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Lecture – 11
Pulsatile Flow Continued...

In  this  lecture  we  are  going  to  continue  pulsatile  flow. In  the  previous  lecture  we

discussed about pulsatile flow in rigid tubes. So, we suggested there that as the flow is

pulsatile in the cardiovascular system, and any pulsatile the flow is pulsatile as well as

periodic. So, as the flow is periodic and from the Fourier series, any periodic function

can be decomposed in a infinite number of sinusoidal functions or sinusoidal harmonics

in infinite series of a constant term plus sine and cosine terms and we need to find out the

coefficients  of  this  sine and cosine  terms  and the  constant  term for  which  there  are

standard methods using Fourier transform.

So, the objective then reduce to understand the pulsatile flow, when the pressure gradient

is  sinusoidal in nature and we consider the rigid tube for a fully developed flow we

derived the solution  or the relationship  between velocity  and pressure gradient  for  a

sinusoidal pressure gradient.  And we did it  in terms of when the time dependence is

exponential in terms of complex numbers ok. So, in this lecture we are going to continue

where we left in the previous lecture and discuss few more characteristics of pulsatile

flow in rigid tubes.
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The solution that we obtained we called it Womersley solution after doctor Womersley

who looked at the pulsatile flow in rigid tubes and derived a number of relationships for

it.

So,  the relationship  what  we see here is  for we said that  the velocity  v z  will  be a

function of v z cap, which is a function of r and the time dependent per term e to the

power i omega t now the v z cap and similarly the relationship between the pressure

gradient the time dependence of pressure gradient was del p by del Z is equal to del p cap

over del Z e to the power i omega t.

Now this equation gives the relationship between the v z cap and del p over del z for all

values  of Womersley number. So,  just  to recap Womersley number is  equal  to alpha

square is equal to a square omega over nu and it is the ratio of transitional or transient

inertial  force  and  the  viscous  force.  So,  in  this  equation  what  we  see  is  these  are

functions of these J 0 and J 0 is Bessel function of first kind. So, we need to a recap or

we need to just remind ourselves what Bessel function is what is the series representation

of Bessel function how does the graph of a Bessel function of first kind look like, and

then some properties which we might require to obtain the shear stress or to obtain the

flow arte in pulsatile flows from the Womersley solution

So, let us look at the Bessel function of first kind.
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And the series representation is that you have J n x where n is for any number n can be

any harmonic and k is equal to 0 to infinity minus 1 to the power k. So, it is a infinite

series and k is a representing each term minus 1 or to the power minus 1 to the power k

factorial  k of factorial  and plus k x by 2 to the power 2 k plus n. So,  what we are

concerned is or we are we are concerned about is J 0. So, we will write that J 0 x is equal

to sigma k is equal to 0 to infinity, minus 1 to the power k and factorial k will be square x

by 2 exponent 2 k because n is equal to 0 now this is J 0 x.

So, if we want to find out say value of J 0 at 0 or let us just expand it first a bit let us

write few terms. So, we will see that J 0 x is equal to for k is equal to 0 this is 1 this will

also be 1 everything is 1 minus 1 to the power 1. So, that is 1. So, 1 over and k is 1. So, 1

into x by 2 square plus when k is equal to 2 we will get term 1 divided by 2 square; that

means, 4 x by 2 4 and so, on. So, we can see that the value of J 0 at x is equal to 0 will be

1 as we can see from this graph, and then the graph goes into the negative direction and

then it oscillates in the magnitude of this oscillation we can see that it comes down ok.
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So, 2 important properties of Bessel functions we can obtain these properties by looking

at the properties of the Bessel functions these 2 equations. So, J minus n x is equal to

minus 1 exponent or minus 1 to the power n J n x,  and the other property between

relationship between J n x the derivative of J n x and J n x and J n minus 1 x. So, let us

take if n is equal to 0, then what we will have is x J 0 dash x is equal to this term is going

to be this term is going to be 0 because n is equal to 0. So, we will have x J minus 1 x,

but from this relationship we have that J n, J minus 1 x is equal to minus J 1 x. So, we

will have x minus x J 1 x. So, this basically give us the relationship between we can

cancel out x from all and we have that J 0 dash x or the derivative of J 0 with respect to x

is equal to minus J 1 x.

Do we might require this later on, now for n is equal to 1 if we substitute 1 here in the

first equation then we will get x del J 1 x divided by del x is equal to minus J 1 x plus x J

0 x. Now we do a bit of recifal of terms. So, we can put a plus here and this becomes

equal. So, from this let us look at this, this is a derivative of x J 1 x that is equal to x J 0

x. So, you can say the derivative of x, x the second term is differentiated J 1 dash x plus

the differentiation of x is 1 and then J 1 x. So, we might want to say this explicitly here

that J dash x means del J n x over del x. So, we have obtained 2 important relationships

here which we might require to use further ok.
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So, we have obtained a relationship between the velocity and pressure gradient. We have

obtained the velocity profile, but often when we are looking at flow in the pipes we need

to obtain the characteristics of the average velocity or the average velocity or flow rate.

So, let us obtain the flow rate. The flow rate is Q is equal to integral 0 to a, where a is the

radius of the channel 2 pi r d r multiplied by v z ok. And you might we have the velocity

profile here. So, if we substitute that velocity profile then we will require to integrate it

the terms which are independent of r, they can come out of the integral sign.

So, we will have i over rho omega del p over del Z, p cap and the exponential term time

dependence e to the power i omega t plus we also have 2 pi here all of this is independent

of r. So, it can come out of the integral sign then we have integral 0 to a 1 minus J 0 i to

the power 3 by 2 alpha r over a divided by J 0 i to the power 3 by 2 alpha into d r

remember that  i have included the r  term here.  Now if  we write this  down again in

integrate Q is equal to 2 pi i over rho omega del p cap over del z, exponential i omega t

the first term when we integrate multiply with r. So, r the integration will be r square by

2 and when we put the limits we will end up with a square by 2 minus integral of limits

from 0 to a J 0 i to the power 3 by 2 alpha r over a divided by J 0 i to the power 3 by 2

alpha d r.



Now, i the again there is a r here, you might notice that this term is independent of r. So,

it can. So, also be taken out of the integral sign. So, now, the objective is to find out this

integral.
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So, let us try to find out this integral and we will see that integral 0 to r. So, we can take

the denominator term outside, because it is independent of r 1 over J 0 i to the power 3

by 2 alpha. Now what we can do, we can assume because this if you remember what we

had assumed earlier that i to the power 3 by 2 alpha over a into r is equal to s. So, we can

do a change of variable here. If we do that then we also need to do the change of variable

for d or differential terms. So, d s is equal to i to the power 3 by 2 alpha d r over a. Now

if we substitute in place of r. So, we have s over i is to the power 3 by 2 alpha over a

which is for r, now J 0 and this entire term is s and again d r is d s over i to the power 3

by 2 alpha and this becomes a square. So, we can say that we can get rid of all this here

and just a square here now all this is independent of s.
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So, we can bring this here and this will be a square over i cube alpha square J 0, i is to

the power 3 by 2 alpha we need to also work out the limits. So, integral 0 to r is equal to

it should be small a, because we are using a for the radius. So, i to the power 3 by 2 alpha

a over a. So, that will be 1 these are the limits integral 0 to i to the power 3 by 2 alpha s J

0 s d s.

Now, we had just seen the relationship in the previous slides that x J 0 x is equal to d by

d x of x J 1 x. So, what we are going to do? When we integrate it this equation we will

get this a square i cube alpha square J 0 i to the power 3 by 2 alpha and s J 1 s at s is

equal to i is to the power 3 by 2 alpha. So, let us substitute this and what we are going to

get is a square divided by i raised to the power 3, alpha square J naught i raised to the

power 3 by 2 alpha and for s if we substitute i raised to the power 3 by 2 alpha J 1 i

raised to the power 3 by 2 alpha and we will get a square divided by i raised to the power

3 by 2 alpha, because this will cancel out and the ratio of J 1 of i raised to the power 3 by

2 alpha divided by J 0 i raised to the power 3 by 2 alpha remember this was an integral in

a bigger expression.
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So, if we substitute that expression we are going to get the flow rate to be i pi a square

which is the cross sectional area of the channel, divided by rho omega this is the pressure

gradient and this term inside the bracket. So, as you might notice that this is a complex

term  and  we  need  to  obtain  its  magnitude  and  phase  angle.  So,  if  rep[resent]-  we

represent this term as x 1 plus i x 2 and remember that e to the power i omega t is equal

to cos omega t plus i sin omega t and we have another i here. So, we can substitute that i

here and from that we can reduce this into one. So, we can have multiply x 1 i x 2 into

this.
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So, we can get what is the magnitude of Q and that will be pi a square by rho omega del

p over del z root of x 1 square plus x 2 square, and if i is the angle phase angle; then we

will get tan phi is equal to x 1 over x 2. So, this is the magnitude of the flow rate and this

is the phase angle so where phi is the phase angle between the pressure gradient and the

flow rate?

You might recall from yesterday’s analysis that at small Reynolds number the flow rate is

same as in a poiseuille flow, and the phase angle or the between the phase angle between

the 2 is 180 degree whereas, for large Reynolds number the phase angle is about 90

degree between the 2.
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So, what we have looked at based on the velocity profile till now we have obtained Q or

the flow rate now we will try to obtain tau, which is the wall shear stress tau w and the

formula for this is equal to minus mu del v z over del r at r is equal to a. So, again we

have the velocity profile here, from this velocity profile we want to obtain wall shear

stress which is the derivative of this. So, to obtain wall shear stress we will differentiate

the velocity term.

So, it will be minus mu multiplied by i over rho omega del p over del Z exponential i

omega t, which is the time dependent pressure gradient. The first term in this bracket

because it is a constant it is not dependent on r. So, that will be 0 and there will be a

minus sign. So, that minus and minus they will make plus. So, we can just get rid of this



sign here and then 1 over J naught i to the power 3 by 2 alpha, this is also independent of

r and what we are left with is d by d r of J naught i to the power 3 by 2 alpha r over a.

And we had derived earlier that the derivative of J naught x is equal to minus J 1 x. So,

the derivative of J naught is minus J 1 x. So, if we can substitute that here and tau w is

equal to mu i over rho omega del p over del z we can write this in terms of capital e to

the power i omega t, 1 over J naught i to the power 3 by 2 alpha.

Now, that the derivative of this will be minus J 1 i to the power 3 by 2 alpha r over a, and

i to the power 3 by 2 alpha over a. So, the wall shear stress is we have alpha over a. So,

finally, when we do the algebraic calculations, the final relationship that we will obtain is

minus a over i to the power 3 by 2 alpha del p over del z we will write this in terms of

exponential term. 

So, del p over del z e to the power i omega t, J 1 remember that this will be at r is equal

to a. So, this a and a will cancel out. So, that will be sorry J 1 i raised to the power 3 by 2

alpha over J 0, i to the power 3 by 2 alpha this is the final value what we have just

written and this del p by del z is written in terms of time dependent it is.
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Another important relationship is viscous impedance, which is the ratio of del p over del

z which is the pressure gradient and the flow rate. So, the viscous impedance is equal to

pressure gradient and the, and the ratio of flow rate. So, if we look at this relationship we



can easily find out that Z L is equal to del p over del z which is this term. So, this is Q

and what we want to do is del p over del z divided by Q. So, that will be rho omega by i

pi a square into 1 over 1 minus 2 over i to the power 3 by 2 alpha J 1, i raised to the

power 3 by 2 alpha divided by J naught i raised to the power 3 by 2 alpha. 

So, this is the viscous impedance term and again we will have the magnitude of J l here Z

L here and that will be and there, will be a theta term which will be the phase difference

between the pressure gradient and flow rate, and this is quite handy in calculations of the

work that is done in the system for the flow or for the pulsatile flow to happen.

So, in the previous class or in the previous look lecture we looked at what is Womersley

number.
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And Womersley number is the ratio of transient inertial force and the viscous forces. We

also said in the previous class that Womersley number which is. So, it is ratio of alpha

square is equal to a square omega over nu or it can be represented as a over nu over

omega raised to the power 1 by 2. So, the velocity of the flow oscillates, but is always 0

on the wall. Even though when the flow is pulsatile there is always no slip boundary

condition at the wall; that means, for a viscous flow the velocity near the wall is going to

be 0 and there are going to be velocity gradients near the wall.



So, where the viscous force dominate whereas, in the layer just next to the wall. So, if

you  have  the  channel  here  and  after  some  distance  from the  wall  where  you  have

gradient and then, beyond that distance let us say that this distance is delta where viscous

force is dominate. And after this the velocity is oscillating and where the transient inertial

forces are dominating and that is where you see the more change of transient effects ok.

So, as we move from this distance towards the wall, the viscous force will be dominating

and as and as move away from here, the transient force becomes more important. So, at

this distance what we call the transient boundary layer the 2 forces are equally important.

So, what is the transient inertial force, that is we can say that it is equal to rho del U by

del t. So, a magnitude will be rho U divided by say t si proportional to 1 over omega. So,

1 over omega. So, this force will be rho U omega.

And the viscous force will be mu U by delta square because it is it comes from mu del 2

U by del r 2. So, if we substitute that a from a from dimensional analysis and at delta we

will see that rho U omega is of the same order of magnitude as rho mu U by del square.

So, that gives us u and u cancel out and they gives that delta square is equal to mu over

rho omega or nu over omega. So, from this we get the relationship that delta is equal to

nu over omega to the power 1 by 2. So, what we are trying to say here that, the thickness

of this  oscillating boundary layer can be obtained by the comparison of the transient

inertial force and the viscous force at the boundary layer thickness or at the at the just the

extend where the boundary layer is. So, from this we can obtain the boundary layer and

we can show that alpha is the ratio of a, which is the cube radius and transient boundary

layer thickness.
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Now, we will look at some of the typical values of alpha square or Womersley number

that we encounter in general. So, we know that alpha is equal to a alpha square is equal

to a square omega over nu. So, let us find out what are typical a omega and nu as the

radius of the channel vary in a system. So, we will have different radii, but omega and nu

are going to be same for one system. 

So, the typical value of omega we know that 72 the heart beats 72 times per minute. So,

from that we can calculate omega is equal to 2 pi over time period and time period is for

1 b at it is 60 divided by 72. So, that will come out 144 pi divided by 60 and that number

will be about 7.55 ok

Next we will calculate the kinematic viscosity, which will be omega sorry mu over rho

and the typical value of the blood viscosity is about 3.5 centipoise. So, if we change that

centipoise into s  i units  3.5 into 10 to the power minus 3 k g per meter per second

divided by rho, which we will take about 10 to the power 3 k g per meter sorry this is k g

per meter cube and so, that will be of the order of 3.5 into 10 to the power minus 6 meter

square per second.

Now we will  look  at  for  say  aorta  the  radius  is  the  diameter  of  aorta  is  about  2.5

centimetre. So, radius is about 2.5 divided by 2 into 10 to the power minus 2 meters. So,

alpha is equal to root of omega over nu into a. So, let us work out this number a root of

omega is 7.55 divided by nu which is about 3.5 into 10 to the power minus 6. So, what



we will have roughly root 2 this number is will be more than 2, but for the simplicity

sake let us say that this is root 2 into 10 to the power 6 that the square root of 10 to the

power 6 will be 10 to the power 3 into a. So, a is in meters for this to be true. So, for

aorta this will be 1.4 which is about root 2 value into 10 to the power 3 into 1.25 that is

2.5 divided by 2 into 10 to the power minus 2. So, what we will get is this number is

about 17 or 18. So, the order of magnitude of alpha in aorta is about 18 and because

omega and nu are going to became in the cardiovascular system. So, that is the about the

maximum value of alpha, that will be there in the circulatory system.

If we look at the capillary system, which will be the say minimum size of the channel.

So, in the capillaries let us say alpha capillary and this will be 1.4 into 2 to the power 3

and a capillary the radius of capillary will be about say 5 microns. So, 5 into 10 to the

power minus 6 meters into 1.4 into 10 to the power 3 into 5 into 10 to the power minus 6.

So, that will come out about 7 into 10 to the power minus 3 or roughly we can say that

about 10 to the power minus 2. 

So, this Womersley number is going to be very very small; that means, the viscous forces

are dominating in this case and the transient inertial force is neglected. So, that is why

the transient forces are not very important in the a small channels ok. So, now let us look

at some of the velocity profiles in the channels.
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So, these velocity profiles have been plotted for 4 different ha values of alpha 3.34, 4.72

5.78, 6.67 and in these 4 cases the velocity profiles have been plotted for different values

of omega t ranging from this the first profile here is for omega t is equal to 0 then omega

t 15, omega t 30 and so on so forth up to 180 and you might notice that after 180 the

profile has become inverted in all the cases the profile has become inverted. So, 180 to

360 the profiles will be same, but inverted that 180 plus 5 ok.

Ah another thing that you should notice here, that at low values the profile is parabolic

there are large gradient in the centre, but as the Reynolds number or as the Womersley

number increases, the flow profile becomes flatter in these cases here. So, all these have

been plotted for pressure gradient, when the pressure gradient vary as del p over del z cos

omega t ok. So, you can see or you can easily make out the thickness of the boundary

layer that the thickness of boundary layer reduces as alpha increase ok. Boundary layer is

where there is a change in the velocity gradient near the wall and we can easily make out

in all these cases decrease ok.
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So, another question that we might come across that often sometimes or many students

have this perception that, if the flow is transient or if the flow is time dependent then is it

laminar or not or being time dependent does it directly mean that the flow is turbulent. In

another misconception what people think is that if there is recirculation in the flow; that

means, if you have some kind of vertices in the flow then people tend to think that the



flow is turbulent in nature, but these are 2 different thing the turbulence have eddies of

different length scales starting from very small scale what we call Kolmogorov length

scale to the largest possible length scale in the system.

However just the presence of eddies does not mean that the flow is turbulent. So, the

question  comes  how  one  can  define  or  how  one  can  think  about  or  how  one  can

determine that the flow is turbulent. So, the turbulence is defined by random fluctuations

in the flow velocity. So, the key here is the fluctuations that are random, they are they do

not follow any pattern the fluctuations in the velocity and consequently in the pressure

they are they are random fluctuations in the flow velocity. 

So, one cannot determine with precise absolute precision it is not possible to determine

the velocity field in turbulent flows; however, there is an order in this randomness also,

and the statistical feature of the turbulent flow can be well defined ok. So, the question

that we are trying to look at here is that is the pulsatile flow that we have is turbulent or it

is laminar or something in between.
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So, let  us look at  this  experiment  first,  this  is  the first  famous Reynolds experiment

image and it  has  been taken from funks book. So,  when the flow is  laminar  at  low

velocities the dye that was injected at the inlet, it moves just in that line whereas, when

the flow become turbulent or from there is transition, the dye is start to defuse in the

entire channel and this is fully turbulent flow, where you see that dye is defused, but



what I want you to notice here that, even in the turbulent flow the flow does not become

turbulent just at the entrance.

It takes some times for the eddies to develop, for the eddies to grow, and for the flow to

become turbulent and this has a consequence in the pulsatile flow.
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So, this image is velocity with respect to time for a pulsatile flow. So, as an this dotted

line is the this line corresponds to the Reynolds number and this Reynolds number is

based on the velocity scale which is the average velocity in the channel cross section. So,

this dotted line corresponds to Reynolds number 2300, which is considered as the critical

Reynolds  number at  which  in  a  smooth pipe the  steady laminar  flow transits  or  the

laminar flow starts becoming turbulent or the transition starts happening.

So, you might see here from this that as the velocity grow and the flow remains laminar

for  sufficiently  higher  value  of  Reynolds  number,  before  it  becomes  turbulent;  that

means, before the fluctuations in the velocity become random. So, what does this suggest

that, in an accelerating flow where the velocity of the flow is growing because it takes

some  time  for  the  fluctuations  or  the  eddies  to  grow  or  turbulence  to  set  in  the

accelerating  flow is  more stable  than the steady flow at  the  corresponding Reynolds

number. So,  the transition Reynolds number for an accelerating flow where the flow

velocity is increasing is higher.



Similarly, if you look at this end where the flow is decelerating flow velocity decreases.

So, because the turbulent eddies they have to die down and they do not die down just

then and they are it take some time for the turbulent eddies to down the die down. So, the

flow will half well below through Reynolds number of 2300, the flow remains turbulent

and then slowly die down ok.

So, this  is  one important  conclusion in terms of turbulence in pulsatile  flows. So, in

summary what we have looked at in including both the lectures in pulsatile flow that one

of  the critical  Reynolds  number  or  the critical  parameter  which  is  important  for  the

pulsatile flow in rigid tubes is Womersley parameter or you can also call it a transient

Reynolds number or the square of Womersley number can be called transient Reynolds

number. So, this is ratio of transient inertial force and viscous force then the Womersley

solution.
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So, we looked at the flow of a periodic flow time dependent periodic flow in a rigid

channel and obtain the solution and from that we also obtain the flow rate and pressure

gradient and it is a function of it because it is a function of it has Womersley solution

Bessel’s  function.  So,  we  also  looked  at  the  Bessel  function  of  first  kind  and  its

properties. And we briefly discussed about the pulsatile flow and turbulence that is the

flow always turbulent, when the flow is pulsatile or not ok. So, with that we will end this

lecture.



Thank you.


