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Welcome to the sixth lecture of module 1 on diffusion mass transfer. In this lecture, we 

will discuss on the diffusion coefficient measurements and its prediction. So before 

going to this lecture, we will just have a recap on our previous lecture. 
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In our previous lecture, we have discussed steady state molecular diffusion of a 

component through variable cross-sectional area or non-uniform geometries. So in this 

case, we have considered three cases. In first case, we have considered steady state 

diffusion of component A through non-diffusing B in a uniformly tapered tapered 

geometry - triangular cross-sectional area. And in the second case, we have considered 

steady state diffusion of component A through non-diffusing B from spherical geometry, 

from spherical geometry, and the third case we have considered uniformly tapered 

cylindrical geometry and equimolar counter diffusion equimolar counter diffusion 

through uniformly tapered cylindrical geometry. 



So today, we will discuss diffusion coefficient measurements and prediction. As we have 

already said when we discussed the Fick's first law, we have seen that the proportionality 

constant for that Fick's first law equation is the diffusion coefficient. 
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So the diffusion coefficient we can define from the Fick's first law. The flux divided by 

the concentration gradient and unit of diffusivity is meter square per second; that is 

length square per time, and it is a function of temperature, pressure, and concentration. 

For gases, the diffusivity increases with inversely with the pressure; that is D of A into B 

is inversely proportional to pressure of the system P t say total pressure and with 

temperature, it is directly proportional; in general, T to the power 1.5. But for liquid, the 

pressure dependence on diffusivity is negligible and diffusion co-efficient. for gases 

varies in the range of 10 to the power For gases, the diffusivity values varies in the range 

of 10 to the power minus 5 meter square per second; into liquid, liquid it is around 10 to 

the power minus 10 to 10 to the power minus 9 meter square per second; and in case of 

solids, that is diffusivity of a particular gaseous components into the solids is 

approximately in the range of 10 to the power minus 13 to 10 to the power minus 10 

meter square per second. 
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So today, first we will consider that diffusion coefficient measurement for the gas phase. 

So, the liquid phase diffusion coefficient measurements we will come later. There are 

several methods available for the diffusion coefficient measurements for the gas phase. 

Out of the available methods in the two simple methods we will consider for this lecture. 

One is very simple method is Twin-Bulb method; and second one is Stefan tube method, 

and there are some empirical correlations available by which we can also predict the 

diffusion coefficients; and third one, we will discuss for the gas phase diffusion 

coefficient prediction is the predictive method from correlation. 
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So, let us consider the first gas phase diffusivity measurement method; that is Twin-Bulb 

method. In this method, the two large volume bulbs are connected with a capillary tube 

or narrow tube, and the volume of one bulb is b 1 and volume of other bulb b 2, and they 

are kept at constant pressure and temperature say P t and T both the bulb, and then there 

are three valves; valve 1 for bulb 1, valve 2 for bulb 2, and there is a valve and in the 

capillary tube at the middle. So initially all this three valves are open, and then this 

system is evacuated and then the three valves Va 1, Va 2, and Va t. These are closed. 

Then the valve 1, Va 1 is open and filled with a pure component A and then the valve a 1 

is closed. The valve a 2 is opened and then pure B is filled through Va 2 and then Va 2 is 

closed. The whole system remains at a constant temperature and pressure. Then the valve 

Va t is opened for a period of time say T and then Va t is closed, and the sampling 

through the sampling valve from both the bulb was taken out and analyzed for their 

composition. 
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So the assumptions over here, we have taken the negligible capillary volume. The second 

one is each bulb is always of a uniform concentration, and then pseudo-steady state 

diffusion through the capillary, through the capillary. This means that at any instant, the 

diffusion through the connecting tube occurs at steady state. As soon as the concentration 

between these two bulbs changed a little, a new steady state condition is maintained. So 

at any instant steady state condition is maintained, and the volume in this case we have 



considered of this copular volume is negligible, and there is suitable arrangement to keep 

this is bulb concentration at all the times at uniform concentration. 
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Let us consider the cross sectional area of this tube is A x and the length which is given 

is l, and volume B 1 and B 2, and the partial pressure for bulb 1 is P A 1 for component 

A and for component A in bulb 2 is P A 2, and P A 1 is greater than P A 2, and the total 

pressure remains constant. Since the total pressure remains constant, equimolar counter 

diffusion will take place; equimolar counter diffusion will occur and will take place. So, 

at steady state transport of A from bulb 1 to bulb 2 we can write as A x into flux of A is 

equal to A x diffusion coefficient AB into the partial pressure difference (P A 1 minus P 

A 2) divided by RT L, which will be equal to minus A x N B. So, this is equation number 

6.1.  
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Now at any times if we assume the gas is ideal gas; in that case, we can write at any time 

t minus v 1 by RT d P A 1 dt will be is equal to A x N A is 6.2 and v 2 by RT d P A 2 dt 

will be A x N A. The negative sign in the equation 6.2 indicates that the partial pressure 

is decreasing with with time, whereas in bulb 2 the partial pressure of component 1 is 

increasing in bulb 2. The partial pressure of A in bulb 1 is decreasing with time, whereas 

the some component is increasing with time in bulb 2 because of deputation from higher 

partial pressure to the lower partial pressure. If we sum this two equations 6.2 and 6.3, 

we will have minus d (p A 1 minus p A 2) dt will be equal to A x N A RT (1 by v 1 plus 

1 by v 2); this is equation number 6.4. Now if we substitute these relations A x N A in 

place of this term, so we will have minus d (p A 1 minus p A 2) dt will be equal to A x D 

AB (p A 1 minus p A 2) divided by l into (1 by v 1 plus 1 by v 2). So, this is equation 

number 6.5. 
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Now if use the following conditions at t is equal to 0 (p A 1 minus p A 2). So, initially 

this partial pressure in bulb 2 of component A is 0. So, this will be equal to P t the total 

pressure; partial pressure will be equal the total pressure minus 0. So, is equal to P t and 

at t is equal to t, (p A 1 minus p A 2) would be equal to p A 1 t minus p A 2 t. 

So with these conditions if we integrate this equation 6.5, so we will have the relation l n 

P t by (p A 1 t minus p A 2 t )will be equal to A x D B by L (1 by v 1 plus 1 by v 2) into 

t; so equation number 6.6. So from these equations, we can determine the diffusion 

coefficient of component A. So in this case, the parameters we need to measure is initial 

pressure in the vessel; second, the partial pressure of one of the component the partial 

pressure of one of the component in the vessel at the end of experiment; and the third 

thing, the time of experiment. With these parameters, we can be able to find out the 

mutual diffusivities from equation 6.6. 



(Refer Slide Time: 20:29) 

 

Let us consider a simple example to major the diffusivities from this experiments. To 

measure the diffusivity of CO 2 by two-bulb method, the pure CO 2 and nitrogen is filled 

in bulb 1 and bulb 2, respectively. The volume of bulb 1 is 4 liters and bulb 2 is 3 liters. 

These two bulbs are connected by a capillary tube of 5 centimeter length, 2 centimeter 

internal diameter. The partial pressure of CO 2 in the bulbs 1 and 2 are 60 kilo Pascal 

and 40 kilo Pascal, respectively at the end of 6 hours. The bulbs are maintained at 100 

kilo Pascal pressure and 313 Kelvin temperature. Calculate the diffusivity of CO 2. 
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Let us write down the parameters which are given. The volume of the two bulbs, 1 bulb v 

A 1 is v 1 is 4 liter; v 2 is 3 liter, and length of the capillarity tube is given which is 5 

centimeter, and the ID internal diameter of the tube; ID is 2 centimeter, length is 5 

centimeter. Total pressure P t is 100 kilo Pascal. Partial pressure one is 60 kilo Pascal; p 

A 2 is 40 kilo Pascal, and time t is 6 hours. So, these are the parameters which are given. 

So now, L the volume which is given is we can write it is 0.004 meter cube, and this is 

0.003 meter cube, and this length is 0.05 meter, and then from this we can calculate 

cross-sectional area, which is pi d square by 4 which will be equal to pi (2 into the 10 to 

the power minus 2 meter) whole square by 4; and it will be 3.14 into 10 to the power 

minus 4 meter square. So this is the cross sectional area, and time we can convert into 

seconds. So, it will be 6 into 60 into 60; so it will be 21600 seconds. 
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If we replace in the governing equations, which is ln (P t by p A 1 t minus p A 2 t) is 

equal to A x D AB by L into (1 by v 1 plus 1 by v 2) into t, or we can write D A B will 

be equal to L v 1 v 2 by A x t (v 1 plus v 2) ln (P t by p A 1 t minus p A 2 t). If we 

substitute these values, so D AB will be 0.05 meter into 0.004 meter cube into 0.003 

meter cube divided by 3.14 (14) into 10 to the power minus 4 meter square into 21600 

second into the sum of volumes (0.004 plus 0.003) meter cube ln 100 kilo Pascal divided 

by (60 kilo Pascal minus 40 kilo Pascal). So, this will be 2.0 into 10 to the power minus 

5 meter square per second. 
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So, let us consider another method for gas phase diffusion coefficient measurements; that 

is Stefan tube method. In this method a narrow tube, a narrow vertical tube which is 

connected with a horizontal tube of larger diameters. The diameter of this horizontal tube 

is much higher compared to the vertical tube, and in this vertical tube narrow tube, we 

used to take a volatile liquid A, and this volatile liquid at the top of the volatile surface 

which is say at time t, the height from the top is 8; height from the top of the vertical tube 

is 8 and the partial pressure at the surface is p A 1, which is the vapor pressure of the 

volatile liquids. 

Here we have assumed the component B, which is flowing through the vertical tube is 

insoluble in the volatile liquids; that is component B is non-diffusing in to component A, 

and component A is diffusing through non-diffusing B, and the partial pressure at the top 

of the surface is considered p A 2 is always 0 because of the high flow rate of component 

B. The liquid level from the top will drop slowly, and always there is a pseudo-steady 

state condition is maintained; that means as soon as some liquid, a volatile liquid 

evaporates, and in every instance another steady state is reached and the pseudo-steady 

state condition is maintained. The liquid in the vertical tube usually maintain at constant 

temperature and the diffusion takes place.  
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At any time t, we can write steady state flux of A; diffusion flux of A through non-

diffusing B can be written as N A, D AB P t by RTh p A 1 minus p A 2 by p BLM, 

where p BLM is the log mean pressure difference, which is p B 2 minus p B 1 divided by 

ln (p B 2 by p B 1), which is equal to p A 1 minus p A 2 by ln (P t minus p A 2 by P t 

minus p A 1). So, this is equation 6.7. Now if we assume you need cross-sectional area; 

that is 1 miter square cross-sectional area and dh meter of level level drops in dt second. 

In that case we can write the moles transfer rho A (dh into 1) divided by the M A. This 

will be the moles of A that has been transferred or diffused; Kmol of A has been left 

from the liquid and diffused. 
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So, in this case we can write flux into area will be equal to Kmol A transferred per time. 

So, if you substitute flux is N A and considered unit cross-sectional area 1 will be equal 

to mole transfer rho A is density of component A into dh is the level in to the cross-

sectional area divided by the molecular weight into dt. So this is the flux equation more 

balance equation, so 6.8. Now if we use the conditions, following condition and integrate 

the this equation. At the first conditions at t is equal to 0, h is equal to h 0; and the second 

conditions at t is equal to t, h is equal to h f; t is equal to t F, say. So with these 

conditions and if we integrate equation 6.8, we will have rho A by M A integral h 0 to h f 

h dh will be equal to D AB P t by RT (p A 1 minus p A 20 by P BLN integral 0 to t F dt. 

So, this is equation number 6.9. 
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So after integration, we will obtain t F will be rho A (h F square minus h 0 square) RT p 

BLM by twice M A D AB P t (p A 1 minus p A 2) or we can write D AB will be equal to 

RT p BLM (h F square minus h 0 square) divided by twice P t M A (p A 1 minus P A 2) 

into t F. So as we said, in this case we can consider p A 2 will be 0 all the times because 

there is a high flow rate of air through the or component B non-diffusing B through the 

horizontal tube, and the partial pressure p A 1 will be equal to the vapor pressure since it 

is a volatile liquid at that conditions. 
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So, let us consider a simple example to calculate the diffusivity using Stefan tube 

method. To measure the diffusivity of the water vapor by Stefan tube method, the water 

is filled in the vertical narrow glass tube and held at constant temperature of 30 degree 

centigrade. The air is flowing to the horizontal tube at a total pressure of 1 atmosphere 

and the temperature is 30 degree centigrade. Initially, the water level was at a distance of 

1 centimeter from the top of the vertical tube and after 30 minutes the level drops to 1.2 

centimeter from top. The vapor pressure of water at 30 degree centigrade is 

approximately 4.5 kilo Pascal. Calculate the diffusivity of water vapor. 
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Let us write down the parameters which are given in these examples. So given, T is 30 

degree centigrade, which is 273 plus 30 is 303 Kelvin. R is known to us; 8314 meter 

cube Pascal Kmol Kelvin. P t total pressure is 1 atmosphere, which is equal to 101.3 into 

10 to the power 3 Pascal. p A 1 is given 4.5 kilo Pascal, which is 4.5 into 10 to the power 

3 Pascal. p A 2 which is equal to 0. Molecular weight of water is 18. h 0 is 1 centimeter, 

which is 0.01 meter. h F is 1.2 centimeter, which is 0.012 meter. t f is 30 minutes, which 

is 30 into 60; 1800 seconds. 
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Now calculate p B 1 is P t minus p A 1 is equal to (101.3 minus 4.5) into 10 to the power 

3 Pascal, which is equal to 96.8 into 10 to the power 3 Pascal. p B 2 is P t minus p A 2 is 

equal to (101.3 minus 0) into 10 to the power 3 Pascal is equal to 101.3 into 10 to the 

power 3 Pascal. So, p BLM we can calculate is p B 2 minus p B 1 by ln (p B 2 by p B 1). 

Putting this value will be 4.5 into 10 to the power 3 Pascal divided by ln (101.3 into 10 to 

the power 3 Pascal divided by 96.8 into 10 to the power 3 Pascal). So, this will be equal 

to 0.99 into 10 to the power 5 Pascal, which we can write 10 to the power 5 Pascal.  

Now if we substitute in this equation, D AB is equal to RT p BLM divided by twice P t 

M A (h F square minus h 0 square) divided by (p A 1 minus p A 2) into t F. So if you 

substitute these values, this will be 8314 into 303 into 10 to the power 5 into (0.012 

square) minus (0.01 square) divided by 2 into 101.3 into 10 to the power 3 into 18 into 

the partial pressure difference which is 4.5 into 10 to the power 3 into the total times 

1800 second. So, this will be around 3.4 into 10 to the power minus 5 meter square per 

second. This is the value of diffusion coefficient of water vapor by using the Stefan tube 

method. 

So, this is end of lecture 6, and in the next lecture we will continue with the gas phase 

diffusion coefficient predictions by empirical methods, and then we will consider the 

experimental determination of the liquid phase diffusion coefficients. 


