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In this lecture, we will review some of the basics of fluid mechanics especially the once

that will be required throughout this course. So, before looking into the fluid mechanics,

we need to  know or  we need to  remind  ourselves  what  does  a  fluid  mean or  what

constitutes if fluid or what is the definition of a fluid. So, if you go back to your early

childhood, you would have learned definitions of liquid and gases which are both fluids.

So, they are the materials you might have learned the definition that the materials which

takes the form of the vessel in which they are contain or which takes the shape of the

vessel in which they are contained or are called fluids.

The another definition or a more complete definition for the fluids is that any material or

any matter that when a shear stress is applied on the fluid, so under the application of a

shear stress, if a material  deforms continuously then it  is known as the fluid. So, for

example, let us consider a fluid material that is confined between two plates which are

kept parallel.  And in this consider a fluid element or a small fluid volume and let us

name that as A, B, C and D. Now, if a shear stress is applied on this plate, the shear stress



let us remind ourselves that shear stress is a stress that is directed tangentially to the

material surface. So, a stress is force per unit area and shear stress is the one that is

directed tangentially to the surface.

So, a tangential force is applied on this surface, and because of this the material will

deform to a location let us say these locations are C dash and D dash. If you look at this

after sometime then the material further will have located to another location C double

dash and D double dash. So, because of the application of a shear stress, a shear rate or

the material shear, so the material deforms keep deforming continuously. So, that is why

at two different time instant, so let us say that C dash is at time t; and C double dash is t

plus this is t 1 and this is t 2. So, the material deforms continuously under the application

of a shear stress.

Now, if  we  want  to  differentiate  or  we  want  to  remind  ourselves  that  how is  fluid

different  from a  solid  then  under  the  application  of  a  shear,  the  solid  material  will

deform. So, there will be a deformation, but it will not deform continuously there will be

with the application of force there will be a certain deformation of the fluid, but it will

not keep deforming continuously. Whereas, in the fluid that deforms continuously under

the application of a shear stress, so the fluid they have the properties of flow or they flow

under the application of a driving force, whereas, solids do not.

Now, philosophically speaking or depending on the time scales everything flows. So,

there is a famous verse in the bible in the song of Debora that says that the mountain

gushed before the Lords. So, that means, that the mountains flowed before the lords, but

not before the man. So, what does that mean that means, that even the mountains which

are considered to be solid they also flow, but not at the time scale of few hundred or at

the time scale of hundred years which is the life of a man. But the god who is considered

to live forever in his untimed scale, the mountains flow they change shape so even. 

So,  every  material  does  flow, but  depending  on the  time  scale  we may  or  may  not

perceive or experience that this material is flowing, anyway. The materials that we are

considering at this course because this course is concerned with a cardiovascular fluid

mechanics where blood or plasma is the fluid that we are dealing with so the plasma or

blood is a fluid in any case.
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So, another fundamental thing that we would like to revise or we would like to look up

on is Euler and Lagrangian approach. So, there can be a different approach to analyse the

problems in engineering mechanics. In fluid mechanics, in general two approaches are

very popular the first one what we call is Lagrangian approach. So, in the Lagrangian

approach, a particular mass of the fluid or particular fluid particles they are tracked and

the governing equation for the each particle can be solved by say Newton’s second law

of motion that F is equal to m d v by d t . So, this is what we call Lagrangian approach.

Or another approach is Eulerian approach. So, in the Eulerian approach, what happens

that one considers a control volume and look at the flow that is coming in the control

volume  and  going  out  the  control  volume.  So,  he  is  concerned  or  in  the  Eulerian

approach we are concerned with the flow that is there in the control volume. So, the fluid

that comes in, fluid goes out and the fluid that is there in the control volume. 

So,  the  flow properties  such  as  density,  viscosity  and the  velocity  and  pressure  are

studied in this control volume. And because the fluid flows, so the fluid particles that are

there  in  the  control  volume  at  time  t  may  not  be  there  at  time  t  plus  delta  t.  But

irrespective of that we look at the fluid particles that are inside the control volume; and

we do not follow a the entire follow the same particles for the entire time of study for

which the analysis is being made for the entire time period for which the analysis is

being made.



So, one example which we generally look at the considering the flow of a boat, and you

have a consider that you and your friend, so your friend is going on the boat and crossing

the river. So, if he looks at the motion and that is that if you track the motion of the

friend in his reference frame, so he is looking at that is if you follow the motion of the

friend or motion of a particular boat while crossing the river, then it is the Lagrangian

frame of reference or because you are tracking one particular boat.

On the other hand, if you consider a certain area in a river and look at what is coming in

and what is going out in that certain area or a certain volume if you consider the depth

also then that is Eulerian analysis. So, coming to the cardiovascular fluid mechanics, we

will not be looking at in most of the cases the Lagrangian approach or rather we will take

the  Eulerian  approach,  so  we will  consider  a  control  volume and look  at  the  blood

coming and going out from this control volume.
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So, another important approximation or another important assumption that is made that

fluid  is  a  continuum.  We all  know  that  each  and  every  material  is  constituted  of

molecules and atoms which are particles of very small size. So, there is always some

space between those atoms.  Now, depending on the length  scale,  we can say that  if

lambda  is  very, very  small  than  d  then  flow can be  considered  or  the  fluid  can  be

considered as continuum. So, we can describe the fluid as a continuous medium or as a



continuous field on the properties of the fluid such as pressure and velocity, they can be

considered as a field.

So, what is lambda? Lambda is the typical distance between the molecules or the fluid

molecules, so the mean free path of the molecules for a fluid is lambda; and d is the

length scale  of the problem that  you are considering.  So, there is  a  non-dimensional

number associated with it what is known as Knudsen number. So, K n is equal to lambda

by d. Now, if Knudsen number is small than 1, then fluid can be consider as continuum

and we can describe this as a continuum. 

So, all the discussion that we will have in this course we can assume the fluid to be

continuum, because the mean free path is order of few nanometres; and the smallest scale

that we will be talking about is of the order of few microns. So, we can safely consider

the fluid to be a continuum or the blood to be a continuum.
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Now, we will continuously deal with the stresses in fluids as we just while defining fluid

we  say  that  the  under  the  application  of  a  sheerest  stress  the  fluid  which  deform

continuously or the material that deform continuously as known as fluid. So, we need to

also define stress. So, stress is the measure of all forces that is acting on a volume. So, if

we define stress as sigma, sigma is  equal  to F over A - a  force per unit  area.  Now,

stresses will have a nine components; it is a second order tensor.



So, we are not going to cover the details of vectors and tensors in this, but it is strongly

recommended that you read a bit about the vectors and tensors or any student of fluid

mechanics should have a good idea about of vectors and tensors. So, they will have a

will write down this as a matrix sigma x x, sigma x y, sigma x z, sigma y x, sigma y y,

sigma y z, sigma z x, sigma z y and sigma z z. So, if you look at a typical component of a

stress, there are two subscript into it x and y. So, x is x denotes the surface on which the

stress acts; and y denotes the direction of the force.
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Now, in this  representation,  where the on a cubic element  different components of a

stresses are shown. So, it is in Cartesian coordinate system x, y and z. So, let us take one

component  here  on  this  surface,  you  can  see  that  sigma  x  x,  so  sigma  has  been

represented sigma represents here normal stress, and tau is denoted as shear stress that is

the normal convention that you will see in a number of books. So, in this case on this

surface which is an x surface having area vector a normal to it. 

And the normal stress is sigma x x; and it has on this x surface the force acting in the y

direction on the extra setting in the y direction is tau x y. Similarly, the force acting in the

z direction is tau x z. So, there are two shear stress components acting on this surface,

and one normal stress component. Similarly, on the other x component and you can see

the same thing for the other components as well.



Now, for conservation of angular momentum, it is necessary that tau y x is equal to tau x

y. Similarly, tau y z is equal to tau z y. And tau z x is equal to tau x z, so that means, that

there are only out of a nine components of a stress there are only six stresses that are

independent. So, that is just recapitulate that stresses are some of the, or they are the

measure of the forces that act on the surface. Now, pressure is a normal stress that acts

normal to a surface. 

And in  the  Navier-Stokes  equation  or  in  the  momentum conservation  equation,  it  is

taking out taken out or sometimes in computational fluid dynamic applications when we

are looking at the stresses the pressure is clubbed with the normal stresses. So, one need

to take this into account or one need to keep this into keep this in mind. So, then the

forces they can be on they can be recomposed into normal and the shear forces. So, the

normal forces are represented here by sigma, and shear forces are represented by tau.
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Now, before we discuss the two fundamental conservation principles based on which we

can calculate the unknown or the unknown quantities in fluid mechanics, the pressure

and  velocities.  Let  us  look at  the  general  conservation  principle  which  is  known as

Reynolds transport theorem we are not going to derive this in this short course, but it is

strongly recommended that till you follow any standard fluid mechanics textbook and

look at the derivation of Reynolds transport theorem. So, what does Reynolds transport

theorem states let us say W, W is any property of the system any arbitrary property of the



system and it says that the time rate of change of any such system property. So, the rate

of change of time, so how this property changed with time that is equal to the time rate of

change of a property within the volume of the interest, so how does this property. Now,

you have two w here one is capital W and one is small w.

So, capital W is the arbitrary system property or the any extensive property of the system

and small W is the intensive property of the system. So, small w is capital W per unit

mass or specific properties, so that is del over del t. So, that is time rate of change of a

property within this volume of interest. So, you can consider any control volume, let us

say the volume v and the boundary of this is represented by this area. So, this is A and A

is area is a vector, you must remember that area is a vector and its direction is outward

normal to the surface now of which area you are considering. So, the rate of change of

any arbitrary system property is equal to time rate of change of a property within the

volume of interest plus the flux of the property.

So, the flux that is coming in flux of the property out of the surface of interest or into the

surface of interest so, the total integral of the flux that is coming in or going out would

that  integral  combine.  So that  says the rate  of change of any arbitrary property in  a

control volume will be equal to that rate can be effected because of two factors. One is

that the rate of the property changes within the volume itself or the property is brought in

the system or it goes out of the system, so that makes quite sense say in general, but it is

also important to describe this mathematically and understand this mathematically.

So, if we consider that this  property W is mass of the system, then the small  w the

intensive  property  become 1.  And if  we consider  the  property  as  momentum of  the

system  then  w  becomes  the  velocity.  So,  based  on  this  one  can  derive  the  mass

conservation using a Reynolds transport theorem, one can derive the mass conservation

equation  and  momentum  conservation  equation.  And  we  might  have  one  of  this

assignment problem, but we are not going to derive it here.
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So, the mass conservation principle states that del rho over del t plus del dot rho v is

equal to 0. For an incompressible fluid, so if you look at this del rho over del t is rate of

change of density. So, for an incompressible fluid the density is constant that means del

rho over del t is equal to 0. So, we have what we have is del dot rho v is equal to 0

because  rho  is  constant.  So,  we  can  write  that  del  dot  v  is  equal  to  0  for  an

incompressible  fluid.  Now, when  blood  is  an  incompressible  fluid  generally  at  the

atmospheric temperature all the liquids can be treated as incompressible fluid. So, most

of the time in this course; we will using only this as a mass conservation fluid.

Now, when it comes that the flow is not steady even then the density does not change

with time. So, del dot v is equal to 0 is good for steady as well as unsteady flow, because

rho is anyway constant with time. Now, if you want to expand this, then del is you can

write del v x over del x plus del v y over del y plus del v z over del z is equal to 0. For a

one-dimensional equation you will have the equation as del v x over del x is equal to 0

and so on so forth so that is mass conservation equation.
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Now, before we go to describe a momentum conservation equation I would like to bring

your  attention  to  this  term what  is  called  material  derivative  or  it  is  also  known as

substantial derivative. So, that has two terms into here into it that d v over d t capital D

over D t is known as material date derivative or substantial derivative. So, the first term

del v over del t is known as local acceleration and del dot v is actually it should have

been a v dot del. 

So, that is called so far the in partial differential equation. If you have any property that

depends  on  time  as  well  as  Cartesian  coordinate,  then  it  is  a  derivative  the  total

derivative will be a with respect to del v over del t with respect to time as well as with

respect  to  the  Cartesian  coordinates.  So,  considering  the  local  acceleration  and

convective acceleration one gets the material derivative.
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So, the momentum conservation can be written as rho D v by D t is equal to minus del p

minus del dot tau plus rho z rho g. Now, this is we can expand. So, this when we write

rho out of it, then this means that flow is incompressible, we can write that rho del v over

del t plus del dot v v in the vector form is equal to minus del p minus del dot tau plus rho

g if the gravity is considered in the system. So, you can see that all the terms are vector

in this. And it is quite clear from here that this v is vector, g is a vector. The gradient of

pressure is a scalar, but the gradient of pressure will be a vector, but del dot tau is a

second order tensor and its del dot product with del will result in first order tensor; that

means, it is also a vector. Similarly, v v, it is dyadic product and it will be a second order

tensor, but there product will also be a first order tensor. So, it is a vector.

Now, in this so we have looked at the two conservation equation mass conservation and

momentum conservation equation. And in general what we will be concerned with that

we  need  to  know  the  pressure  field  or  the  pressure  distribution  and  the  velocity

distribution.  And actually if we want to know only velocity distribution that to know

velocity distribution, we need to know pressure distribution or other way around.

So, this is the momentum conservation equation. Now, in this what we need is we have

two unknown pressure and velocity. So, if we look at pressure one unknown and velocity

as a vector so two unknowns. And we have two equations one is a mass conservation

equation, and another is momentum conservation equation. So, in principle using these



conservation equations and the appropriate boundary condition, one can solve for the

fluids, but we have a unknown here or we have a new term here which is tau shear stress.

So,  before  we  solve  these  equations,  we  need  to  close  tau  or  we  need  to  find  a

relationship for tau in terms of velocities which is called constitutive equation and that

comes from rheology or and one of the most common example for many fluids is what is

known as Newton’s law of viscosity.
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So, Newton’s law of viscosity relates tau and shear rate which is sometimes represented

as gamma dot or one can say that for one-dimensional flow del v over del y. So, if over a

surface, there is a flow then the shear stress tau can be written as minus mu del v this is x

direction and this is y direction del v x over del y. Now, if we want to generalise this. So,

the generalised Newton’s law of viscosity is given as tau or the stress tensor is equal to

minus mu del v plus the transpose of velocity gradient plus 2 by 3 mu minus kappa del

dot v del.

Now, mu is the dynamic viscosity of the fluid, and kappa is called dilatational viscosity

which is often zero for monatomic gases. And we have just seen that del dot v is equal to

0 for liquids in general which because the liquid is incompressible fluid. So, this term is

often zero in the fluid mechanics and at least the problems that we are going to consider

for the flow of liquids because the blood is a liquid. So, this term is going to be 0. So,

looking at the say some components of stresses tau x x or if you want to see say this in



the normal stress term, then it can be sigma x x is equal to minus 2 mu del v x over del x

and tau x y is equal to minus mu del v x over del v y over del x plus del v x over del y.

What I would like to bring your attention here that the viscous stresses can be normal

stress also; it is a different matter because the del v x over del x term is often smaller

than the del v y over del x term. So, the gradient in the same direction are smaller than in

the transfers direction, so that is why tau x x or del the normal stresses components are

often neglected in our analysis as we will see in the later classes.
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So, if we substitute this Newton’s law of viscosity, and then we will end up with rho d v

by d t minus del p minus mu del 2 v plus rho g here. So, this is Navier-Stokes equation.

And the first term is known as the acceleration term, and it has combination as we have

just for the definition of material derivative. It is the combination of local acceleration

which  is  with respect  to  time  and the  convective  acceleration.  And del  p  is  the  the

pressure gradient or you can say it is a pressure term. 

This is called viscous term. And as we know that viscosity is also diffusivity or it is

momentum diffusivity because of the viscous properties of the fluid the momentum is

diffused in the fluids or between two fluids layer. So, it is also in general called it can be

known as diffusion term and any other forces whereas the gravity is the general body

force, gravity is the usual body force, but one can also have other body forces here. So,

this is the body force.
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So, in summary what we have looked at today is a some basics of fluid mechanics which

are prerequisites or which are require to understand; the problems that we solve later in

the course for the fluid mechanics course. We will  also look at  some basics of solid

mechanics in a small lecture. So, what we have looked at today is that what is a fluid?

And fluid can be treated as continuum then we have looked at very briefly Eulerian and

Lagrangian  description  of  fluid,  then we have  also looked at  the  Reynolds  transport

theorem and mass and momentum conservation equations.

So, thank you.


