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Hello. So, in this lecture we will review some of the basic concepts of solid mechanics,

that you would have learned in your first year of a undergraduate engineering course. So,

even though this course is on fluid mechanics as you can see here; however, when we

talk about flow in the cardiovascular system, the pipes or the tubes or the channels the

arteries the veins in which the flow happen, they are not the rigid tube as we encountered

in our day to day life, or in the industrial applications they are rather a flexible tubes..

So, in this flexible tube the flow happens and the stresses that are applied on the channel

wall,  because of that the tube is deformed or the channel wall have deformation and

because of those deformation the shape of the channel is changed, consequently the flow

behaviour the velocities the pressure inside the channel will change. So, it is important to

understand the stress stand relationship in the solid walls. So, we will briefly review the

basic concepts which are relevant to cardio of vascular, cardiovascular fluid mechanics in

this lecture.

(Refer Slide Time: 02:14)



So, just briefly a let us look at solids which are elastic. So, the elastic solids or elastic

materials are those, when a force is applied they deform, but after the force is removed

the  material  comes  back  to  it  is  original  configuration,  original  position  then  such

materials are called elastic materials. So, for example, if we have a elastic bar suspended

from a surface, let us say this bar is of length l, and it is being pulled by a force say F,

then as a result of this the bar has the length of the bar initially was l naught now it has

become l, the change in the length of the bar is delta and A is cross section of the bar..

So, as a result of this there will be the stress which will be acting in the normal direction.

So, we can say the normal stress, and this bar is sigma is equal to F over A where A is the

area of cross section and strain epsilon is equal to delta over l naught. So, the elastic

modulus E is defined as sigma over epsilon, for a elastic material you might remember

that the relationship between stress and strain sigma and epsilon is a linear relationship.

And so,  from this  we can  say  that  the  slope  is  equal  to  the  elastic  modulus  E,  the

assumption that we had here that the material is homogeneous.

(Refer Slide Time: 05:24)

So, homogeneous material means that E is same throughout the bar, or throughout the

material that we are considering isotropic material mean that the behaviour or the elastic

behaviour is same in all directions, that is if the stress strain relationship is same if we

apply is stress in the x direction or we apply a stress in the y direction or the (Refer Time:

06:24) z direction.



So, most of the engineering material  behaviour  can be classified in these 2 different

material behaviour, ductile behaviour as we can see here this is for the ductile material,

and this  graph is  for the brittle  material  so,  in the brittle  material  the relationship  is

almost linear and then breaks off, wherever it goes through the first to heal distress and

then a at  a certain value of the highest value the nuking a cursor, and then material

ruptures and the nuking the area changes significantly. So, these materials behave as an

elastic  material  up  to  certain  limit,  which  is  called  deal  stress  and  after  that  their

behaviour changes.

(Refer Slide Time: 07:19)

So, when we define a strain, we consider epsilon is equal to delta over l, or l naught, and

the that delta is the we consider delta epsilon is equal to delta over l, l minus l naught

over l naught; however, if we consider the strain truly the engineer. So, this is called

engineering strain, which we have defined just now in the previous slide, now true strain

if we represent it by epsilon then the true strain will be sum of the incremental strains, let

us say a small change in the length divided by the instantaneous length. So, if we do that

continuously, then we will have this as integral d l over l and the limit from l naught the

initial length to l the final length.

So, that will be equal to l n l over l naught, where l is equal to l naught into 1 plus

epsilon. So, this is l n 1 plus epsilon. So, this gives a relationship to us that epsilon 1 is

equal to l n 1 plus epsilon, where epsilon is the engineering strain, and epsilon 1 is the



true strain, and we can say that for small deformations that is epsilon is small epsilon 1 is

almost equal to epsilon, the other point is that the materials which do not follow a linear

relationship between sigma and epsilon for them, there is not a constant value of elastic

modulus, any number of biological model behave materials do not behave elastically do

not have elastic behaviour.

So, for such a  materials,  one can define incremental  elastic  modulus.  So,  the at  one

particular  point the E incremental  or the incremental  elastic  modulus is defined as d

sigma over d epsilon. So, which is the slope at that particular point where the elastic

modulus is being sought.

(Refer Slide Time: 10:40)

Now, poissons ratio. So, when a rod that first example that we considered when a rod it

subjected to a stress a normal stress, then the rod not only it elongates, but to conservate

volume the area of the rod also changes. So, there is because of the normal stress, let us

say sigma x F over is equal to F over A, there is not only the strain in the axial direction,

but there is strain in the transverse direction also.

So, the Poisson’s ratio is defined as, transverse strain divided by the normal strain, and

because it  has the sign with it.  So, the poissons ratio is mod of or the magnitude of

transverse ratio and or the transverse can also be said as lateral strain divided by the or

normal not in place of normal axial probably is a better word. So, the transverse or lateral

strain divided by the axial strain. So, for example, nu is equal to epsilon y divided by



epsilon x, and if we consider the sign because epsilon y is going to be negative, similarly

this will be also equal to minus epsilon z over epsilon x for an isotropic material.

So, one can write that epsilon x is equal to in case of a axial stress, sigma x over E, and

one can also find epsilon y is equal to minus nu sigma y over E, and epsilon z is equal to

minus nu sigma z over e. So, this is poissons ratio.

 (Refer Slide Time: 14:18)

Now, we will talk about shearing stress and shearing strain so, if we consider a planar

surface in the x, y coordinate system, let us consider a planar surface. So, in this it is

subjected to a shear stress, which is tangential stress tau y x, tau x y, tau x y. So, as we

have discussed already in the fluid mechanics review that tau y x has to subscript. So, y

is the direction of the shear stress, whereas y is the plane at which shear stress is being

applied..

So, as a result of this shear stress, the surface deforms by an angle. And so, the 2 angles

the earlier angle as we saw that as pi by 2 the 2 angles are reduced by say gamma x y,

and the 2 angles so, this and these angles are reduced by gamma x y, and the 2 angles are

increased by the same value so, pi by 2 plus gamma x y. So, under elastic limits, the

relationship between the shear stress is tau x y is equal to G gamma x y, where G is

called shear modulus. So, that is the relationship between shear stress and shear strain,

and  like  normal  stress  and  normal  strain  are  relationship  or  a  graph  can  be  plotted

between the shear stress and shear strain and the slope of it is the shear modulus..



(Refer Slide Time: 17:29)

Now, based on this a now we can to write a generalised Hookes law. So, if we have a

cubic material or a general material which have a cubic shape and subjected to a 3 kind

of a stresses, or 3 stresses in 3 different directions sigma x, sigma y, and sigma z, and a

different shear stresses then we can write using the principles of super position, that is

the material subjected to different stuffisted sigma 2s. So, we can write sigma x is equal

to sorry, epsilon x is equal to sigma x over E minus nu sigma y over E minus nu sigma z

over E.

So,  the first  deformation  in  the x direction  is  coming because of  the  stress in the x

direction whereas, the other 2 components are because of the 2 stresses in the y and z

directions respectively, similarly one can write sigma y is equal to sigma sorry epsilon y

is equal to sigma y over E, minus nu sigma x over E minus nu, sigma z over E, similarly

epsilon z is equal to sigma z over E, minus nu sigma x over E, minus nu sigma y over E,

one can also write the relationships between tau x y is equal to G gamma x y, tau y z is

equal to G gamma y z, tau z x is equal to G gamma z x. So, one can remember in this

case that the material is isotropic. So, the E and G they are same in all the directions.

Now, for the polar coordinates because in the cardiovascular system, what we are going

to encounter are the arteries or the cylindrical tubes, and these cylindrical tubes it  is

easier to work in polar coordinates.



(Refer Slide Time: 20:37)

So,  in  polar  coordinates  we  have  r  theta  and  z.  So,  like  cylindrical  like  cartesian

coordinate, the relationship in the polar coordinate can be written as epsilon r, epsilon

theta, and epsilon z, they are equal to sigma r over E minus nu sigma theta over E minus

nu sigma z over E, similarly sigma theta over E minus, nu sigma r over E minus, nu

sigma z over E equal to, sigma z over E minus, nu sigma theta over E minus, nu sigma r

over  E, similarly one can write  the relationships  for the shear stresses in the r  theta

coordinates.

(Refer Slide Time: 22:01)



Now, one can also re cast these equations. So, that one can write the stresses in terms of

the 3 strains epsilon x, epsilon y, and epsilon z. So, that is (Refer Time: 22:22) algebra

and one need to reconstitute or a reframe these equations so, as to obtain shear stress or

not the shear stress, but the extra stress normal stress in terms of the 3 strains. So, that is

left for you as an exercise.

(Refer Slide Time: 22:39)

Now, we will look at Bulk modulus. So, Bulk modulus. So, when we consider let us say

a cubic volume, and this volume has unit dimension the dimension is in direction is 1.

So, the V is 1, now after the stresses in the 3 directions, epsilon x, epsilon y, and epsilon

z, the strains are sorry the stresses are sigma x, sigma y, and sigma z. So, the resultant

strains are epsilon x, epsilon y, and epsilon z.

So, the new volume will be 1 plus epsilon x, 1 plus epsilon y, into 1 plus epsilon z, and if

one neglect the higher order terms, and then this will be equal to 1 plus epsilon x, plus

epsilon y, plus epsilon z. So, the change in volume delta V is equal to because the initial

volume is 1. So, the change in volume is epsilon x, plus epsilon y, and epsilon z, and

because the initial volume is 1. So, delta V over V is equal to epsilon x plus epsilon y and

V is the initial volume. So, V naught epsilon x, plus epsilon y, plus epsilon z. Now we

can substitute the values of epsilon x, epsilon y, and epsilon z. So, we will have a this is

equal to 1 minus 2 nu, when nu is the poissons ratio into sigma x, plus sigma y, plus

sigma z.



So, the volume is strain, which is the ratio of change in volume to the original volume or

the initial volume, is equal to 1 minus 2 nu sigma x, plus sigma y, plus sigma z. So, one

can see here that if the poissons ratio is 0.5 then delta V over V, is equal to 0. If the

material is subjected to uniform loading and sigma x and said sigma y and sigma z are

same. So, let us say this is a in case of a hydrostatic pressure, and material subjected to

minus p then delta V over V naught, is equal to 1 minus 2 V, we missed an E here 1

minus 2 nu over E, minus 3 p or minus p over k, where k can be defined as E over 3 into

1 minus 2 nu and it is also called Bulk modulus.

We might also want to remember here, that the relationship between the shear modulus G

is equal to E over 2 into 1 plus nu. So, this is the relationship between the shear modulus

and the elastic modulus.

(Refer Slide Time: 27:05)

And you have the poisson ratio which relates to so, until now what we have been doing

is defining a different modulus what we have done is defined the elastic material, and

then the elastic modulus, the elastic modulus for the material in which the stress, stress

strain relationship is not linear, then we have looked at the generalised hookes law and

the strains  in terms of the 3 different  stresses,  and then we have looked at  the bulk

modulus and the shear modulus. So now, with this information we would like to apply

this  to  a  cylindrical  tube.  So,  for  simplicity  let  us  think  or  let  us  assume  that  this

cylindrical  tube  is  of  thin  wall.  So,  our  analysis  becomes  simpler  and  as  a  first



approximation  let  us  assume  that  the  arteries,  which  we  will  encounter  in  the

cardiovascular system they are elastic tubes and they are thin walled. So, that we can

apply this analysis to them, because the walls of or the tubes are can be bend easily. So,

the forces that develop in these tubes they are generally tangential in nature, because the

vessels  they offer  very  little  resistance  to  the bending,  and we consider  because  the

geometry where cylindrical. So, it is a axisymmetric geometry as a result no shear forces

are generated,  consequently  only normal  forces  exist  in  the axial,  which is  the axial

direction or the in a cylindrical tube. So, the axial direction the forces will be in this

direction and in the angular direction or circumferential direction.

So, the stress in the circumferential direction is also known as hoop stress, hoop stress is

normal stress in the circumferential direction. So, if we consider a half part of the tube,

then the stresses on these portions in this direction is the circumferential, or if we take

just a small angular portion of the tube then these stress or this stress is known as sigma

theta, and it is called hoop stress. The other stress that will be important is longitudinal

stress, in the axial direction. So, you also call it axial stress.

(Refer Slide Time: 30:25)

Now, hoop stress we can find by a force balance on a part of the tubes, if we consider a

let us consider a semi-circular tube, the thickness of the tube which say t, and the radius

is  R and we consider a depth of the tube or length of the tube say d z,  the internal

pressure or p is what we call transmural pressure, which is the difference between inside



and outside pressure. So, the pressure if the 2 sides are pressure p 1 and p 2, then what

we consider the transferral pressure p x along this direction normal to it,  will act the

pressure  acts  normal  to  the  surface  everywhere  correct  and the  outside  pressure  the

difference we have considered. So, the outside pressure is 0 here.

Now, if we take this as x direction, and this as y direction, and do the force balance in let

us say x direction, then what we will have is p into the area on which it is being applied.

So, the internal area is this area. So, if we draw this area edge this area which is this

distance is 2 R and the other distance is delta z. So, you will have p 2 R d z, where R is

the radius of the channel, this is equal to t and the hoop stress in this is sigma theta. 

So, sigma theta into the area of a these 2 so, there are 2 parts of the tube here, and these

parts are the small area and this is small area this distance is t and this the length is d z.

So, 2 t d z sigma theta d z, d z will cancel out and what we have is 2, and 2 will also

cancel out sigma theta is equal to p R over t, which is the hoop stress. So, you find out

the relationship for the hoop stress, in terms of the transmural pressure, the radius of the

vessel and thickness of the tube for a thin walled cylindrical tube.

(Refer Slide Time: 34:53)

For the circumferential stress if the vessel is close ended. So, for the close ended vessel if

we  can  draw a  small  schematic  of  the  close  ended  vessel,  then  we can  do  a  force

equilibrium or force balance, in axial direction then we will have p into pi R square. So,

what will be the area the in inner area of the tube that will be a putting a pressure that



will be applying a force, and then this will be balanced by the axial stress sigma z into 2

pi R into t. So, pi and pi will cancel out, and R and R will cancel out. So, we will have

sigma z is equal to p R by 2 t; however, if the vessel is open ended then there is no axial

stress and sigma z is equal to 0, from there we can also see that sigma z is equal to sigma

theta by 2 pi for a close ended vessel.

The epsilon for this tube will be equal to epsilon, the change will be in the radius of the

tubes. So, the epsilon r will be d r over r, or delta R over R and epsilon theta will be 2 pi

R plus delta R minus, 2 pi R over 2 pi R so, 2 pi 2 pi will cancel out and that will also

equal to delta R over R that will be epsilon theta. So, we will have a relationship between

epsilon theta is equal to sigma theta over E, which is p R by t E and that is equal to delta

R, over R because this is what epsilon R is so, we can there find a relationship that p R

square, over E t is equal to the deformation of the tube which is subjected to a internal

pressure of P, for a thin walled tube.

(Refer Slide Time: 38:39)

Now, the assumption of thin walled tube is good enough, when the ratio of the thickness

and the channel radius is less than 0.1 or so; however, for the thicker a walls, the thick

wall analysis needs to be performed and one need to take into account the stress variation

in the walls of the tube, for many cardiovascular application this might be the case. So,

we will briefly look at the formulation that can be developed for the thick wall tubes, and



as the arterial walls are tethered; that means, their movement in the axial direction is

restricted.

(Refer Slide Time: 39:33)

So, the only plain strain formulation or 2-dimensional strain formulation in the R, and

theta direction need to be considered so, for the equilibrium condition let us consider a

part of the tube. So, we have a tube, which have a thick wall and the inner radius is R 1

and the outer radius of the tube is R 2, and they consider a small angular portion, which

has thickness R, and it subtends a angle of d theta at the centre, the length of the tube that

we consider is d z, the internal pressure is p and we consider only transmural pressure

here. 

So, because of that we will have say we can draw this element here, for clarity and this

subtends then angle of d theta at the centre, the stresses in this r sigma r, and sigma r

plus, d sigma r, and the hoop stress or the angular or stress is sigma theta, now let us

balance the force in the radial direction. 

So, if we have force, then if we consider this direction. So, along this direction the force

will be at this surface the forces, the force stress on this direction the stress will be there

prime in this direction (Refer Time: 42:12). So, sigma r plus, d sigma r, into the area of

this surface which is r plus, d r, d theta into d z minus, r sorry sigma r, when this is

multiplied by the r, r is the radius and this place and d d r in this distance. So, this radius

is r, and sigma r r d theta d z.



Now, the force sigma theta will have a component in the radial direction. So, if you look

at this angle this is d theta by 2. So, the force component on this direction is sigma theta

sin d theta by 2. So, we will have another force, sigma theta into the area which is d r

into d z, multiplied by sin d theta by 2, and there are 2 components we will multiply this

by 2, this is equal to 0. Now we can straight away cancel out d z from this, and we also

assume that sin d theta by 2 is equal to d theta by 2, because d theta is a small angle, and

we also will neglect higher order terms.

So, we will neglect the multiplication of d sigma r and d r, because that will be a smaller

in magnitude term. So, we will have sigma r and sigma r, which will basically cancel out.

So, we will have sigma r d r plus, r d sigma r, minus sigma this term is already cancelled

out minus 2 2 will cancel out. So, we will have sigma theta d r is equal to 0, that will

give us sigma r minus sigma theta over r plus d sigma r, over d r is equal to 0.

So, this is the first equation that we will get as a result of the equilibrium condition. So,

that says the derivative of radial stress plus the difference between the radial and hoop

stress divided by r, the sum of these 2 is equal to 0. So, this is the equilibrium condition,

now, we substitute the compatibility conditions in this.

(Refer Slide Time: 46:13)

So, if we assume that u is the, radial displacement of the in the tube, instantaneously the

local displacement in the tube. So, epsilon r is equal to d u by d r, and epsilon theta will

be or the angular strain will be equal to 2 pi r plus u, minus 2 pi r divided by 2 pi r. So,



that will be equal to u by r, now from the previous slide we had the equilibrium condition

d sigma r over d r plus sigma r minus sigma theta over r, is equal to 0. 

If we substitute those values here, and also substitute the values of epsilon r and epsilon

theta, then we will have so, first let us find out this at the substitute sigma r, there then

we will have sigma r is equal to E over 1 minus nu square into epsilon r is d u by d r, plus

nu u by r and epsilon sigma theta will be E by 1 minus nu square epsilon theta is u by r

plus, nu d u by d r, we substitute this in here we also need to find out d sigma over d r.

So, let us do that E by 1 minus nu square will be everywhere. So, that can be cancelled.

So, we can write d 2 u by d r 2 plus nu by r, d u by d r minus, nu u by r square, which is

differentiation of 1 over r, plus now we substitute sigma r and sigma theta here.

So, we will have sigma r is 1 over r d u by d r, plus nu u by r square, minus sigma theta 1

r. So, u by r square minus, nu over r d u by d r is equal to 0. Now what we will have is d

2 u over d r 2, nu by r d u by d r is cancelled we have plus 1 over r d u by d r, that is the

only term and a first order this a differentiator and then these 2 terms will cancel out and

we will have minus u by r square is equal to 0. 

So, this is a relationship for the displacement and say strain. So, if we reconstitute or

recast it, it can be recast or read it in as d by d r is equal to 1 over r, d by d r of u r is

equal to 0. So, one can find out this equation or one can integrate this equation, and get u

is  equal  to  c  1  r  plus,  c  2  r  in  this  form, one  can  get  an  expression  for  u,  for  the

displacement and if we substitute back this in substitute this in back into sigma r, and

then we can have boundary conditions at sigma r is equal to minus p, at r is equal to R 1

and h 0 at r is equal to R 2. So, one can obtain the both 2 constants c 1 and c 2 and from

that one can obtain sigma r sigma theta and so on. And so, forth.

So, that is the analysis for thick walled cylindrical tubes and from this analysis, one can

obtain relationship for the displacement or for the deformation in the thick-walled tubes

as a result of a transmural pressure p. It this relationship has been used to measure the

properties  of the material  rather. So,  one can measure the displacement  for a known

transmural  pressure  and  from that  displacement  one  calculates  the  properties  of  the

material  for example,  poissons ratio and the elastic modulus. And so, so in summary

what we have looked at is that how the hoop stress or how the deformation of a thin

walled and thick walled tube can be measured or can be found out can be calculated for a



given transmural pressure, and for that we also looked at some of the basics or we have

reviewed the basics of solid mechanics, and the relationship between a stress and a strain

for normal stresses and shear stresses and the bulk modulus and so on. And so, forth we

have looked at the general hookes law. So, hope you have all you can remember now the

basics of the solid mechanics, and if you find any difficulty, you can discuss while the

course is  on,  or  you can review your solid  mechanics  notes  or  books that  you have

studied in a first-year undergraduate courses.

Thank you.


