Process Design Decisions and Project Economics
Prof. Dr. V. S. Moholkar
Department of Chemical Engineering
Indian Institute of Technology, Guwahati

Module - 4
Design of Separation Processes
Lecture - 22
Tutorial - Part 11
(Design of Distillation Column)
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Welcome, we are now in the second tutorial of module 4 that is design of separation
processes. And today we shall see four problems related to the distillation operation.
First problem statement appears on your screen now. Consider separation of a binary
mixture of components A and B, A being more volatile for following conditions. Feed
150 mole per hour, the composition of feed yields mole fraction of A is 0.6, the more

volatile component is 60 percent.

Percentage recovery of A desired is 99.5 percent with purity of 99.5 percent. The relative
volatility is 1.5, reflux ratio can be assumed to be 1.2 times the minimum reflux ratio
which is optimum condition for reflux ratio and feed stream can be assumed to be at
saturation condition, the minimum reflux ratio can be determined by Underwood’s

equation.
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And for this situation we have to calculate the number of plates in both sections of the

column, rectification section as well as stripping section using the complete form of
Smoker equation. And then we have to compare the answers of the rectification section

plates and stripping section plates. So, we start our solution.
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The data given is feed, total feed is 150 per hour, mole fraction of more volatile
component is 60 percent, x D the mole fraction of A, the more volatile component in
distillate is 99.5 because purity is 99.5. So, x D is 0.995, percentage recovery of A is



99.5 percent, alpha equal to 1.5. So, to start with we do the complete material balance

across distillation column.
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The distillate flow rate of light key component that is A is 150 times, 150 mole per hour
into 0.6 that is the total feed of A and we have to recover 99.5 percent of that in the
distillate. So, the distillate flow rate of light key component is 150 mole per hour into 0.6
that is x of A into 0.995 that is percentage recovery and we get 89.55 mole per hour as
the answer. Then 99.5 percent is the purity of A in distillate. So, 0.005 percent is
obviously B. So, the distillate flow rate of B the heavy key component can be determined
straight forwardly as 0.005 divided by 0.995 into 89.55 that is 0.45 mole per hour.
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The bottom flow rate of A that is light key component is total feed A that is 0.6 into 150
mole per hour minus 89.55 that is 0.45 mole per hour.
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The bottom flow rate of heavy key component is the feed of B 0.4 into 150, this is the
total feed of B minus the B appearing in distillate and the remaining fraction goes to
bottom 59.55 mole per hour. The mole fraction of A in bottom can then be calculated as
X W is equal to 0.45, the amount of A in bottom divided by the total bottom flow rate

59.55 plus 0.45 and then x w that is the mole fraction of more volatile component in



bottom comes out to be 7.557 into 10 to power minus 3. So, this way we have done the

basic material balance across the column.
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Now, we start our calculations for number of plates. First of all we have to calculate the
reflux ratio and we have been given that the reflux ratio is 1.5 times sorry 1.2 times the
minimum reflux ratio. We use the Underwood’s equation for minimum reflux ratio. R m
is equal to 1 divided by alpha minus 1 into the bracket x D by x F minus alpha into 1
minus x D divided by 1 minus x F. And now we substitute all values that we have alpha
equal to 1.5, x D equal to 0.995, x F equal to 0.6.

These are the values that we are putting in and then reflux ratio can be calculated.
Minimum reflux ratio is calculated as 3.279, the actual reflux ratio R is 1.5 time sorry 1.2
times the minimum reflux ratio. So, 1.2 into 3.279 that is 3.935 that is actual reflux ratio.
Now, having done this we have to solve the quadratic equation for the rectification

section.



(Refer Slide Time: 05:29)

e e e
. e e S Ve ey
] Dbl e 1 o L X - L’:. L -ra.r
. (e _ Lr (- -a90)] _ A.279
=) + -0k =
A § 4 M - a1t -
L4 & Kon L3 & L-q1]
Leck b Cabien Sephion
L (h [ o FAR 3 o
L - An - 0L A
L _— = ) Ry M e
R 4 ! v B 3N
- 3 k2 Ja
Sohving  Fpr b 8 ldbk &, txdol e = Lk
o
K - 0301 o \-00f o W gs b ke 8812
Lot ged ‘."1'1:-‘ it .:_nﬂ.QJf_“ £ b =
- "
A

This was derived in the previous class. The equation is m into alpha minus 1 k into k
square plus m plus b into alpha minus 1 minus alpha into k plus b equal to 0. m is the
slope of the operating line. Now, we are dealing with rectification section. So, the slope
is R divided by R plus 1 and now putting value of R as 3.935 we calculate the value of
slope as 0.797, the b is essentially the y intercept of the rectification line, rectification
operating line that is x D by R plus 1. We have again values of all of these x D and R.
So, 0.9 x D equal to 0.995, R equal to 3.935 after substituting these two values we
calculate value of b as 0.202.

We have been already given value of alpha is 1.5. So, putting all these values here we
can calculate, we can solve this quadratic equation and calculate values of k that | leave
you as exercise. You can use the standard formula for a a x square plus b x plus c type of
equation and the root is minus b plus minus b square minus Underwood b square minus 4
a c divided by 2 a. So, putting all these values you can calculate, you can get two values
of k as 0.502 and 1.008. Now, k is a, is a mole fraction. So, we have to discard the value

greater than 1 as absent and we go for the other value of k 0.502.
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Then the general form of Smoker equation was derived in previous class as follows n is
equal to log into x 0 dash divided by x n dash into bracket 1 minus x n dash into m into c
into alpha minus 1 divided by alpha minus m ¢ square, and again that bracket divided by
1 minus x 0 dash into m into c into alpha minus 1 divided by alpha minus m ¢ square and

the whole thing divided by log alpha divided by m ¢ square.

Now, these dash are essentially the shifted coordinates. Now, when we apply the general,
this general form of Smoker equation for rectification section then x 0 dash becomes x D
dash, x n dash becomes x F dash and x 0 dash is essentially x, x 0 minus k, but x 0 is x B.
So, we put value of 0.995 minus k value of k that we just derived 0.502 and that x 0 dash
becomes 0.493. Similarly, we can get x n dash. x n dash is x n minus k, but x n is equal
to X F. So, we put the value of x F as 0.6 minus 0.502 the value of k and then x n dash is
0.098.
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The value of ¢ can be found as follows. c is 1 plus alpha minus 1 into k. We have alpha
equal to 1.5, k equal to 0.502. So, putting these two values you can get value of ¢ as
1.251 and now we have all the values. We substitute those in the general form of
equation n log x n dash divided by x F dash, x 0 dash. So, 0.493 x 0 dash divided by x n
dash. So, x 0 dash is 0.493 divided by 0.093 and all other values that you see on the
screen. And this you can solve on a simple calculator and the value that you get is 28

plates.
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So, you have the first answer the number of plates in rectification section are 28.
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Then we move on to solving the Smoker equation for stripping section. Here the slope of
operating line m is R into x F plus x D minus R plus 1 into x B divided by R plus 1 into x
F minus x B. Now, this value you have already learnt the derivation of this particular
equation, you have already covered in the course of mass transfer. | request you to revise
the equations of operating line that will help you in understanding this. This equation is
also given; this derivation of these equations is also given in the standard books like
mass transfer operation by Treybal and unit operations by McCabe and Smith.

So, what I have done is that | have directly taken these values from these books. You can
always go back to the book and see the derivation. So, slope of, the slope of operating
line of stripping section is that m is equal to R x F into plus x D etcetera. The intercept is
x F minus x D into x B divided by R plus 1 into x F minus x B. Now, these are there is
some confusion about notations. Some books have used x w as the notation for mole
fraction of more volatile component or light key component bottoms and some books

have used x b as notation for the same.

These essentially are the same. x B is equal to x w. So, we have all the values. We have
R equal to 3.935, x F equal to 0.6, x D 0.995, R equal to again 3.935, x B equal to 7.5
into 10 to power minus 3. So, after putting all these values we get the slope of operating

line of stripping section as 1.135 and the y intercept as minus 1.013 into 10 to power



minus 3. And again we have to go exactly the same way. We have to solve the quadratic
for Kk, the equation that we solved for rectification section exactly same equation has to

be solved.

So, that | am leaving you as a homework. You have all the values. Again, you use the
standard formula for quadratic equation a x square plus b x plus ¢ and then determine
these values of k. Now, one value of k is essentially mole fraction. So, it has to be greater
than 0 and less than 1. We have one value that falls between 0 and 1, 0.647 and the other
value is less than 1 minus 2.761 into 10 to power minus 3. So, this value is discarded as

up surd. We take the other value and proceeding exactly the same way.
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But now remember here x 0 dash; this is the lower section of the column. So, x 0 dash is
x f minus k because we are solving between the feed point and the bottom point. So, x 0
dash is x F minus k, x n dash is x B minus k. So, x n is essentially x B and x 0 is x F.
And this is the only difference. Rest of the procedure is exactly the same, x 0 dash is x F
minus K. So, we put x F equal to 0.6 minus 0.647. So, that gives minus 0.047, x n dash is

x B minus k, so 7.5 into 10 to power minus 3 that is minus 0.64 value of k.

So, that is minus 0.639, value of C is 1 plus alpha minus 1 into k. Again, we put all
values and get value of C as 1.323. Then we substitute all these values in the general
form of Smoker equation, log x 0 dash divided by x n dash and then the brackets divided

by log alpha divided by m C square and then the entire calculation is on your screen.
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You can solve it in on any simple calculator to get the number of plates as 23.679. So,
that is adjusted to the next integer as 24 plates.
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So, we have the final answer as rectification section has 28 plates and the stripping
section has 24 plates. Now, typically for a closed value mixture where alpha is anywhere
between 1.2 to 1.5, 1.6 this is the answer that we are likely to get. That the number of
plates in rectification and stripping section are more or less the same. Here you have only

difference of 4 plates, but among if you see the percentage difference like 4 divided by



24 is only about 15 percent. So, you have, you can, you have a generalized relation as N
R more or less equal to, not equal to, but more or less equal to N S, number of plates in
rectification section or number of more or less equal to number of plates in stripping

section. So, that completes the first problem of today’s session.
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We now see the second problem. This problem is about determination of the total vapor

flow rate in different sequences of distillation and we use the Porter and Momoh formula
for it. | read out the problem statement for you. A five component mixture is to be
separated using sequences of distillation column. The data is as given is occurring on the,
on your screen. We have five component A, B, C, D, E; A being the lightest component

and E being the heaviest component.

The flow rates are also given, flow rate of A is 269 kilo mole per hour, B is 282 kilo
mole per hour, C is 57 kilo mole per hour, D is 215 kilo mole per hour and E is 42 kilo
mole per hour. Relative volatility is defined with respect to the heaviest component. E, E
has the relative volatility of 1.76. C has 1.86. B has 3.28 and A has a relative volatility of
6.24 with respect to E. Feed to, in the column, all columns in the sequence is saturated
liquid feeds. In each column the actual reflux ratio can be taken as 1.2 times the
minimum reflux ratio which is optimum condition. Again, like last problem we can use

Underwood’s equation to get the minimum reflux ratio.
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And then we have to compare five different sequences for the separation of this mixture
in terms of the total vapor flow rate. These sequences now appear on your screen. A B C
D E, going first to separate A, A from B C D E and the quaternary mixture of BC D E is
split in direct and indirect sequence in both ways; first B being separated from C D E,
then C being separated from D E. D and then split of D E. So, this is direct sequence.

Then the other way round.

First is up to separation of B direct sequence and C D is separated in indirect sequence.
Then we have equimolar split between B C D E and B C and D E and then the binary
mixtures of B C and D E are split separately and once again here we have first an
indirect sequence, indirect sequence of separation of E from B C D mixture, ternary

mixture and the ternary mixture is spilt again in direct and indirect sequence.

So, we have to compare all these options, sequence options in terms of the total vapor
flow rate and we have to use the methodology of Porter and Momoh. In the previous
lectures | have told you the advantage of method of Porter and Momoh because it is
explicit. If you do the same with Underwood’s equation FUG method, Fenske
Underwood Gilliland method, you have to first solve the equation for value of theta

which is a variable.

Now, if that time you will get a polynomial which you have to solve iteratively and then

you have to pick up that value of theta that lies between the relative volatility of heavy



key and light key component. And substitute in the next equation for R minimum to get
R minimum, but that is rather rigorous calculation because it is implicit. You have to do

iterative calculation.

(Refer Slide Time: 17:54)

.J_E‘L_p." ik - _{‘.,.91?. =
B hoonie T VR e
Prablem %

AY Pt eatr e Fennp Srdnrt e et g et
Ove o ponh ' oA sllaien tfluve & oprraed -
e - A g B W

T: T r. «;

WMot g = S G ik (K Aol M Srcam =
?"‘“:'r . dennTh MM‘P of - vthahvi vi'ﬂ-":'..'? Wt
Iz ‘F-hf Connd Oninl & L= retll. £ chom

(8) VUbip v cbwwe Yok, Pave Teat he Fegratre

So, Porter and Momoh have provided method which is explicit. Now, we solve the, we
start the solution.
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The formula for Porter and Momoh method is V the vapor flow rate is equal to F A plus

F B plus F L K. Now, these are the flow rates of different components. F L K is the flow



rate of light key component into R F divided by alpha minus 1 into the total flow rate, F
Aplus FBupto FL Kand FH K heavy key up to F N C the total number of
components. Alpha is a relative volatility between the key components and we have been
already told that the ratio of actual reflux to minimum reflux is 1.2,

So, value of R F is 1.2. We have been given relative volatilities with respect to E the
heaviest component, but when we are splitting between the different components like we
are splitting here between A and B. So, we have to calculate alpha A B. The relative
volatility between adjacent components that we can do by taking ratio of the
components, adjacent components with respect to E, like we have to take a ratio of

relative volatility of adjacent components with respect to E.

So, alpha A B is calculated as alpha A E divided by alpha B E, alpha A is 6.24, alpha B
is 3.28. So, alpha A B becomes 1.9. Similarly, alpha B C is alpha B E divided by alpha C
E. That becomes 3.28 divided by 1.86, so 1.76. Alpha C D E is alpha C E divided by
alpha D E that is 1.86 divided by 1.76 that is 1.06 and alpha D E is 1.76 that is straight
forward. So, for the first column in the first sequence we have distillate as A F A and
then we have the other components.
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So, the first column of first sequence that splits A from B C D E mixture you can
substitute all values F A 269 F B, F C, F D and F E into 1.2 that is R F divided by alpha
A B minus 1, so 1.9 minus 1. Then the second column of first sequence separates B from



C D E mixture, but here you are splitting between B and C. So, R F divided by alpha
minus 1 you have to use value of alpha B C. Remember, this thing very thoroughly that
you, whenever you are splitting between adjacent components you have to take the
relative volatility between those components and not the volatility which has been given

to you.

The volatility which has been given to you is with respect to the heavy component,
heaviest component. So, F B plus 1.2 divided by alpha B C minus 1 into the other
component F B, F C, F D, F E and similarly, you go ahead doing all these things, third
column that splits C from D E mixture and the final that splits D E. And after
substituting values you can calculate these numbers on a simple calculator and you have

to add up the values of vapor flow rates of all the four columns that are there.

First column separating A from B C D E mixture, second column separating B from C D
E mixture, third column separating C from C D E mixture, and final column splitting the
binary mixture of D E. And this you can do on a simple calculator and get the answer as
9947 kilo mole per hour. | have given the direct answer, | suggest you to recalculate and

check for correction, so that about the first sequence.
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In the second sequence we have direct separation direct sequence up to the C D E
mixture and the C D E mixture is split in indirect sequence. Therefore, the first column,

second column are essentially same as the previous one, previous sequence, exactly the



same. A being separated, B being separated, however here you have separation of C D E
mixture in indirect sequence, so here we have F D sorry F C plus F D in the third column
and 1.2 into 1.76 minus 1 and then finally, here you have to use the value of alpha D E
and here is alpha C D and then exactly same procedure. Putting all values you get final

answer as 9207 kilo mole per hour. Now, the third sequence.
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Here we have A B C D E mixture being spilt as A, B C D E under quaternary mixture of
B C D E split into two binary mixtures B C, D E which are later on separated. First
column is exactly the same as previous two sequences. For the other two columns, other
three columns we have to do calculation. In the second column you have B C D E
together appearing in the distillate and then here you have to use, you are splitting
between C and D. So, you have to use value of C D, alpha C D in the second expression
and then these are the two binary columns, binary mixture column. First column

separating, so B C mixture; second column separating D E mixture.
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And then you have to use here again value of alpha B C and alpha D E. And then you get
final answer as 15780. Well sequence four and five | am leaving as an exercise for you
because the calculations are rather straight forward. The only care you have to take is
that whenever you are doing calculation for any column, use the value of alpha between
the where you are splitting. So, if a column is splitting alpha, let us say quaternary

mixture in B C D E then for that alpha you are splitting between essentially C and D.

So, you have to use alpha C D. If it is C D E means E being separated from C D mixture
then you have to use alpha D E and so on and so forth. So, for the fourth and fifth
sequence | am directly giving you the answer. Fourth sequence has total vapor flow rate
of 9869 kilo mole per hour and sequence five has total vapor flow rate of 15770 kilo
mole per hour. Now, if you compare the total vapor flow rates of all five sequences the
first one we calculated as 9947, the second one we calculated as 9207, the third one we
calculated as 15780 and fourth and fifth we have calculated as 9869 and 15770 kilo mole

per hour.

The least total vapor flow rate among all of these is that of sequence two 9207 kilo mole
per hour. So, we have the answer to the question that the sequence, the sequence with
least total vapor flow rate is this A B C D E mixture being separated as A, BC D E. A
being separated from quaternary mixture, and then B being separated from ternary

mixture and ternary mixture of C D being split in indirect sequence. So, that completes



the second problem of today’s session. Now, we shall see the third problem. The third

problem is a theoretical problem. I will read out the statement.
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First section of problem three is that prove that the temperature difference between any
two points in a distillation column is expressed as 1 by T 1 minus 1 by T 2. 1 and 2
indicate the subscript indicate two points in a column is equal to R divided by delta H
into | n sigma 2 by sigma 1. Delta H is the heat of vaporization or latent heat and sigma
K is a variable defined as summation alpha i into x i K, K denotes the stream at two
points, i denotes the component alpha relative volatility with respect to heavy key
component and x is the mole fraction. So, K is a section of the column, alpha is the
relative volatility of component i and x i is the mole fraction of that component. So, this
is the first question that we have to answer. We have to derive the expression for

temperature difference between any two points in distillation column.
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The second bit is about applying the same relation to the extreme sections of the column
like bottoms and the condenser or re-boiler and condenser and then we have to determine
the temperature drop across a distillation column. That is the difference between boiling
temperatures of the bottom and condensation temperature of the distillate and that we
have to prove as delta T equal to R into T F square divided by delta H into | n sigma D

by sigma B.

Sigma is again a variable defined previously with in terms of relative volatility and mole
fraction x i. T F is the temperature of the feed, D is the distillate, D denotes distillate, B
denotes bottom, so that one and two are become D and B and the subscript one and two
in the previous bit become D and B now. We can make an assumption that the conditions
of the distillate, distillation are such that Clausius Clapeyron equation holds good. That
means we are not having very high pressure distillation, we are having low to moderate
pressure let us say atmospheric distillation and the mixture is relatively ideal. So, that the

Clausius Clapeyron equation holds good.
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Now, we start the solution. First of all we assume that equilibrium is achieved between
vapor and liquid phases at both points one and two which gives the following relation for
a component i in the feed mixture. This is the equilibrium relation. P i naught into X i is
equal to P T into y i. P i naught is the vapor pressure, x i is the mole fraction of that
component in liquid phase, y i is the mole fraction of that component in gas phase. Then
we can rearrange that equation as y i is equal to P i naught by P T into x i and P i naught
by P T this ratio, vapor pressure ratio to total pressure ratio is denoted as capital K i
where K i is the equilibrium constant for that particular component.
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Now, before we procedure we have to derive a small relation. We are talking of mixture
that are close boiling. So, these are very typical of hydrocarbon mixtures. For
hydrocarbon mixtures which do not exhibit hydrogen bonding, the equilibrium relation is
written as y i is equal to K i into x i which we just did, K i being the ratio of vapor
pressure to total pressure. Summation y i is equal to 1 because y i is essentially the mole

fraction of i th component.

So, if you add a mole fraction of all components, if you do summation over all i then it is
obviously 1. This is equal to summation K i x i. We do apply summation sign both side.
Then we can also write y i is equal to K i x i divided by summation K i X i because
summation K i x i is essentially 1. So, K'i x i divided by 1 is K i x i. Next, we divide both
numerator and denominator of K value, denominator of that expression by K value of

heavy component, heavy key component.

Now, as | said that relative volatility is always defined in terms of heavy key component
as in the previous problem the heaviest component was E. So, we defined relative
volatilities of all other components with respect to E. So, we do exactly the same thing
here. So, alpha i is K i divided by K H K. The equilibrium constant of i th component
divided by equilibrium constant of heavy key component, that we denote as alpha i. Then
y i is equal to K i divided by K H K. K H K is a constant, so you can take it inside the
summation sign also without any problem. K i divided by K H K into x i divided by
summation K i by K H K into x i and then we replace K i by K H K as alpha i. So, we get
y i is equal to alpha i x i divided by summation alpha i x i and y i divided by x i is K i.
So, K'i is equal to alpha i divided by summation alpha i x i. So, we use this relation for

further derivation.
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For a section K in a distillation column for a component j you can write P naught j K
divided by P T which means the vapor pressure of j th component in K section divided
by the total pressure is equal to y j K divided by x j K where y j is the vapor mole
fraction of that component and x j is the liquid mole fraction of that component in that
section is equal to K j K. And using the relation that we just derived K j K is can be
written as alpha j divided by summation alpha j into x j K where K is that particular

section.

And the denominator summation alpha j into x j K we write as sigma K. So, writing the
same relation for two locations within the column one and two. So, K has now two
values one and two, P naught j 1 divided by P T is equal to K j 1 that is equal to alpha j
divided by sigma 1 and P naught j 2 divided by P T is equal to K j 2 that is equal to alpha
j divided by sigma 2. Now, we take the ratio of these two relations and P T gets
cancelled and so P naught j 1 divided by P naught j 2 is equal to sigma 2 divided by

sigma 1.

The vapor pressure is now expressed in terms of Clausius Clapeyron equation. P naught j
1 divided by P naught that is one standard state is equal to exponential minus delta H R
into 1, into 1 by T 1 minus 1 by T 0 where T 0 is the standard state, temperature of the
standard state. Usually, it is a STP condition. So, we do the same thing for two locations,

then T naught gets 1 by T naught gets cancelled because we add up the values of



temperature and then we get P naught j 1 divided by P naught j 2 is equal to exponential
minus delta H by R into 1 by T 1 divided by 1 by, then we take we convert exponential
to I n.
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So, we take | n of left hand side, | n sigma 2 by sigma 1 is minus deltaH by Rinto 1 by T

1 minus 1 by T 2 and then you can reorganize this equation, rearrange this equation in
terms of the temperature difference 1 by T 2 minus 1 by T 1 is equal to R by delta H into
I n sigma 2 by sigma 1. So, we have derived the expression for temperature difference at
any two points in a distillation column. Remember, this particular equation has several
assumptions in it. In the first place it is for close boiling mixture, it is for the mixture

which does not exhibit non ideal conditions like hydrogen bonding etcetera.

So, keep in mind the assumptions that we have made in derivation of this equation. This
equation is very helpful because it can give us the idea as how the heat is being degraded
in a distillation column. Whenever you have a close boiling mixture in distillation
column the delta H is essentially the same, means delta H the latent heat for all
components is more or less the same. So, in that way the total heat that you supply at the
re-boiler more or less same heat is recovered in the condenser when the vapors condense,

but what changes is the temperature.

You are supplying heat at the re-boiler at a much higher temperature and you are

receiving more or less same amount of heat at a lower temperature. So, that is heat



degradation across the distillation column and this formula is very handy formula to
account for such degradation. Next, we apply the, this relation between the three
locations in the column that is condenser feed and bottom because we have to now

estimate the total heat degradation across a distillation column.

So, we denote T F as the temperature of the feed, T D as the temperature of the distillate
and T B as the temperature of the re-boiler. Then we apply the above relation two times,
first between feed and distillate and second between feed and bottoms. So, when we
apply the relation between feed and distillate we get 1 by T F minus 1 by T D is equal to
R by delta H into | n sigma F by sigma D. Now, if you reorganize this equation in terms
of T D because we are interested in temperature of the distillate then you get minus R by
delta H into | n sigma F by sigma D plus 1 by T F raised to minus 1. So, this is the first
expression that we have, the expression for temperature on the distillate.
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Now, we apply the same general equation between bottoms and feed. So, 1 divided by T
B minus 1 divided by T F. So, one and two becomes now B and F is equal to R by delta
H into | n sigma B by sigma F and then we again make it explicit in terms of T B. T B is
equal to R by delta H into | n sigma B by sigma F plus 1 by T F raised to minus 1. So, we
have the second expression for T B. So, we have the expression for temperature of the

distillate, temperature of the bottom.
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And temperature drop across the column is T B minus T D as | just said you supply heat
at a higher temperature in re-boiler and recover more or less same amount of heat at a
lower temperature in the distillate, in the condenser that is distillate. So, the temperature
drop is T B minus T D. We substitute now the values of T B and T D that we derived just
now. 1 divided by 1 divided by T F plus R by delta H into | n sigma B by sigma F minus
the expression for 1 divided by expression for T D, 1 divided by T F minus R by delta H
into | n sigma F by sigma D and then we do the cross summation.

We multiply the numerator of the expression one by denominator of expression two and
then vice versa. The numerator of expression two by denominator of expression one and
then we multiply this thing. It is simple negation of fractions and then 1 by T F minus R
by delta into | n sigma F by sigma D minus 1 by T F minus R by delta H into | n sigma B
by sigma F. So, this cancels off, 1 by T F, 1 by T F goes off. When you multiply
denominators then you have 1 by T F square minus R by delta square into | n sigma B by

sigma F into | n sigma F by sigma D.
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If you look at the two terms in the denominator 1 by T F square and R by delta i square
into | n sigma B by sigma F into | n sigma F by sigma D. If you see the numerical values
of this delta H is typically let us say 1500 kilo joule per kilo mole, 2000 kilo joule per
kilo mole, R is 8.3 that R, R is the universal gas constant. So, it is 8.3 joule per mole per
Kelvin. So, the R by delta H ratio is of the order of it is 8 divided by approximately
2000. So, it is 0.004 and then that squared.

So, you are going to have a very small number as the second expression of the
denominator. So, R by delta i square into | n sigma B by sigma F into | n sigma F by
sigma D is going to be very small as compared to 1 by T F square. What will be the
temperature of the feed? It will be typically let us say 350 Kelvin, 320 Kelvin, 70 80
degrees approximately of that order. So, if 1 by T F square minus R by delta i square is
going to be dominated by the first term because the second term is far smaller than the

first term. And therefore, you can ignore this term.
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Second term can be ignored, then what we are left with delta T is equal to T B minus T D
is equal to R divided by delta H divided by 1 by T F square and then the summation I n
sigma F by sigma D into | n sigma E B by sigma F, that you can multiply. And then you
can have the final expression as delta T is equal to R into T F square divided by delta H

into | n sigma D by sigma B. The negative sign is absorbed by changing the ratio.

The ratio inside the bracket is sigma B by sigma D that we take we reverse and then take
care of the negative sign and this we have a very handy expression for the temperature
drop across a distillation column. What we need to know to get delta T is just the
temperature of the feed, the latent heat of the component, the average latent heat of all
components, the distillate composition and the bottom composition and relative

volatilities.

With this simple data you can have a very crucial parameter that is the temperature drop
across a distillation column. Such expression is very handy for heat integration of the
process where you want to integrate your distillation column with other process streams
or you want to use, you have, you want to integrate two columns in the sequence. As I
said in previous lecture that you can do that by varying pressures of the two columns. So,
that the vapors of first column condensing the re-boiler of the second column. So, these
kind of expressions are very handy for making such energy integration matches. Now,

we move ahead to the next problem.
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The last problem of today’s session problem four. This problem is also a theoretical
problem, derive the condition for which variation in relative volatility alpha has
insignificant effect on the number of plates in the distillation column. Whenever we do
calculations like McCabe and Smith or FUG method we assume alpha to be constant.
The relative volatility between components to be constant, this is the major assumption.
But in many cases the relative volatility changes with temperature.
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And we have to now find out conditions under which such variation does not make much
effect on the number of plates that we estimate using McCabe theory method or FUG
method. So, we start our solution, condition for which variation in relative volatility has
insignificant. Now, the word insignificant we quantifies less than 10 percent effect on the
number of plates of a distillation column. To derive this condition we start with Gilliland

correlation for the number of trays required to achieve a particular separation.

Gilliland plot says that typically the number of actual theoretical plates for separation of
the mixture at conditions, optimum conditions of R equal to 1.2 times R minimum. That
N actual are typically two times the minimum number of trays. Minimum number of
trays result when you have a total reflux ratio and those number of trays you can
calculate using Fenske’s equation. That is one that is appearing on your screen now.
Fenske’s equation says that N plus 1, now that plus 1 stands for re-boiler.

We do not because we have, we are considering columns of 50 60 plates, so that one we
ignore, one that re-boiler itself is a plate, so that we ignore. So, N is equal to I n, x D
divided by 1 minus x D into 1 minus x ((Refer Time: 43:33)) x w divided by x w. Now,
this product x D divided by 1 minus x D into 1 minus x w divided by x w is known as
separation factor. This is popularly known as separation factor S F divided by | n alpha,

where alpha is the relative volatility.

Now, we define the variation alpha as alpha average into 1 plus phi where phi is the
variation. And according to Gilliland N is approximately 2 times | n x D divided by 1
minus X D into 1 minus x D divided by x w divided by I n, | n alpha. Alpha average we
define as alpha T divided plus alpha B divided by 2. Alpha T is the relative volatility at
the column top among the top most plates near condenser, alpha B is the relative
volatility at temperature at the bottom of the column near the re-boiler.
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And we substitute for alpha the expression that we just defined, alpha is equal to alpha a
v into 1 plus phi. So, N becomes total number of theoretical plates becomes equal to 2
into | n S F separation factor divided by | n alpha a v into 1 plus phi, that we expand as 2
I n S F divided by alpha, divided by | n alpha a v plus | n 1 plus phi and then we divide
the numerator and denominator by | n alpha a v. So, we have n is equal to 2 times N m
the minimum reflux, minimum plates, minimum plates are | n S F divided by | n alpha v
alpha a v divided by 1 plus | n 1 plus phi divided by 1 plus alpha a v.
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If the variation in relative volatility is not drastic, but small to moderate we can make
two approximations for the second expression in the denominator. In the first place we
can write | n 1 plus phi is approximately equal to phi as per Taylor series expansion and
then the total fraction like 1 divided by 1 plus phi divided by | n alpha a v, that is we now
separate like we write like two times N m into 1 divided by 1 plus | n 1 plus phi divided
by I n alpha a v. Now, we have already approximated I n 1 plus 1 plus phi as phi and then

what we get is this.
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So, the denominator of this expression can be written, can be expanded in terms of
Taylor’s series again as 1 minus phi divided by | n alpha a v. So, with these two
approximations we get the total number of actual theoretical plates is equal to two times

the minimum number of plates into 1 minus phi divided by | n alpha a v.
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Now, if the variation in phi has to introduce less than 10 percent error in the column
design that means the number of plates, then the second expression has to be much
smaller than 1. That means we can ignore this. If this second expression is far less than 1
then we can ignore this and then N becomes equal to 2 times N m which is the Gilliland
expression and that will happen only when phi divided by | n alpha a v is the numerical

value of this particular expression phi divided by I n alpha a v is less than or equal to 0.1.

So, that we get N is equal to 2 times N m as per Gilliland correlation. So, this the
condition for which the variation in alpha makes least change to the total number of
plates. Total number of plates as estimated with other methods like FUG methods. So,
that completes the solution to the fourth problem. So, today we have seen four problems,
two numerical and two theoretical problems related to the distillation operation. | have
told you that distillation operation is one of the most common operation used in chemical
industry. Therefore, learning distillation operation thoroughly is very essentially for

chemical engineers. This completes the second tutorial of module 4.

Thank you.



