minus capital R square here,

and this will be, because this is force. 

So, we can multiply by 2 and 2 here. So, that will be 2 r c r minus capital R and again, if

we multiply this by this 2 will cancel out and you may multiply this by 4 by 4. So, we

have 8 by 3 and this 4 will go out and d p by d z has gone out, already what we are left

inside the bracket is root r c r to the power 3 2 minus capital R by 3 by 2. So, that is a

velocity profile in terms of the m constant d p by d z and r c and r.
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So,  having  obtained  this  velocity  profile  now remember  that,  the  velocities  that  we

obtained r is a general velocity profile and this is only in the annular region. So, if you

want to obtain or if you want to obtain a flow rate, we need to obtain the velocity in the

entire region. So, at this point where r is equal to r c by continuity of velocity, we can

obtain the velocity of the solid core, if we substitute in the velocity profile obtained r is

equal to r c that was the primary region, why we were interested to substitute tau y in

terms of r c, because we will know tau y anyway, but we have substituted this in terms of

r c. 

So,  that  this  equation  we can also find out  from this  equation,  we also find out  the

velocity of the core. So, after substituting r is equal to r c small r is equal to r c that is the

velocity profile. Now, to obtain flow rate we need to integrate it 0 to r v z 2 pi r d r and

because the velocity profile is different in the core region and in the annular region. 

So, we can divide into two parts; first we can integrate 0 to r c v z c 2 pi r d r and then we

can integrate r c 2 r sorry. This is v z 2 pi r d r. So, after substitution we will get after the

integration and the substitution we will get this flow rate, which is pi r to the power 4 by

8 m minus d p by d z into this entire sector, where this factor the s i z i, in this factor is

equal to 2 tau y y r divided by minus d p by d z. This you might notice, this is a yield

stress and this is the pressure gradient.
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So, in this lecture what we have looked at is flow fully developed flow in a channel for

the laminar flow of a Newtonian fluid and of a Casson fluid. In the Casson fluid, there

are two things that we should remember that, if the there is an yield stress, then we need

to think about that the fluid in the channel will have two region in one region, where the

shear rate will be varying across the cross section whereas, in the centre the fluid will

flow as a core. 

Now, the another lesson for power law of fluids is that we can rearrange the equation as

gamma dot, is equal to shear rate to the power alpha, where alpha can be any number and

once we have rearrange this, what we need to know is, we can substitute tau is equal to

minus d p by d z r by 2 and when we substitute this for constant pressure gradient, we

can get the velocity gradient in terms of radius and then we integrate it to obtain the

velocity itself.
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And now, our task is to find this constant in the integration and this can be found by the

use of a boundary condition, the no slip boundary condition at the channel wall, which

essentially say that when a liquid is in contact with a solid wall then there is no slip

between the fluid molecule, that is in contact with the wall. So, v fluid at the wall is

equal to v wall, whatever the velocity of the solid wall will be the velocity of the fluid

that is in contact with the wall and in this case, because the pipe is a stationary. So, this is

0. So, we will use this boundary condition that at r is equal to capital R, where r is the

channel radius the velocity v z is 0.

So, if we substitute that then we will end up with v z is equal to 0 at 1 over mu d p by d z

capital R square by 4 plus c and if we subtract then we will get 1 over mu minus d p by d

z capital R square minus small r square. So, you might notice that if you substitute from

this equation. Let us say, this is equation 1 and equation 2 and if you subtract 2 minus 1

you will get this.
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So, what we have done here, we have obtained the velocity profile for the Newtonian

fluid in a channel. Now, if I want to obtain this in terms of v maximum, then I can say

that at v z at r is equal to 0 that will be v maximum. So, v maximum is equal to 1 over

mu 1 over 4 mu minus d p by d z. So, we can write v z is equal to v max into capital R

square minus small sorry, this is r square. So, if we divide v by v max and we will get

this is equal to divided by r square. 

Now, v z is equal to; so, what we will get? V z is equal to v max into 1 minus small r

square by capital R square. So, this is a parabolic velocity profile in a channel, which is

also known as Hagen Poiseuille flow, you can also calculate the flow rate and average

velocity for this pipe flow. Now, we will look at the flow of a Casson fluid. For a Casson

fluid, you might remember from the previous lecture that the constitutive equation, that

is the relationship between shear stress and a strain rate is given by this formula, that is

this square root of shear stress is equal to square root of yield stress plus square root of m

gamma dot where gamma dot is shear rate and m is a consistency index.

So, again for this fluid also the relationship between tau and r is a still valid and this

shows that tau is proportional to r by 2, for this fluid Casson fluid, shows yield stress

behaviour; that means, if the applied stress tau is less than tau y; that means, flow is there

is no gradient right. So, from this what we can see or what we can observe that tau in a

channel will be maximum at the wall at r is equal to capital R, if stress shear stress at the



wall, is less than the yield stress; that means, there is no flow in channel; however, if

shear stress is greater than the yield stress, then it will follow Casson fluid flow or it will

follow the Casson fluid model. So, from this equation, it is clear that the shear stress will

in a channel, the shear stress will be 0 at the centre and it will vary to a value tau w here.

Now, somewhere in between, this will be equal to tau y. 

Let us say this radius is r c so; that means, that in the channel the condition will be such

that there is yield stress, the stress is less than yield stress in the centre. So, there will be

no gradients or 0 gradients there whereas, near the wall above r c, there will be gradients.

So, this core region will flow as a rigid body and the gradients will be present in the

annular kind of region there. So, for r c is rigid body like movement will be in the core

and the Casson equation will be valid in this region.
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Let us now look at this equation. So, again write down this Casson equation and let us

rearrange this. So, if we want to write down m gamma dot, this will be equal to root of

tau minus root of tau y square; that means, m gamma dot is equal to tau plus tau y minus

2 root tau y. Now, we substitute tau is equal to minus d p by d z r by 2 in this and what

we will end up, with this equation that shear rate minus d v z by d v r, which is equal to

to 1 over m tau is replaced by this value minus d p by d z r by 2 plus tau y which is yield

stress minus 2 root of tau y into again, we have substituted tau here.
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Further, let us move on to take this equation and we integrate and get the velocity from

this. So, if we take minus sign on the right hand side it becomes v z is equal to minus 1

over m, the first term minus d p by d z r square by 4, the second term tau y is a constant.

So, tau y r minus 2 root of tau y minus d p by d z is a constant 2 by 2 is become a root 2

here and there is r. So, this is r to the power 3 by 2. So, that will be divided by 3 by 2.

So, now we apply there is again an integration constant here. So, now, we apply no slip

boundary condition at the wall and we can eliminate c. So, if we do that then we will end

up with v z is equal to minus 1 over m minus d p by d z r square. So, in this place now,

we are writing it for the walls. So, capital R square by 4 plus tau y capital R minus 2 root

2 by 3 root of tau y minus d p by d z r to the power 3 by 2 plus C and we subtract

equation 2 from equation 1. 

So, this will be 0 at r is equal to capital R. So, we get from 1 minus 2 v z is equal to

minus 1 over m minus d p by d z r square minus capital R square by 4 tau y r minus

capital R and this term sorry, for this mistake. 
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So, 2 2 by 3 tau y minus d p by d z r to the power 3 by 2 minus capital R to the power 3

by 2 and now bring this here again and in this, that is noticed that tau is proportional to

or tau is equal to minus d p by d z at r by 2 and if we do that at r is equal to r c, where tau

is equal to tau y. So, we substitute this, in this equation then we get this value that tau y is

equal to minus d p by d z r c by 2 and we get this velocity profile. 

So, after substituting we will get v z is equal to minus 1 over m, we can take minus d p

by d z out of this bracket 4 also can be taken out. So, this will be small r square minus

capital R square plus tau y we replace by minus d p by d z. So, minus d p by d z has gone

out, there is a 2 there and we have taken 4 out. So, we will multiply by 2 here, 2 r c small

r minus capital R minus tau y, is equal to minus d p by d z. So, minus d p by d z has gone

out and within bracket what remains is r c 2 and 2 is cancel out. 


