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Pulsatile Flow

In this lecture we will be looking at the pulsatile flow, as we know that the flow in the

cardiovascular system is pulsatile we have in on an average in a healthy human being

about  that  the  heart  beats  about  72  times  per  minute.  So,  the  flow  process  or  the

circulatory process repeats itself about ones per second, the frequency is about ones per

second ah. So, the flow is not steady as is assumed in the poiseuille flow for example,

rather it the the pressure gradient or the pressure that drives the flow in the circulatory

system it  changes  almost  every  second  and it  is  periodic  in  nature.  So,  the  flow is

pulsatile and periodic. So, in order to understand or in order to study the flow in the

cardiovascular system it is important that we understand and we know what is the flow in

a, the pulsatile flow in a rigid channel for example, so that is what we are going to study

in this lecture ok.

(Refer Slide Time: 02:00)

Now, what we see in this graph here is the pressure gradient d p by d x verses time; this

is a typical pressures verses time diagram in the circulatory system. So, the pressure goes

through certain changes the it peaks first the pressure gradient is highest first and then



there is a dip and then again a bit increase and then again and then the process repeat

itself.  So,  the  pressure  gradient  is  pulsatile  the  pressure  is  pulsatile  in  nature,  it  is

periodic in nature, it is time dependent, it is not steady and same goes for the pressure

gradient.

So, we need to study that because the flow is driven by the pressure gradient in the

circulatory system and the pressure and the pressure gradient, they are time dependent,

they are pulsatile, they are periodic. So, the associated flow is also going to be pulsatile it

is going to be periodic in nature and it will be time dependent. So, while this graph is

periodic in nature it is of course, time dependent, but by just looking at the graph we

cannot guess the function or time dependent function that the pressure follows. 
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So, here we might recall from our under graduate classes that any periodic function say f

t which has a time period of T it can be represented as a sum of one constant term and a

fundamental of period T and its harmonics. So, a periodic function can be represented as

a sum of f t can be represented as a constant. So, let us say this constant is A 0 plus some

cosine terms, let us say A 1 cos omega t plus A 2 cos 2 omega t plus. So, on plus B 1 sin

omega t plus B 2 sin 2 omega t plus. So, on where omega is the frequency then the unit is

radian per second, it can be 2 pi over t where t is the time period. So, now, this any signal

which is periodic and time dependent that can be represented as the sum of a constant

term plus sin and cosine terms and these constants A 0, A 1 ah, A 2, B 1, B 2 they can be



evaluated  by  different  methods.  So,  one  of  the  methods  is  where  for  example,  one

calculates that A 0 is equal to 1 over t integral 0 to t f t d t and similar terms for A 1 and B

1 there you will have 2 by t 0 to t f t sin omega t d t and so on so forth ok.

So, the point I am trying to make here is that a periodic signal which is arbitrary can be

decomposed into sinusoidal or and sin and cosine terms. Now, this sin and cosine terms

the  coefficients  of  these  sin  and  cosine  terms  can  be  obtained  ah  by  using  fourier

transform.
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Now, as you might remember that sin and cosine terms can be also represented as a

complex exponential terms. So, you can write e to the power I theta is equal to cos theta

plus I sin theta. So, for differentiation and integration purposes it is easier to represent

the fourier series in terms of exponential term, you can write e to the power I theta is

equal to cos theta and I sin theta and. So, let us say that the pressure gradient del p over

del z can be represented as sum of a n which is a coefficient in to exponential term e to

the power I n omega t where n is an integer which value will change from 0 to infinity at

n is equal to 0 the first term will be constant and e to the power I n omega t. So, a n will

be ah, a n minus b n if you want to relate it from the previous terms. So, the pressure

gradient can be represented as the sum of different harmonics are n is equal to 1, 2, 3, 4

for a can be represented as a sum of the harmonics. So, our target or our goal here now is

to understand or to obtain a relationship for pulsatile flow where the pressure gradient is



say exponential and the del p by del z is, del p by del z constant and into a function of

time which is exponential function ok.
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So, we will start with the conservation equations that we have been doing as of until

now, the mass conservation which is also called continuity, momentum r theta and z. So,

you see they are all in cylindrical coordinates and the stresses the equation has been

written in terms of stresses, we will assume the flow in a cylindrical tube and flow is in

the  axial  direction  ah.  So,  the  flow is  going  to  be  axisymmetric  and  when  flow is

axisymmetric; that means, v theta is equal to 0 and the terms the gradient of the variables

in the theta direction will be 0. So, this will end up that we will not have any term in the

theta coordinate and the respective or the v terms containing v theta or del by del theta or

the gradient in the theta direction will be eliminated in the equations r and z directions

also.
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So, we will end up this set of equations for the axisymmetric, continuity r and z and ah.

So, this continuity equation we have only 2 terms del v by del z and the radial term and

similarly and r and z directions, now we assume at this point that flow is fully developed.

So, if the flow is fully developed then we might recall that del v z by del z that is the

gradient of the axial velocity in the axial direction is 0 or the velocity profile does not

change along the axial direction.

So, if del v by del z is equal to 0 then from here we can see that v r is also going to be 0

or if we assume v r is equal to 0. So, if v r is equal to 0 then this term is going to be 0 and

del v by del z is equal to 0. So, we have 2 conclusions from here that the flow is fully

developed and v r is equal to 0. So, we are going to neglect the terms remember that v r

is equal to 0. So, this is 0 this term is also 0, v z is there ah, but v r is equal to 0. So, this

term is also 0 now because this term has v r. So, this term will go to 0 and this term will

also go to 0. So, effectively what we are left with by is minus 1 over rho del p by del r is

equal to 0 where rho is non 0. So, we will have del p by del r is equal to 0, in this the z

momentum equation we have del v by del z del t. So, it will be non 0, but this term will

be gone because v r is equal to 0 again the flow is fully developed. So, this term is 0 this

term will be there, but again del v by del z del v z by del z is equal to 0. So, this term will

also be 0.
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So, now, we will have our momentum equation in the r direction which is del p by del r

is equal to 0. So, that simply tell us that p is independent of, r p is not a function of r and

p is anyway not a function of theta, p is a function of time and p is a function of the axial

direction.  So, p is a function of time and p is a function of z and for the z direction

momentum equation we have del v z over del t is equal to minus 1 over rho del p by del z

nu, 1 over r del by del r r v del r del v z by del r. So, there are 3 terms this is transient

term, this is pressure gradient term and the third term is the viscous term.

So, effectively now we are left with the reject term let us non dimensionalise the terms in

this  v  z  momentum equation  and the  scale  for  non dimensionalisation  let  us  take  a

velocities scale v to non dimensionalise velocity, the both the length or the distance terms

r star and z star r non dimensionalise by the channel radius. So, r by a z by a p star,

pressure will be non dimensionalise by the dynamic pressure rho v square and t is non

dimensionalise by the time step or say frequency.
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So, it is omega t now we substitute this in the equation, then what we will get is del v z

star and it will be multiplied by v divided by del t star and it will be omega will come

from here is equal to minus 1 over rho del p star. So, because of p star you will have rho

v square term there divided by del z star. So, for z star it will be multiplied by a plus nu

lets collect all the terms of a here ah. So, we will have 1 over r star and there will be 1 a

for r star, del by del r star and this will be a square into there will be 1 a for r in the

numerator and in the another a for r in the denominator. So, we will have both of them

cancelling out. So, we will simply have r star del by del r star now for v z we will have v

z star and 1 v here.

Let us now eliminate some of the terms. So, we can make this 1. So, we can multiply by

a square over nu v, if we do that then we will have first term as omega v will cancel out

omega a square by nu into del v z star over del t star is equal to. So, when we multiply

this by nu rho and rho will cancel out a square. So, there will be only one a because 1 a

will cancel out and only 1 v divided by nu. So, you might have recognised this non

dimensional number by now and this is multiplied by there is a minus sign here, del p

star by del z star plus nu square a square by nu v and this will be 1. So, we will have

simply 1 over r star del over del t star, r star del v z star over del r star ok. So, we can see

that there are 2 non dimensional group whereas, this is r e or Reynolds number and this

group is a new dimensionalise group which is known as womersley number ok.
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So, womersley number if we look at it is represented by alpha square, this alpha square is

equal to omega a square by nu as we have seen in the non dimensionalisation of the

differential equation and if we rearrange it then it terms out that it is a omega into a by

nu. So, a omega is a velocity scale and a is the length scale and nu is the kinematic

viscosity. So, it resembles a Reynolds number and this velocity scale is the oscillatory

velocity. So, it is the ratio of inertial forces and viscous forces, but this inertial force is

the oscillatory inertial force and the viscous force. So, this is not flow this is force you

can also rearrange it alpha is equal to a over ome[ga]- nu over omega, sorry this should

be nu over omega and this is you might see that nu over omega the units there, nu is

meter square per second and omega is also one over second. 

So, second over will cancel out and nu over omega is equal to meter square. So, this nu

over  omega  power  0.5  is  going  to  be  meter  and  this  is  oscillatory  boundary  layer

thickness. So, alpha is also a ratio of the channel radius and the boundary layer thickness.

So, that says that, at low womersley number the viscous effects are going to dominate

and the boundary layer is going to be thick whereas, at large womersley number, the at

large womersley number the boundary layer will be thin and alpha will be large. So,

when alpha is large boundary layer is thin viscous effects are negligible we will come

back to this.
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So, anyway after non dimensionalisation if we go back to our equation this equation has

been written again in this form alpha square del v z square over del t star del v z star over

del t star is equal to minus r e Reynolds number del p star by del z star, plus 1 over r star

del over del r star r star del v z star over del r star one might be worrying about the that

the Reynolds number is generally dependent on or defined in terms of the radius. So, one

can do that and then there will be a 2 term coming in picture there. 

So, as I was talking about that if alpha square is small then in that case the viscous term

will be significant, but when the alpha is small and it is less than one then alpha square

will be further small and this term will go away; that means, at low Reynolds number it

is not this term is 0. So, you will have that the pressure gradient term it the pressure

gradient term and the viscous term they will balance each other whereas, if the inertial

force is high or the womersley number is large in that case the viscous force will be

negligible or the viscous term. 

Sorry, the viscous term will go away, you can take this on this side and then one can see

that the viscous term will go away and the viscous term goes away then the transient

inertial  term or  the oscillatory  inertial  term that  will  be balanced by the pressure or

pressure gradient will be balance by the inertial force or the transient inertial force. So,

ok
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Now, our objective is to understand or to find out a relationship between the pressure

gradient and flow or say axial velocity because v theta is equal to 0 and v r is equal to 0.

So, the only direction in which velocity is non 0 is the axial direction. So, then we can

integrate it to find out the flow rate ah. So, we our objective is to find out that what is the

flow rate;  The  relationship  between  flow rate  and  the  pressure  gradient?  So,  let  us

assume a harmonic pressure gradient that del p by del z is equal to del p cap by del z e to

the power I omega t and we because the pressure gradient is harmonic. So, the force

coming from this let us assume the solution is v z is equal to v z cap I omega t. So, our

objective is to find out this v z in terms of the pressure gradient ok. So, first we will look

at the 2 asymptotic cases, the first one where the womersley number is small.
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So, as we discussed just few minutes back that at low womersley number when alpha is

small; that means, the inertial term is negligible. So, when we neglect the inertial term

what we will end up with that the pressure gradient is balanced by the viscous term. So,

this term will go away and we will have del over del r of r del v z over del r, is equal to 1

over rho into nu which will be mu the dynamic viscosity into del p over del z we have I

think missed one r here. So, 1 over r when it goes here it becomes r here.
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Now, we substitute that del p by del z is equal to del p cap over del z e to the power I

omega t and similarly for v z. So, we can also substitute v z is equal to v z cap e to the

power I omega t we substitute both of this in this equation then we will get del over del r,

r v z cap over del r because e to the power the exponential term does not depend on the

radius. So, we can take this out of the differentiation equal to r over mu, del p cap over

del z e to the power I omega t now because the exponential terms they can cancel out.

So, we will just write this and integrate it and what we will get is r, del v z over del r is

equal to we have miss a this is correct r del v z over del r is equal to r square over 2 mu

del p cap over del z plus a integration constant let us say c 1, now we take this r on the

other side.

(Refer Slide Time: 30:16)

So, let us delete this and this will go away and we will have c 1 by r now this, c 1 has to

be 0, as del v z over del r is finite at r is equal to 0. So, if we substitute that then c 1 is

going to be 0. So, this term will go away and then we further integrate it. So, we will get

v z is equal to r square over 4 mu del p cap over del z plus c 2. So, v z is equal to r square

by 4 mu del p by del z plus c 2 and now we use the boundary conditions.
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So, we had v z cap is equal to r square over 4 mu del p cap over del z plus c 2, we need

to find c 2 and the boundary condition, no slip boundary condition on wall which says

that at r is equal to a which is wall v z cap is going to be 0.

So; that means, this is 0 and a square by 4 mu del p cap over del z plus c 2, if we subtract

these the this equation let us say equation b and equation a and if we do b minus a then

we will end up with v z is equal to minus because it will be minus. So, we will do b

minus a, b v z is equal to minus 1 over 4 mu, del p cap over del z and a square minus r

square. So, if we substitute this in v z if remember we had v z is equal to v z cap e to the

power I omega t. 

So, we will have v z is equal to minus 1 over 4 mu del p over del z a square minus r

square into e to the power I omega t. Now, you might see because of this negative sign

ah you can  say that  v  this  term and this  term they make  the  pressure  gradient.  So,

because of this minus sign v z and del p by del z or the flow velocity and the pressure

gradient they are out of phase 180 degree out of phase.
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So, they are completely opposite this is the relationship that we just derived and if we

plot del p by del z which will be a say sinusoidal function that is 0.5 t by t it is minimum

and then it is say 0 at this now the. So, it is at d p by d z is equal to 0 it is 0 and then it is

maximum at t by t. So, it is going to be sinusoidal function anyway. So, at the minimum

when d p by d z is minimum it is negative minus one then at that point you will see that

the velocity is in the forward direction and parabolic velocity profile when obtains.

When d p by d z is maximum; then, the velocity is in the negative direction and the entire

velocity  is  negative at  every point  whereas,  when d p by d z is  equal  to 0 then the

velocity is also 0 at 0.75 we can see and same 0.25. So, they are the velocity and d p by d

z they are 180 degree out of phase one can also write this as v z is equal to minus one

over 4 mu a square minus r square del p by del z. So, del p by del z and v z they are out

of phase let me not confuse you from this sign ok. So, we have looked at asymptotic

solution at small womersley number which suggest that its small womersley number the

expression is very much similar to what we have for a poiseuille flow, but the velocity

and the pressure gradient they are out of phase.
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Now, let us look at large alpha or when womersley number is large then as we suggested

that as at large womersley number, the inertial forces will be dominant and the viscous

forces can be neglected. So, this viscous force can be neglected as we followed earlier let

us substitute v z and del p by del z here. So, we know that v z is equal to v z cap, I omega

t that gives me that del v z over del t is equal to sorry this is v z cap e to the power I

omega t and del v z over del t will be v z cap I omega exponential I omega t.

So, let us substitute this here and what we will get is I omega v z cap exponential  I

omega t is equal to minus 1 over rho del p cap over del z exponential I omega t. Now, I

omega t I omega t will cancel out and what we will have is v z cap is equal to minus 1

over I rho omega del p cap over del z, we can change minus 1 to I square. So, we will get

I over rho omega del p cap over del z. 

So,  what we see from here that  in this  case velocity  is plug flow that is there is no

gradient  of  velocity  in  the  radial  direction,  the  velocity  is  uniform  and  which  is

understandable because the velocity profile comes because of the viscous term and we

have neglected the viscous term. So, the velocity profile is plug flow and as you can see

from this that this term has I. So, the velocity v z will be 90 degree out of phase or 90

degree phase difference between the pressure gradient and the flow velocity.
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So, as you can see from this graph here, the similar graph for the pressure gradient as we

saw for  small  alpha  and for  ah velocity  at  large  womersley number  we can see  the

velocity profile is parabolic and wherever there is velocity is maximum the velocity. Ah

sorry,  wherever  the  pressure  gradient  is  maximum  on  those  pressure  maximum  or

minimum  the  velocities  are  0  there  whereas,  when  the  velocity  when  the  pressure

gradients  are  0 when the  pressure  gradient  is  0  at  those time  instants  velocity  have

magnitude as maximum and the velocity profile is plug flow; that means, the velocity is

uniform everywhere in the channel cross section ok. 

So,  now,  having  looked  at  the  solution  at  2  limits,  2  asymptotic  limits  when  the

womersley number is small and when the womersley number is a large. Let us look at

the  solution  and try  to  find  out  if  we  can  find  the  solution  for  the  entire  range  of

womersley number.
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So, we again come back to the v z momentum equation that we have obtained after

reducing the navier stokes equations to the axisymmetric ones and then neglecting the

terms based on that v r is equal to 0 and del v z over del z is equal to 0 that is flow is

fully developed. So, then we have got this equation.

Now, in this equation as we have been doing earlier for the 2 cases 2 asymptotic cases let

us now substitute v z and del p by del z. So, if we do that again we will have del v z over

del t is equal to I omega v z cap exponential I omega t that is equal to minus 1 over rho

del p cap over del z e to the power I omega t plus nu 1 over r and let us break this into 2

terms. So, what we will get is into r del 2 v z over del r 2 and this r and r will cancel out.
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So,  we  will  just  get  rid  of  both  of  them  plus  we  will  have  one  over  r  and  the

differentiation of r is 1. So, we will have del v z over del r into e to the power I omega t

now all the exponential terms in the 3 equations are same. So, they can be cancelled out

and let us rearrange this to as a second order differential equations. So, we can write this

as this will be v z cap. So, we can write this as nu del 2 v z cap over del r 2 plus nu over r

del v z cap over del r minus I omega v z cap is equal to. So, because we have brought

this on that side and then it will be equal to 1 over rho del p cap over del z ok.
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So, this is the equation that we got in the previous slide.

So, now let us rearrange it to this equation. So, first we need to divide by nu and v z cap

is a function of r only. So, we can have this as total derivative. So, we can write this as d

2 v z cap over d r 2 plus 1 over r d v z cap over d r this because we have been writing this

as a function of r. So, this is also a function of r. So, d v z over d r plus if we want to

change this I to I cube. So, minus 1 is equal to I square. So, this will be I cube omega by

nu v z cap is equal to 1 over rho into nu or we can also write this as mu del p cap over

del z. 

So, we have obtained this relationship, now this is if you look at this is a linear o d e or

terms have power one only and this is second order and non homogeneous. So, we have

to go back if we want to find out the solution of this equation, we have to go back to our

under graduate mathematics where we learnt  how to solve non homogeneous second

order linear ordinary differential equation.

(Refer Slide Time: 47:59)

So, if we go back to this you might have heard or you might have read about bessel

equations, if you have done a heat transfer course where you have looked at some of the

complex equations there also you might encounter bessels of functions otherwise you

would have definitely done these in your under graduate mathematics. So, if the ordinary

differential equation a homogeneous differential equation, if it looks like this x square d

2 y by d x 2 plus x d y by d x plus x square minus n square y is equal to 0 and if we



divide by this by x square and take n is equal to 0. So, we will end up with d 2 y by d x 2

plus 1 over x d y by d x plus y is equal to 0, this is a homogeneous equation and when

the equation is non homogeneous this term in place of 0 it will become non 0.

So, now let us compare the form of this equation with the equation that we have derived.

So, d 2 y, by d x 2 d 2 v z by d r 2 1 over x d y by d x 1 over r d v z over del r or d v z

over d r plus I cube omega by v v z is equal to 0 if we take the homogeneous part of our

equation. So, if we want to have the similarity in the 2 equations then we will need to

change our variables a bit. So, let us do that and if we assume or another variable let us

call this s and if we assume that s square is equal to I cube omega by nu into r square. So,

then we can write this equation as let us divide the entire equation by I cube omega by

nu. So, we will have 1 over I cube omega by nu d 2, v z over d r 2 plus, 1 over I cube

omega by nu into r d v z cap over d r plus v z cap is equal to 0. 

Now, we have seen that s square is equal to we have assumed that s square is equal to I

cube omega nu into r square. So, from that let us just make this look better. So, this is d r

2 now we can have this d 2 v z cap by d s 2 plus 1 over s there are 2 s here also one here

and one in the differentiation. So, 1 over s d v z cap over d s plus, v z cap is equal to 0.

So, now, we have both the equations the bessel differential equation for n is equal to 0

and the equation that we have obtained for intermediate womersley number they look

very  similar.  So,  the  next  thing  is  to  look  at  what  is  the  solution  of  this  ordinary

differential equation and if we look at the books this is the form of the equation.
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For n is equal to 0 the x y differential equation will have the solution y is equal to a j

naught x plus b y naught x we have we have a and b they are constants whereas, j naught

x and y naught x are called bessel functions and j naught x is the bessels function of first

kind and y naught x is the bessel function of the second kind. So, if we look at the nature

of the graphs or the values of this j naught x and y naught x then we with respect to x,

then we see that at x is equal to 0 j naught x or the bessel function of first kind is the

value  is  1.  Whereas,  it  is  indefinite  at  x is  equal  to 0;  that  means,  y naught  at  0 is

indefinite whereas, our velocity at s is equal to 0; that means, at r is equal to 0 will be

finite right. 

So, let us write down the solution based on this the solution for v z cap and what we will

have by copying from this a j naught s plus b y naught s now at as we have just seen that

y naught 0 is indefinite. So, B is equal to 0. So, that this term goes away. So, we have

that v z is finite at r is equal to 0. So, our solution is v z is equal to or v z cap is equal to

A j naught s ok, now we have this because our solution our equation is non homogeneous

equation.  So,  what  we  have  obtained  is  the  complementary  solution  and  this

complementary solution is a v z complementary is equal to A j naught s.
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We can also find the particular solution and I will live it to you to find how to find out

the particular solution and this will turn out it will turn out that v z cap ah, now the

particular solution will be I by rho omega del p by del z which is the last term we had.

So, the total solution will be or the complete solution for v z will be because it is a linear

equations. So, both the solution can be super imposed. So, we will have v z is equal to

complementary solution which is a j naught s plus v z particular solution.
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So, that is what the complete solution is, now what we need to do that a is unknown in

this remember what was the particular solution, the particular solution we had is v z p is

equal to I by rho omega del p by del z. So, we will use this later on and if we use the no

slip boundary condition to find a; that means, v z is equal to 0 at A j naught s we had s

square is equal to I cube omega by nu r square that is what our definition of s was. So, at

r is equal to a the value of s will be I cube omega by nu a square plus v z p cap now from

this we can also remember that alpha square which is womersley number is equal to a

square omega by nu. 

So, this is I to the power 3 by 2 omega power 1 by 2 and nu power 1 by 2 or we can say

that alpha by a is equal to root of omega by nu. So, we substitute this, then we will find a

is equal to minus v z p divided by j naught I to the power 3 by 2 this will be sorry this

will be a only not a square. So, we will have alpha over A and A A will cancel out. So, I

to the power 3 by 2 a. So, we will have v z is equal to v z particular we can take this out

1 minus, now we substitute the value of a here. So, that will be j naught and the s if you

replace s then it will be I to the power 3 by 2 in place of root omega by nu we can write

alpha over a and r here for s and this is divided by j naught I to the power 3 by 2 alpha.

So, this is the value of v z cap and the relationship that we can find out now what we

have  found is  v  z  cap  and the  v  z  will  be  v  z  cap  into  I  omega  t.  So,  this  is  the

relationship  between  the  velocity  and  the  pressure  gradient  for  pulsatile  flow  fully

developed flow in a rigid tube, we can also find out the asymptotic solution by replacing

alpha is equal to for very small alpha and for very large alpha.
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So, in summary today what we have looked at is that using fourier series any periodic

signal it can be decomposed into sum of sin or cosine terms or what we call harmonics

and we will try to take or we will try to do one example for this case. then we have

encountered our new non dimensional number which is very important with respect to or

in cardiovascular fluid mechanics which is known as womersley number, it is the ratio of

oscillatory inertial flow or the oscillatory inertial force and the viscous force and. So, it is

kind of oscillatory Reynolds number and then we have obtained the solution for pulsatile

flow for a harmonic or for a sinusoidal function or for an exponential complex function

for fully developed flow. 

Assuming that we obtained or we saw that at  low small  womersley number at  small

womersley number or low womersley number the expression of the velocity profile is

very similar to what we obtain for a poiseuille flow, but the ah, but it is time dependent

and it is 180 degree the velocity is 180 degree out of phase with the pressure gradient.

Whereas, at large wave womersley number the flow profile is same everywhere in the

cross section that is no effect of viscosity ah, flow profile look like a plug flow it is

uniform everywhere in the cross section and it is at 90 degree out of phase with the

womersley number. 

So, wherever the pressure gradient we have it is 90 degree out of phase with the pressure

gradient.  So,  wherever the pressure gradient  is  maxima or minima then because it  is



sinusoidal function. So, when the pressure gradient is at is at maxima or minima the

velocity is 0 and if it is 0 then if the pressure gradient is 0 then the velocity is maxima or

minima. We will also try to look at some of the applications and try to have a field of

numbers and some examples of this womersley solution in the context of cardiovascular

fluid mechanics.

Thank you.


