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Module - 1
Diffusion Mass Transfer
Lecture-4
Steady State Molecular Diffusion in Fluids
Part 1

Welcome to the fourth lecture of module one. This lecture will be on steady state

molecular diffusion in fluids under stagnant and laminar flow conditions.
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So, before proceeding to this lecture we will have some recap on the previous lecture. In
the previous lecture, we have discussed fixed first law of diffusion, where for one-
dimensional diffusion in a particular direction x, we can write the molar flux J A, x is
equal to minus D AB dC A dx; dC A is the concentration gradient and dx is the distance
and D AB is the diffusion coefficient. The negative sign indicates the drop in
concentration towards the directions of diffusion. And then we have seen, for an ideal
gas mixture the diffusion coefficient between component A and B, we call the mutual

diffusion coefficients are equal and we can write D AB is equal to D BA.



And then we have discussed the unsteady state diffusion, where rate of diffusion changes
with respect to time. And we have derived the governing equations containing unsteady
state diffusion, and governing equations are del C A del t is equal to D AB del C A del x
2 plus del 2 C A dely 2 plus del 2 C A del Z 2 and this is known as fixed second law,
and this is frequently applicable in solids and less frequently or limited situations in
fluid.
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So, today we will start with steady state molecular diffusion in fluids and in this case
there are stagnant conditions and laminar flow condition. And also, this can occur in two
different geometry, one is constant area, constant area and variable area. So, today we

will discuss only on constant area and later we will continue with the variable area.
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So, for constant area let us assume diffusion in x-direction, no chemical reaction, binary
system and under steady state condition. So, then for diffusion of particular species A we
can write N A is equal to minus C D AB d Y A dx plus Y A N. Now, if we separate the
variables we can write minusd Y A by N A minus Y A N is equal to dx divided by C D
AB.
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Now, consider mixture of gases, gas mixture, which is at constant pressure and

temperature. Then, the concentration and diffusion coefficient D AB, these are constant



and independent of position. So, we can write the boundary condition as, at x is equal to
x 1, the mole fraction of component 1 will be Y Al; at x is equal to x 2, the mole
function of component 2, Y A2. So, using these boundary conditions if we integrate the
previous equations, so we can write Y A1 Y A2 minusd Y A by N A minus Y AN is

equal to integral x 1 to x 2 dx divided by C D A B. So, this is equation number 2.

Let N A minus Y A N is equal to z. So, then we can write minusd Y A N will be dz and
hence, d minus d Y A would be equal to d z by N. So, if we substitute this over here,
with the change of limit we can write, z1to z 2 dz by z 1 by N will be equal to 1 by C D
AB integral x 1 to x 2 dx.
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So, now, upon integration (( )) write 1 by NInz 2 by z 1isequal to 1 by CD AB x 2
minus x 1. So, if we substitute the limit z 1, then we can write In N A minus Y A 2 N
divided by N A minus Y A1 N would be equal to N by C D AB into x 2 minus x 1. So,
again, we can write In N into N A by N minus Y A2 divided by N N A by N minus Y Al

is equal to N by C D AB into x 2 minus x 1 and this will cancel out.

And if we rearrange this one we can write, 1 is equal to C D AB by x 2 minus x 1 and 1
by N In N A by N minus Y A 2 divided by N A by N minus Y Al. So, if we multiplied
both sides by N A, so these equations will become N A and N A by N this is equation
three. So, this is the final form of the steady state molecular diffusion of a component A

to a constant area.
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And then if we use these equations for a particular case, steady state diffusion through
non-diffusing components, so consider A is diffusing and B is non-diffusing. In this case
since B is non-diffusing, so flux for B component, N B will be 0 and the flux for
component A will be constant. Now, if we go back to the governing equation we can
write, N Aisequal to N Aby N C D AB by x 2 minus x 1 In N A by N minus Y A2 by N
A by N minus Y Al.

Now, since N is equal to N A plus N B and N B is equal to 0, in this case, so N will be N
A. So, this term N A by N will be equal to N A by N A is equal to 1. So, now, this
equation will become N A is equal to C D AB by x 2 minus x 1 In. So, this term becomes
1, this becomes 1 and this becomes 1. So, this will be 1 minus Y A 2 by 1 minus Y A 1.
So, this is equation number 4.
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Now, consider the system is ideal gas. So, in this case we can write, the concentration is
equal to total pressure P t divided by RT; mole fractions Y A, we can write, partial
pressure of component A by total pressure. So, in terms of partial pressure we can write
the earlier equations, N A is equal to D AB P t by RT x 2 minus x 1 into In P t minus p
A2, partial pressure of component A active, divided by total pressure minus partial
pressure of component A at location 1. So, p Al and p A2 are the partial pressure at

location 2 and 1.

And for binary gas mixtures we know, that p A plus p B, at any location will be total
pressure, so that we can write P t minus p A2 will p B2. Similarly, P t minus p Al is p
B1 and p A1 minus p A2 will be p B2 minus p B1. From this we can write, p A1 minus p
A2, partial pressure at location 1 and 2 for component A divided by partial pressure of
component B at location 2 minus partial pressure of, component, component B at

location 1 will be equal to 1.
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So, this if we substitute in this relation equation 5, so now if we substitute this P t minus
p A2 by p B2 and P t minus p Al by p B1 and then if we multiply it, this equations by
this ratio, which is 1, we will essentially have N A is equal to D AB P t by RT x 2 minus
x 1into p A1 minus p A2 by p B2 minus p B1 In p B2 by p B1. So, this is equation 6.1.

Now, if we rearrange this equation D AB P t divided by R T x 2 minus x 1 into p Al
minus p A2 divided by p B2 minus p B1 divided by In p B2 by p B1. So, this term,
essentially, we called the (()) partial pressure difference, so we can write p BLM. Then,
we can write d flux N A will be D AB P t, total pressure, divided by RT x 2 minus x 1 p
BLM into the partial pressure difference p A1 minus p A2. So, this is equation 6.2.
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Example 1

CO, is diffusing through non diffusing air under
steady state conditions at a total pressure of 1
atmosphere and temperature J00K. The partial
pressure of CO, is 20kPa at one point and SkPa at
other point. The distance between the points is
scm. Calculate the flux of CO,. Given that at J00K
and at 1 atm, Dggs.,,= 2 X 10 mils.
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Now, consider carbon dioxide is diffusing through non-diffusing air under steady state
conditions at a total pressure of 1 atmosphere and temperature 300 Kelvin. The partial
pressure of CO 2 is 20 kilo Pascal at one point and 5 kilo Pascal at other point. The
distance is given between the two points is 5 centimeter and we have to calculate the flux
of CO 2. The diffusivity at a particular condition is given CO 2, 2 into 10 to the power

minus 5 meter square per second.

Let us assume ideal gas and component, B, air, air, component air is considered as B. So,
we can write the flux equations of component A to non-diffusing B. We can write flux of
CO 2isequal to D CO 2 air divided by RT x 2 minusx 1 Ptby PBLM intop CO 2 at 1
minus p CO 2 at 2. The data, which is given is diffusion coefficient, total pressure, R and
T are known, distance between the two points are known, partial pressure were given, we

have to calculate P BLM.



(Refer Slide Time: 23:36)

Example 1: Solution

. P
b = Zaip T SE
Loy~ i =
A s [abri= lorh sl = FoldXN /g
P
. = HI:II:x.I|I _."_l-:l'F-;Ew:ﬂ,gj
||I;',l_,.prl| e IE-I ‘-ﬁ.__pg;-a.""}
: P
e, b = cxfy = sOo*/A -
£ = Biry Fe wd K :
- YT AL L
Pas = P — FPaar® ﬁ“'t 2o)tha

Pay = fi- Puyse (e 3- &)ehls Te3k

Pa, - Psr . BE3¥S of, gpseah

fom = ;:T:},T/;%' Lot b frs) = gasi

So, let us consider D CO 2 air, which is 2 into 10 to the power minus 5 meter square per
second; P t, total pressure is given 1 atmosphere, which is 101.3 kilo Pascal, which is
1.013 10 to the power 5 Pascal; t is given 300 Kelvin; x 2 minus x 1, the distance
between the two points is 5 centimeter, which is 0.05 meter; partial pressure of CO 2 at
0.2 is 20 kilopascal is equal to 20000 Pascal; partial pressure of CO 2 at 0.2 is given 5
kilopascal, which is 5000 Pascal and R is known to us, 8314 in Sl unit Pascal meter cube

per K mole Kelvin.

And then we have to calculate the P BM, p B, 1 is P t minus partial pressure of CO 2 at
0.1, which is equal to 101.3 minus 20 kilopascal, which is equal to 81.3 kilopascal; p B,
2, P t minus p CO 2 at point 2, which is 101.3 minus 5 kilo Pascal, which is 96.3 kilo
Pascal. So, putting this value we can calculate P BLM, which is p B, 2 minus p B, 1 by In
p B2 by P B1. So, putting the values, 96.3 minus 81.3 divided by In 96.3 by 81.3 kilo
Pascal is 88.59 kilo Pascal, so which is equal to 88590 Pascal.



(Refer Slide Time: 26:59)

Example 1: Solution

Zxp EH}"{ ® "I'JI“!-"""#:.':'&' f.]
Baty A=t 3o i pete A AR : i
Tt A =

o 1
= = G_kmal

275 %i0 —=

l-tl-t—

So, now, if we substitute in the flux equation, N CO 2 we can write, this is diffusion
coefficient, 2 into 10 to the power minus 5 meter square per second. And then the total
pressure, 1.013 into 10 to the power 5 Pascal divided by R, 8314 Pascal meter cube per
K mole Kelvin into 300 Kelvin. The distance 0.005 meter into (( )) partial pressure
difference is of component B, 88590 Pascal into 20000 partial pressure of component A
at point one minus 5000 Pascal. So, this will cancel out and this will cancel out. So, if we
calculate, the flux will be 2.75 into 10 to the power minus 6 K mole per meter square
second.

(Refer Slide Time: 28:55)

Steady State Equimolar Counter

Diffusion
o
Ny, = — £ 'I:".llr!, d":" + Ya __'..f'l_':l
) Ve ¢ )l
_.'\.l'_ﬂ_ - '_ul"!; {'_ﬁmi.ﬁl.-r‘vé
MNos Mg+ Mg = o
Mia a e Dk *“3%*.
Assume (el Gan



Now, consider the other case where steady state equimolar counter diffusion is
occurring. If there is an equimolar counter current diffusion for our governing equations,
as we know, N A is equal to minus C D AB dY A dx plus Y A N. This is equation

number 1, as we have discussed earlier.

And for equimolar counter current diffusion, N A is equal to minus N B N is equal to
constant. So, N, which is equal to N A plus N B, would be equal to 0. Since this is 0, so
we can write N A is equal to minus C D AB dY A dx. Assume ideal gas, if we assume

ideal gas, let C is equal to total pressure by RT.
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So, this equations will be N A, is equal to minus D AB P t by RT dY A dx. So, this is
equation number 7. Now, if we use the boundary conditions, at x is equal to x 1, Y A will
be Y Al; at x is equal to x 2, Y A will be Y A 2. So, using this boundary condition we
can write, flux will be equal to D AB P t by RT x 2 minus x 1 into Y Al minus Y A2.
And hence, we can write, D AB by RT x 2 minus x 1. If it multiplied by the total
pressure, this will be partial pressure p AL minus p A2 of component A. So, this is

equation 8.
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Example 2

CO, is diffusing at steady state through a
straight tube of 0.5m long with an inside
diameter of 0.05m confaining N, at 300K and 1
atm pressure. The partial pressuré 6f CO, at one
end Is 15kPa and 5kPa at the other end. Glven
that at 300K and 1atm. Given that D.,, .= 4x10
miis. Calculate the following for steady state
equimolar counter diffusion:

a) molar flow rate of CO,
b} molar flow rate of N,

Now, let us have an example where the equimolar counter current diffusion is occurring.
Consider the similar gas as we have considered in the example 1, CO 2 is diffusing at
steady state through a straight tube of 0.5 meter long. The distance is given with an
inside diameter 0.05 meter, which contains the nitrogen gas at 300 Kelvin and 1

atmosphere pressure.

The partial pressure is given at two points, at one point 15 kilopascal and other point is 5
kilopascal and the diffusion coefficient, d CO 2 nitrogen is given 4 into 10 to the power
of minus 5 meter square per second. And we have to calculate molar flow rate of

component A, that is, CO 2 and the molar flow rate of component B, that is N 2.
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Let us assume ideal gas and then we know the flux equation N CO 2 will be equal to D
CO 2 into nitrate to the nitrogen, RT x 2 minus x 1 into partial pressure of CO 2 at point
1 minus partial pressure of CO 2 at point 2. So, the data, which are given, diffusion
coefficient of CO 2 nitrogen, 4 into 10 to the power minus 5 meter square per second
pressure is given; P t, which is 1 atmosphere, 101.3 kilopascal, which is equal to 1013
into 10 to the power 5 Pascal and temperature is given, which is 300 Kelvin. And the
distance, x 2 minus X 1, between two points is 0.5 meter. The partial pressure of CO 2 at
point 1 is 15 kilo Pascal, which is 15000 Pascal and the partial pressure of CO 2 at point
2 is 5 kilo Pascal, which is 5000 Pascal and R is given, R is known to us, 8314 Pascal

meter cube K mole Kelvin.

Now, if we substitute in this equation, the flux N CO 2 will be equal to diffusivity, 4 into
10 to the power minus 5 meter square per second and RT, 8314 Pascal meter cube per K
mole Kelvin into 300 Kelvin into 0.5 meter multiplied by the partial pressure difference,
15000 minus 5000 Pascal. So, if we calculate, this will be equal to 3.21 into 10 to the
power minus 7 K mole per meter square second. So, this is the flux of CO 2.
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We have to calculate the molar flow rate of CO 2. So, to calculate the molar flow rate,
the molar flow rate is equal to flux of CO 2 multiplied by the cross-sectional area of the
tube which is A. Internal diameter is given, say, D i is 0.05 meter and then we can
calculate the cross-sectional area, A is equal to pi D i square by 4 is equal to pi by 4 0.05
square meter square, which is equal to 1.96 into 10 to the power minus 3 meter square.
So, the molar flow rate, CO 2, is equal to, flux we have obtained, N, earlier which is 3.21

into 10 to the power minus 7 K mole per meter square second.

So, 3.21 into 10 to the power minus 7 K mole per meter square second multiplied by the
cross-sectional area, 1.96 10 to the power minus 3 meter square. So, if we multiply, this

will cancel out and then it will be 6.29 10 to the power minus 10 K mole per second.
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Similarly, for component B, that is, nitrogen we can calculate, N, nitrogen is equal to D
N 2 CO 2 divided by RT x 2 minus x 1. Partial pressure of N 2 at point 1 minus partial
pressure of N 2 at point 2, now p N 2 at point 1 will be P t minus p CO 2 point 1, which
is 101.3 minus 15 kilo Pascal, which is equal to 86.3 kilo Pascal and 86300 Pascal; p N 2
at point 2 is P t minus p CO 2 at point 2 is 101.3 minus 5 kilo Pascal is equal to 96.3 kilo

Pascal, which is equal to 96300 Pascal.

We know that for equimolar counter current diffusion, D CO 2 N 2 isequal to D N 2 CO
2, so we can use the same diffusion coefficient and calculate the flux N N 2. If we
incorporate this data, so it will be minus 3.21 into 10 to the power minus 7 K mole per

meter square second.
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Similarly, the molar flow rate of N 2 we can calculate, minus 3.21 into 10 to the power
minus 7 K mole per meter square second into 1.96 into 10 to the power minus 3 meter
square. So, it will be essentially same value, but with a negative sign, which indicates,
that the flux is in opposite direction compared to the carbon dioxide, so K mole per

second.
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So, another type of diffusion occurs where the component are not equimolecular in

nature. So, there are many situations, they are non-equimolar counter diffusion. Let us



consider the following reaction, twice A plus B for being twice C, where 1 mole of A
diffuses towards, towards B, whereas 2 moles of B diffuses back or in opposite direction.
So, in this case, the N A will be minus N B by 2. And we can derive the governing
equations considering our basic equations. So, this is end of discussion of lecture 2 and
in the next lecture we will consider the steady state diffusion through non-uniform

geometries.

Thank you.



