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Welcome, we are now in the second tutorial of module 4 that is design of separation 

processes. And today we shall see four problems related to the distillation operation. 

First problem statement appears on your screen now. Consider separation of a binary 

mixture of components A and B, A being more volatile for following conditions. Feed 

150 mole per hour, the composition of feed yields mole fraction of A is 0.6, the more 

volatile component is 60 percent.  

Percentage recovery of A desired is 99.5 percent with purity of 99.5 percent. The relative 

volatility is 1.5, reflux ratio can be assumed to be 1.2 times the minimum reflux ratio 

which is optimum condition for reflux ratio and feed stream can be assumed to be at 

saturation condition, the minimum reflux ratio can be determined by Underwood’s 

equation. 
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And for this situation we have to calculate the number of plates in both sections of the 

column, rectification section as well as stripping section using the complete form of 

Smoker equation. And then we have to compare the answers of the rectification section 

plates and stripping section plates. So, we start our solution. 
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The data given is feed, total feed is 150 per hour, mole fraction of more volatile 

component is 60 percent, x D the mole fraction of A, the more volatile component in 

distillate is 99.5 because purity is 99.5. So, x D is 0.995, percentage recovery of A is 



 
 
99.5 percent, alpha equal to 1.5. So, to start with we do the complete material balance 

across distillation column. 
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The distillate flow rate of light key component that is A is 150 times, 150 mole per hour 

into 0.6 that is the total feed of A and we have to recover 99.5 percent of that in the 

distillate. So, the distillate flow rate of light key component is 150 mole per hour into 0.6 

that is x of A into 0.995 that is percentage recovery and we get 89.55 mole per hour as 

the answer. Then 99.5 percent is the purity of A in distillate. So, 0.005 percent is 

obviously B. So, the distillate flow rate of B the heavy key component can be determined 

straight forwardly as 0.005 divided by 0.995 into 89.55 that is 0.45 mole per hour.  

 

 

 



 
 
(Refer Slide Time: 03:06) 

 

The bottom flow rate of A that is light key component is total feed A that is 0.6 into 150 

mole per hour minus 89.55 that is 0.45 mole per hour.  
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The bottom flow rate of heavy key component is the feed of B 0.4 into 150, this is the 

total feed of B minus the B appearing in distillate and the remaining fraction goes to 

bottom 59.55 mole per hour. The mole fraction of A in bottom can then be calculated as 

x w is equal to 0.45, the amount of A in bottom divided by the total bottom flow rate 

59.55 plus 0.45 and then x w that is the mole fraction of more volatile component in 



 
 
bottom comes out to be 7.557 into 10 to power minus 3. So, this way we have done the 

basic material balance across the column.  
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Now, we start our calculations for number of plates. First of all we have to calculate the 

reflux ratio and we have been given that the reflux ratio is 1.5 times sorry 1.2 times the 

minimum reflux ratio. We use the Underwood’s equation for minimum reflux ratio. R m 

is equal to 1 divided by alpha minus 1 into the bracket x D by x F minus alpha into 1 

minus x D divided by 1 minus x F. And now we substitute all values that we have alpha 

equal to 1.5, x D equal to 0.995, x F equal to 0.6.  

These are the values that we are putting in and then reflux ratio can be calculated. 

Minimum reflux ratio is calculated as 3.279, the actual reflux ratio R is 1.5 time sorry 1.2 

times the minimum reflux ratio. So, 1.2 into 3.279 that is 3.935 that is actual reflux ratio. 

Now, having done this we have to solve the quadratic equation for the rectification 

section. 
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This was derived in the previous class. The equation is m into alpha minus 1 k into k 

square plus m plus b into alpha minus 1 minus alpha into k plus b equal to 0. m is the 

slope of the operating line. Now, we are dealing with rectification section. So, the slope 

is R divided by R plus 1 and now putting value of R as 3.935 we calculate the value of 

slope as 0.797, the b is essentially the y intercept of the rectification line, rectification 

operating line that is x D by R plus 1. We have again values of all of these x D and R. 

So, 0.9 x D equal to 0.995, R equal to 3.935 after substituting these two values we 

calculate value of b as 0.202. 

We have been already given value of alpha is 1.5. So, putting all these values here we 

can calculate, we can solve this quadratic equation and calculate values of k that I leave 

you as exercise. You can use the standard formula for a a x square plus b x plus c type of 

equation and the root is minus b plus minus b square minus Underwood b square minus 4 

a c divided by 2 a. So, putting all these values you can calculate, you can get two values 

of k as 0.502 and 1.008. Now, k is a, is a mole fraction. So, we have to discard the value 

greater than 1 as absent and we go for the other value of k 0.502.  
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Then the general form of Smoker equation was derived in previous class as follows n is 

equal to log into x 0 dash divided by x n dash into bracket 1 minus x n dash into m into c 

into alpha minus 1 divided by alpha minus m c square, and again that bracket divided by 

1 minus x 0 dash into m into c into alpha minus 1 divided by alpha minus m c square and 

the whole thing divided by log alpha divided by m c square. 

Now, these dash are essentially the shifted coordinates. Now, when we apply the general, 

this general form of Smoker equation for rectification section then x 0 dash becomes x D 

dash, x n dash becomes x F dash and x 0 dash is essentially x, x 0 minus k, but x 0 is x B. 

So, we put value of 0.995 minus k value of k that we just derived 0.502 and that x 0 dash 

becomes 0.493. Similarly, we can get x n dash. x n dash is x n minus k, but x n is equal 

to x F. So, we put the value of x F as 0.6 minus 0.502 the value of k and then x n dash is 

0.098. 
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The value of c can be found as follows. c is 1 plus alpha minus 1 into k. We have alpha 

equal to 1.5, k equal to 0.502. So, putting these two values you can get value of c as 

1.251 and now we have all the values. We substitute those in the general form of 

equation n log x n dash divided by x F dash, x 0 dash. So, 0.493 x 0 dash divided by x n 

dash. So, x 0 dash is 0.493 divided by 0.093 and all other values that you see on the 

screen. And this you can solve on a simple calculator and the value that you get is 28 

plates.  
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So, you have the first answer the number of plates in rectification section are 28.  
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Then we move on to solving the Smoker equation for stripping section. Here the slope of 

operating line m is R into x F plus x D minus R plus 1 into x B divided by R plus 1 into x 

F minus x B. Now, this value you have already learnt the derivation of this particular 

equation, you have already covered in the course of mass transfer. I request you to revise 

the equations of operating line that will help you in understanding this. This equation is 

also given; this derivation of these equations is also given in the standard books like 

mass transfer operation by Treybal and unit operations by McCabe and Smith. 

So, what I have done is that I have directly taken these values from these books. You can 

always go back to the book and see the derivation. So, slope of, the slope of operating 

line of stripping section is that m is equal to R x F into plus x D etcetera. The intercept is 

x F minus x D into x B divided by R plus 1 into x F minus x B. Now, these are there is 

some confusion about notations. Some books have used x w as the notation for mole 

fraction of more volatile component or light key component bottoms and some books 

have used x b as notation for the same.  

These essentially are the same. x B is equal to x w. So, we have all the values. We have 

R equal to 3.935, x F equal to 0.6, x D 0.995, R equal to again 3.935, x B equal to 7.5 

into 10 to power minus 3. So, after putting all these values we get the slope of operating 

line of stripping section as 1.135 and the y intercept as minus 1.013 into 10 to power 



 
 
minus 3. And again we have to go exactly the same way. We have to solve the quadratic 

for k, the equation that we solved for rectification section exactly same equation has to 

be solved.  

So, that I am leaving you as a homework. You have all the values. Again, you use the 

standard formula for quadratic equation a x square plus b x plus c and then determine 

these values of k. Now, one value of k is essentially mole fraction. So, it has to be greater 

than 0 and less than 1. We have one value that falls between 0 and 1, 0.647 and the other 

value is less than 1 minus 2.761 into 10 to power minus 3. So, this value is discarded as 

up surd. We take the other value and proceeding exactly the same way. 
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But now remember here x 0 dash; this is the lower section of the column. So, x 0 dash is 

x f minus k because we are solving between the feed point and the bottom point. So, x 0 

dash is x F minus k, x n dash is x B minus k. So, x n is essentially x B and x 0 is x F. 

And this is the only difference. Rest of the procedure is exactly the same, x 0 dash is x F 

minus k. So, we put x F equal to 0.6 minus 0.647. So, that gives minus 0.047, x n dash is 

x B minus k, so 7.5 into 10 to power minus 3 that is minus 0.64 value of k.  

So, that is minus 0.639, value of C is 1 plus alpha minus 1 into k. Again, we put all 

values and get value of C as 1.323. Then we substitute all these values in the general 

form of Smoker equation, log x 0 dash divided by x n dash and then the brackets divided 

by log alpha divided by m C square and then the entire calculation is on your screen. 
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You can solve it in on any simple calculator to get the number of plates as 23.679. So, 

that is adjusted to the next integer as 24 plates. 
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So, we have the final answer as rectification section has 28 plates and the stripping 

section has 24 plates. Now, typically for a closed value mixture where alpha is anywhere 

between 1.2 to 1.5, 1.6 this is the answer that we are likely to get. That the number of 

plates in rectification and stripping section are more or less the same. Here you have only 

difference of 4 plates, but among if you see the percentage difference like 4 divided by 



 
 
24 is only about 15 percent. So, you have, you can, you have a generalized relation as N 

R more or less equal to, not equal to, but more or less equal to N S, number of plates in 

rectification section or number of more or less equal to number of plates in stripping 

section. So, that completes the first problem of today’s session.  
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We now see the second problem. This problem is about determination of the total vapor 

flow rate in different sequences of distillation and we use the Porter and Momoh formula 

for it. I read out the problem statement for you. A five component mixture is to be 

separated using sequences of distillation column. The data is as given is occurring on the, 

on your screen. We have five component A, B, C, D, E; A being the lightest component 

and E being the heaviest component.  

The flow rates are also given, flow rate of A is 269 kilo mole per hour, B is 282 kilo 

mole per hour, C is 57 kilo mole per hour, D is 215 kilo mole per hour and E is 42 kilo 

mole per hour. Relative volatility is defined with respect to the heaviest component. E, E 

has the relative volatility of 1.76. C has 1.86. B has 3.28 and A has a relative volatility of 

6.24 with respect to E. Feed to, in the column, all columns in the sequence is saturated 

liquid feeds. In each column the actual reflux ratio can be taken as 1.2 times the 

minimum reflux ratio which is optimum condition. Again, like last problem we can use 

Underwood’s equation to get the minimum reflux ratio.  
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And then we have to compare five different sequences for the separation of this mixture 

in terms of the total vapor flow rate. These sequences now appear on your screen. A B C 

D E, going first to separate A, A from B C D E and the quaternary mixture of B C D E is 

split in direct and indirect sequence in both ways; first B being separated from C D E, 

then C being separated from D E. D and then split of D E. So, this is direct sequence. 

Then the other way round.  

First is up to separation of B direct sequence and C D is separated in indirect sequence. 

Then we have equimolar split between B C D E and B C and D E and then the binary 

mixtures of B C and D E are split separately and once again here we have first an 

indirect sequence, indirect sequence of separation of E from B C D mixture, ternary 

mixture and the ternary mixture is spilt again in direct and indirect sequence. 

So, we have to compare all these options, sequence options in terms of the total vapor 

flow rate and we have to use the methodology of Porter and Momoh. In the previous 

lectures I have told you the advantage of method of Porter and Momoh because it is 

explicit. If you do the same with Underwood’s equation FUG method, Fenske 

Underwood Gilliland method, you have to first solve the equation for value of theta 

which is a variable.  

Now, if that time you will get a polynomial which you have to solve iteratively and then 

you have to pick up that value of theta that lies between the relative volatility of heavy 



 
 
key and light key component. And substitute in the next equation for R minimum to get 

R minimum, but that is rather rigorous calculation because it is implicit. You have to do 

iterative calculation.  
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So, Porter and Momoh have provided method which is explicit. Now, we solve the, we 

start the solution. 
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The formula for Porter and Momoh method is V the vapor flow rate is equal to F A plus 

F B plus F L K. Now, these are the flow rates of different components. F L K is the flow 



 
 
rate of light key component into R F divided by alpha minus 1 into the total flow rate, F 

A plus F B up to F L K and F H K heavy key up to F N C the total number of 

components. Alpha is a relative volatility between the key components and we have been 

already told that the ratio of actual reflux to minimum reflux is 1.2.  

So, value of R F is 1.2. We have been given relative volatilities with respect to E the 

heaviest component, but when we are splitting between the different components like we 

are splitting here between A and B. So, we have to calculate alpha A B. The relative 

volatility between adjacent components that we can do by taking ratio of the 

components, adjacent components with respect to E, like we have to take a ratio of 

relative volatility of adjacent components with respect to E.  

So, alpha A B is calculated as alpha A E divided by alpha B E, alpha A is 6.24, alpha B 

is 3.28. So, alpha A B becomes 1.9. Similarly, alpha B C is alpha B E divided by alpha C 

E. That becomes 3.28 divided by 1.86, so 1.76. Alpha C D E is alpha C E divided by 

alpha D E that is 1.86 divided by 1.76 that is 1.06 and alpha D E is 1.76 that is straight 

forward. So, for the first column in the first sequence we have distillate as A F A and 

then we have the other components. 
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So, the first column of first sequence that splits A from B C D E mixture you can 

substitute all values F A 269 F B, F C, F D and F E into 1.2 that is R F divided by alpha 

A B minus 1, so 1.9 minus 1. Then the second column of first sequence separates B from 



 
 
C D E mixture, but here you are splitting between B and C. So, R F divided by alpha 

minus 1 you have to use value of alpha B C. Remember, this thing very thoroughly that 

you, whenever you are splitting between adjacent components you have to take the 

relative volatility between those components and not the volatility which has been given 

to you. 

The volatility which has been given to you is with respect to the heavy component, 

heaviest component. So, F B plus 1.2 divided by alpha B C minus 1 into the other 

component F B, F C, F D, F E and similarly, you go ahead doing all these things, third 

column that splits C from D E mixture and the final that splits D E. And after 

substituting values you can calculate these numbers on a simple calculator and you have 

to add up the values of vapor flow rates of all the four columns that are there.  

First column separating A from B C D E mixture, second column separating B from C D 

E mixture, third column separating C from C D E mixture, and final column splitting the 

binary mixture of D E. And this you can do on a simple calculator and get the answer as 

9947 kilo mole per hour. I have given the direct answer, I suggest you to recalculate and 

check for correction, so that about the first sequence. 
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In the second sequence we have direct separation direct sequence up to the C D E 

mixture and the C D E mixture is split in indirect sequence. Therefore, the first column, 

second column are essentially same as the previous one, previous sequence, exactly the 



 
 
same. A being separated, B being separated, however here you have separation of C D E 

mixture in indirect sequence, so here we have F D sorry F C plus F D in the third column 

and 1.2 into 1.76 minus 1 and then finally, here you have to use the value of alpha D E 

and here is alpha C D and then exactly same procedure. Putting all values you get final 

answer as 9207 kilo mole per hour. Now, the third sequence. 

(Refer Slide Time: 22:28) 

 

Here we have A B C D E mixture being spilt as A, B C D E under quaternary mixture of 

B C D E split into two binary mixtures B C, D E which are later on separated. First 

column is exactly the same as previous two sequences. For the other two columns, other 

three columns we have to do calculation. In the second column you have B C D E 

together appearing in the distillate and then here you have to use, you are splitting 

between C and D. So, you have to use value of C D, alpha C D in the second expression 

and then these are the two binary columns, binary mixture column. First column 

separating, so B C mixture; second column separating D E mixture.  
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And then you have to use here again value of alpha B C and alpha D E. And then you get 

final answer as 15780. Well sequence four and five I am leaving as an exercise for you 

because the calculations are rather straight forward. The only care you have to take is 

that whenever you are doing calculation for any column, use the value of alpha between 

the where you are splitting. So, if a column is splitting alpha, let us say quaternary 

mixture in B C D E then for that alpha you are splitting between essentially C and D. 

So, you have to use alpha C D. If it is C D E means E being separated from C D mixture 

then you have to use alpha D E and so on and so forth. So, for the fourth and fifth 

sequence I am directly giving you the answer. Fourth sequence has total vapor flow rate 

of 9869 kilo mole per hour and sequence five has total vapor flow rate of 15770 kilo 

mole per hour. Now, if you compare the total vapor flow rates of all five sequences the 

first one we calculated as 9947, the second one we calculated as 9207, the third one we 

calculated as 15780 and fourth and fifth we have calculated as 9869 and 15770 kilo mole 

per hour.  

The least total vapor flow rate among all of these is that of sequence two 9207 kilo mole 

per hour. So, we have the answer to the question that the sequence, the sequence with 

least total vapor flow rate is this A B C D E mixture being separated as A, B C D E. A 

being separated from quaternary mixture, and then B being separated from ternary 

mixture and ternary mixture of C D being split in indirect sequence. So, that completes 



 
 
the second problem of today’s session. Now, we shall see the third problem. The third 

problem is a theoretical problem. I will read out the statement. 
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First section of problem three is that prove that the temperature difference between any 

two points in a distillation column is expressed as 1 by T 1 minus 1 by T 2. 1 and 2 

indicate the subscript indicate two points in a column is equal to R divided by delta H 

into l n sigma 2 by sigma 1. Delta H is the heat of vaporization or latent heat and sigma 

K is a variable defined as summation alpha i into x i K, K denotes the stream at two 

points, i denotes the component alpha relative volatility with respect to heavy key 

component and x is the mole fraction. So, K is a section of the column, alpha is the 

relative volatility of component i and x i is the mole fraction of that component. So, this 

is the first question that we have to answer. We have to derive the expression for 

temperature difference between any two points in distillation column.  
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The second bit is about applying the same relation to the extreme sections of the column 

like bottoms and the condenser or re-boiler and condenser and then we have to determine 

the temperature drop across a distillation column. That is the difference between boiling 

temperatures of the bottom and condensation temperature of the distillate and that we 

have to prove as delta T equal to R into T F square divided by delta H into l n sigma D 

by sigma B.  

Sigma is again a variable defined previously with in terms of relative volatility and mole 

fraction x i. T F is the temperature of the feed, D is the distillate, D denotes distillate, B 

denotes bottom, so that one and two are become D and B and the subscript one and two 

in the previous bit become D and B now. We can make an assumption that the conditions 

of the distillate, distillation are such that Clausius Clapeyron equation holds good. That 

means we are not having very high pressure distillation, we are having low to moderate 

pressure let us say atmospheric distillation and the mixture is relatively ideal. So, that the 

Clausius Clapeyron equation holds good. 
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Now, we start the solution. First of all we assume that equilibrium is achieved between 

vapor and liquid phases at both points one and two which gives the following relation for 

a component i in the feed mixture. This is the equilibrium relation. P i naught into x i is 

equal to P T into y i. P i naught is the vapor pressure, x i is the mole fraction of that 

component in liquid phase, y i is the mole fraction of that component in gas phase. Then 

we can rearrange that equation as y i is equal to P i naught by P T into x i and P i naught 

by P T this ratio, vapor pressure ratio to total pressure ratio is denoted as capital K i 

where K i is the equilibrium constant for that particular component. 
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Now, before we procedure we have to derive a small relation. We are talking of mixture 

that are close boiling. So, these are very typical of hydrocarbon mixtures. For 

hydrocarbon mixtures which do not exhibit hydrogen bonding, the equilibrium relation is 

written as y i is equal to K i into x i which we just did, K i being the ratio of vapor 

pressure to total pressure. Summation y i is equal to 1 because y i is essentially the mole 

fraction of i th component.  

So, if you add a mole fraction of all components, if you do summation over all i then it is 

obviously 1. This is equal to summation K i x i. We do apply summation sign both side. 

Then we can also write y i is equal to K i x i divided by summation K i x i because 

summation K i x i is essentially 1. So, K i x i divided by 1 is K i x i. Next, we divide both 

numerator and denominator of K value, denominator of that expression by K value of 

heavy component, heavy key component. 

Now, as I said that relative volatility is always defined in terms of heavy key component 

as in the previous problem the heaviest component was E. So, we defined relative 

volatilities of all other components with respect to E. So, we do exactly the same thing 

here. So, alpha i is K i divided by K H K. The equilibrium constant of i th component 

divided by equilibrium constant of heavy key component, that we denote as alpha i. Then 

y i is equal to K i divided by K H K. K H K is a constant, so you can take it inside the 

summation sign also without any problem. K i divided by K H K into x i divided by 

summation K i by K H K into x i and then we replace K i by K H K as alpha i. So, we get 

y i is equal to alpha i x i divided by summation alpha i x i and y i divided by x i is K i. 

So, K i is equal to alpha i divided by summation alpha i x i. So, we use this relation for 

further derivation. 
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For a section K in a distillation column for a component j you can write P naught j K 

divided by P T which means the vapor pressure of j th component in K section divided 

by the total pressure is equal to y j K divided by x j K where y j is the vapor mole 

fraction of that component and x j is the liquid mole fraction of that component in that 

section is equal to K j K. And using the relation that we just derived K j K is can be 

written as alpha j divided by summation alpha j into x j K where K is that particular 

section.  

And the denominator summation alpha j into x j K we write as sigma K. So, writing the 

same relation for two locations within the column one and two. So, K has now two 

values one and two, P naught j 1 divided by P T is equal to K j 1 that is equal to alpha j 

divided by sigma 1 and P naught j 2 divided by P T is equal to K j 2 that is equal to alpha 

j divided by sigma 2. Now, we take the ratio of these two relations and P T gets 

cancelled and so P naught j 1 divided by P naught j 2 is equal to sigma 2 divided by 

sigma 1.  

The vapor pressure is now expressed in terms of Clausius Clapeyron equation. P naught j 

1 divided by P naught that is one standard state is equal to exponential minus delta H R 

into 1, into 1 by T 1 minus 1 by T 0 where T 0 is the standard state, temperature of the 

standard state. Usually, it is a STP condition. So, we do the same thing for two locations, 

then T naught gets 1 by T naught gets cancelled because we add up the values of 



 
 
temperature and then we get P naught j 1 divided by P naught j 2 is equal to exponential 

minus delta H by R into 1 by T 1 divided by 1 by, then we take we convert exponential 

to l n. 
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So, we take l n of left hand side, l n sigma 2 by sigma 1 is minus delta H by R into 1 by T 

1 minus 1 by T 2 and then you can reorganize this equation, rearrange this equation in 

terms of the temperature difference 1 by T 2 minus 1 by T 1 is equal to R by delta H into 

l n sigma 2 by sigma 1. So, we have derived the expression for temperature difference at 

any two points in a distillation column. Remember, this particular equation has several 

assumptions in it. In the first place it is for close boiling mixture, it is for the mixture 

which does not exhibit non ideal conditions like hydrogen bonding etcetera. 

So, keep in mind the assumptions that we have made in derivation of this equation. This 

equation is very helpful because it can give us the idea as how the heat is being degraded 

in a distillation column. Whenever you have a close boiling mixture in distillation 

column the delta H is essentially the same, means delta H the latent heat for all 

components is more or less the same. So, in that way the total heat that you supply at the 

re-boiler more or less same heat is recovered in the condenser when the vapors condense, 

but what changes is the temperature.  

You are supplying heat at the re-boiler at a much higher temperature and you are 

receiving more or less same amount of heat at a lower temperature. So, that is heat 



 
 
degradation across the distillation column and this formula is very handy formula to 

account for such degradation. Next, we apply the, this relation between the three 

locations in the column that is condenser feed and bottom because we have to now 

estimate the total heat degradation across a distillation column.  

So, we denote T F as the temperature of the feed, T D as the temperature of the distillate 

and T B as the temperature of the re-boiler. Then we apply the above relation two times, 

first between feed and distillate and second between feed and bottoms. So, when we 

apply the relation between feed and distillate we get 1 by T F minus 1 by T D is equal to 

R by delta H into l n sigma F by sigma D. Now, if you reorganize this equation in terms 

of T D because we are interested in temperature of the distillate then you get minus R by 

delta H into l n sigma F by sigma D plus 1 by T F raised to minus 1. So, this is the first 

expression that we have, the expression for temperature on the distillate. 
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Now, we apply the same general equation between bottoms and feed. So, 1 divided by T 

B minus 1 divided by T F. So, one and two becomes now B and F is equal to R by delta 

H into l n sigma B by sigma F and then we again make it explicit in terms of T B. T B is 

equal to R by delta H into l n sigma B by sigma F plus 1 by T F raised to minus 1. So, we 

have the second expression for T B. So, we have the expression for temperature of the 

distillate, temperature of the bottom.  
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And temperature drop across the column is T B minus T D as I just said you supply heat 

at a higher temperature in re-boiler and recover more or less same amount of heat at a 

lower temperature in the distillate, in the condenser that is distillate. So, the temperature 

drop is T B minus T D. We substitute now the values of T B and T D that we derived just 

now. 1 divided by 1 divided by T F plus R by delta H into l n sigma B by sigma F minus 

the expression for 1 divided by expression for T D, 1 divided by T F minus R by delta H 

into l n sigma F by sigma D and then we do the cross summation. 

We multiply the numerator of the expression one by denominator of expression two and 

then vice versa. The numerator of expression two by denominator of expression one and 

then we multiply this thing. It is simple negation of fractions and then 1 by T F minus R 

by delta into l n sigma F by sigma D minus 1 by T F minus R by delta H into l n sigma B 

by sigma F. So, this cancels off, 1 by T F, 1 by T F goes off. When you multiply 

denominators then you have 1 by T F square minus R by delta square into l n sigma B by 

sigma F into l n sigma F by sigma D. 
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If you look at the two terms in the denominator 1 by T F square and R by delta i square 

into l n sigma B by sigma F into l n sigma F by sigma D. If you see the numerical values 

of this delta H is typically let us say 1500 kilo joule per kilo mole, 2000 kilo joule per 

kilo mole, R is 8.3 that R, R is the universal gas constant. So, it is 8.3 joule per mole per 

Kelvin. So, the R by delta H ratio is of the order of it is 8 divided by approximately 

2000. So, it is 0.004 and then that squared.  

So, you are going to have a very small number as the second expression of the 

denominator. So, R by delta i square into l n sigma B by sigma F into l n sigma F by 

sigma D is going to be very small as compared to 1 by T F square. What will be the 

temperature of the feed? It will be typically let us say 350 Kelvin, 320 Kelvin, 70 80 

degrees approximately of that order. So, if 1 by T F square minus R by delta i square is 

going to be dominated by the first term because the second term is far smaller than the 

first term. And therefore, you can ignore this term.  
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Second term can be ignored, then what we are left with delta T is equal to T B minus T D 

is equal to R divided by delta H divided by 1 by T F square and then the summation l n 

sigma F by sigma D into l n sigma E B by sigma F, that you can multiply. And then you 

can have the final expression as delta T is equal to R into T F square divided by delta H 

into l n sigma D by sigma B. The negative sign is absorbed by changing the ratio.  

The ratio inside the bracket is sigma B by sigma D that we take we reverse and then take 

care of the negative sign and this we have a very handy expression for the temperature 

drop across a distillation column. What we need to know to get delta T is just the 

temperature of the feed, the latent heat of the component, the average latent heat of all 

components, the distillate composition and the bottom composition and relative 

volatilities.  

With this simple data you can have a very crucial parameter that is the temperature drop 

across a distillation column. Such expression is very handy for heat integration of the 

process where you want to integrate your distillation column with other process streams 

or you want to use, you have, you want to integrate two columns in the sequence. As I 

said in previous lecture that you can do that by varying pressures of the two columns. So, 

that the vapors of first column condensing the re-boiler of the second column. So, these 

kind of expressions are very handy for making such energy integration matches. Now, 

we move ahead to the next problem.  
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The last problem of today’s session problem four. This problem is also a theoretical 

problem, derive the condition for which variation in relative volatility alpha has 

insignificant effect on the number of plates in the distillation column. Whenever we do 

calculations like McCabe and Smith or FUG method we assume alpha to be constant. 

The relative volatility between components to be constant, this is the major assumption. 

But in many cases the relative volatility changes with temperature.  
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And we have to now find out conditions under which such variation does not make much 

effect on the number of plates that we estimate using McCabe theory method or FUG 

method. So, we start our solution, condition for which variation in relative volatility has 

insignificant. Now, the word insignificant we quantifies less than 10 percent effect on the 

number of plates of a distillation column. To derive this condition we start with Gilliland 

correlation for the number of trays required to achieve a particular separation.  

Gilliland plot says that typically the number of actual theoretical plates for separation of 

the mixture at conditions, optimum conditions of R equal to 1.2 times R minimum. That 

N actual are typically two times the minimum number of trays. Minimum number of 

trays result when you have a total reflux ratio and those number of trays you can 

calculate using Fenske’s equation. That is one that is appearing on your screen now. 

Fenske’s equation says that N plus 1, now that plus 1 stands for re-boiler.  

We do not because we have, we are considering columns of 50 60 plates, so that one we 

ignore, one that re-boiler itself is a plate, so that we ignore. So, N is equal to l n, x D 

divided by 1 minus x D into 1 minus x ((Refer Time: 43:33)) x w divided by x w. Now, 

this product x D divided by 1 minus x D into 1 minus x w divided by x w is known as 

separation factor. This is popularly known as separation factor S F divided by l n alpha, 

where alpha is the relative volatility.  

Now, we define the variation alpha as alpha average into 1 plus phi where phi is the 

variation. And according to Gilliland N is approximately 2 times l n x D divided by 1 

minus x D into 1 minus x D divided by x w divided by l n, l n alpha. Alpha average we 

define as alpha T divided plus alpha B divided by 2. Alpha T is the relative volatility at 

the column top among the top most plates near condenser, alpha B is the relative 

volatility at temperature at the bottom of the column near the re-boiler. 



 
 
(Refer Slide Time: 44:39) 

 

And we substitute for alpha the expression that we just defined, alpha is equal to alpha a 

v into 1 plus phi. So, N becomes total number of theoretical plates becomes equal to 2 

into l n S F separation factor divided by l n alpha a v into 1 plus phi, that we expand as 2 

l n S F divided by alpha, divided by l n alpha a v plus l n 1 plus phi and then we divide 

the numerator and denominator by l n alpha a v. So, we have n is equal to 2 times N m 

the minimum reflux, minimum plates, minimum plates are l n S F divided by l n alpha v 

alpha a v divided by 1 plus l n 1 plus phi divided by 1 plus alpha a v. 
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If the variation in relative volatility is not drastic, but small to moderate we can make 

two approximations for the second expression in the denominator. In the first place we 

can write l n 1 plus phi is approximately equal to phi as per Taylor series expansion and 

then the total fraction like 1 divided by 1 plus phi divided by l n alpha a v, that is we now 

separate like we write like two times N m into 1 divided by 1 plus l n 1 plus phi divided 

by l n alpha a v. Now, we have already approximated l n 1 plus 1 plus phi as phi and then 

what we get is this.  
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So, the denominator of this expression can be written, can be expanded in terms of 

Taylor’s series again as 1 minus phi divided by l n alpha a v. So, with these two 

approximations we get the total number of actual theoretical plates is equal to two times 

the minimum number of plates into 1 minus phi divided by l n alpha a v. 
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Now, if the variation in phi has to introduce less than 10 percent error in the column 

design that means the number of plates, then the second expression has to be much 

smaller than 1. That means we can ignore this. If this second expression is far less than 1 

then we can ignore this and then N becomes equal to 2 times N m which is the Gilliland 

expression and that will happen only when phi divided by l n alpha a v is the numerical 

value of this particular expression phi divided by l n alpha a v is less than or equal to 0.1.  

So, that we get N is equal to 2 times N m as per Gilliland correlation. So, this the 

condition for which the variation in alpha makes least change to the total number of 

plates. Total number of plates as estimated with other methods like FUG methods. So, 

that completes the solution to the fourth problem. So, today we have seen four problems, 

two numerical and two theoretical problems related to the distillation operation. I have 

told you that distillation operation is one of the most common operation used in chemical 

industry. Therefore, learning distillation operation thoroughly is very essentially for 

chemical engineers. This completes the second tutorial of module 4.  

Thank you.  

 


