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Module - 2
Mass Transfer Coefficients
Lecture -5
Mass Transfer Coefficients in Turbulent Flow

Welcome to fifth lecture of module two. The module 2 is on mass transfer co-efficient.
So, in this lecture, we will consider mass transfer co-efficient in turbulent flow

conditions.
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So, in the previous lecture we have discussed boundary layer theory, which governs the
basis for mass transfer in turbulent flow conditions. And also we have introduced that in
turbulent conditions, how to calculate the mass transfer coefficient using film theory.
And in film theory, we have seen liquid phase mass transfer coefficient is directly
proportional to the diffusion coefficient of the component. And we have discussed a
simple problem, how to calculate the film thickness using film theory?
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In this lecture, we will discuss penetration theory, and surface renewal theory. This
theories are very important for the cases, where the mass transfer coefficient cannot be
calculated using the different other theories or mass transfer correlations. So, this theory
a gives a simplistic estimation of the mass transfer co-efficient and flux for turbulent
flow conditions. This is used for unsteady state mass transfer, in case of film theory, we
assume that there will be a concentration profile, which will obtain at steady state
condition and mass transfer will follow at steady state. In many situations, where the gas
liquid contact times are very sort, so that the time required to attain the steady state may
not arise time of contact is short. So, steady state condition does not attain. So, in this
case we have to use some realistic theory, which assumes unsteady state condition and

mass transfer in turbulent conditions.
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So, one of such theory is penetration theory and in 1935 Higbie, he assumes that a pool
of liquid in which a bubble is rising say this is the bubble, and an element of liquid which
is swept through the surface, say element liquid a is swept on the surface and it remains
in contact during its travelled through its diameter of the bubble; and finally the bubble

detach at the bottom. So, the time of contact is the time, the length travelled by the

element of the liquid about its diameter; diameter of the bubble.
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Using the similar phenomena Higbie, assume that in case of turbulent flow conditions, if
we considered this is the gas liquid interface, this is gas and this is liquid and the liquid
element are travelled at a d during turbulent flow conditions, and say this is the liquid
element it will come to the surface, and it travels to its diameter and remains expose to
the surface at t time, and then it returned back to the liquid bulk. So, this is the liquid
bulk and the concentration of component A in the liquid is a C AB the bulk
concentration at the surface the concentration of component A is C Ai that is the
interfacial concentration of the component, and the time of exposure is t.

So, it assumes unsteady state mass transfer occurs at the gas liquid interface, and the
equilibrium is immediately attend at the gas liquid interface, and then each liquid
element is in contact with the gas at gas liquid interface for same length of time. This
means that every element will travel from the bulk to the gas liquid interface, and they
remains in the interface at t amount of time and each element will have same length of

time, and that will be again replaced by the fresh element of the liquid.
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And the fourth 1 is the depth of the liquid liquid is infinite, this means that the
concentration at the interface is C Ai and immediately to that it will remain as bulk

concentration C AB.

So, at other side of the element it also remains as bulk concentration, and this is possible

when the contact time between gas and liquid is very short. So, that it will not reach the



interfacial concentration that is not reach to the bulk concentration, and immediately
after that it remains bulk concentration. And the existence of the velocity gradient
existence of velocity gradient within the fluid is ignored. So, at every case the fluid

elements are travelling or moving at the same rate.
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Example Problem

Solule A & absorbed in a liguid under unsteady stale
condition where penetration theary |s applicable.
Diffusion of A occurs in the z-direction only. Obtain
concentration profile and fux at the interface using the
following boundary conditions:

at t=0, Oepem, C,=C,,
at ©>3, re0, (1

at  t=0, z==, Cas=Gyy

Cup ™ coni. in the bulk liguid phase
Ca = aquilibrium conc. at the G-L interface
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Now with these assumptions, let us considered a simple case example problem where
solute A is absorbed in a liquid under unsteady state conditions, where penetration theory
is applicable. Diffusion of a occurs in the z direction only in 1 dimension obtain
concentration profile and flux at the interface using the following boundary conditions, at
t is equal to O, z greater than O less than infinity, C A will be C Ab the bulk
concentration, C Ab is the concentration in the liquid bulk at t is equal to 0; that is z is
equal to O that is at the interface, the concentration of solute A will be interfacial
concentration of solute A at t greater than 0, z will be equal to a infinity. So, at infinite

death C A will be bulk concentration.
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So, if we considered the Fick’s second law for unsteady state diffusion derived in module
1 with the avop assumptions reduces to del C A del tis equal to D AB del 2 C A del z 2.
So, we can write concentrations in terms of deviation variable, that is C is equal to C A
minus C A bulk. So then we can write del C del t will be equal to del C A del t and del 2
C del z 2 del 2 C A del z 2. Since, C Ab as you can see from the boundary conditions

with respect to time and space is constant. This equations reduces to del C del t is equal
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toDABdel2Cdelz2.
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Example Problem

Solute A s absorbed in a liguid under unsteady state
condiion whefe penetration theory (s applicable.
Diffusion of A occurs in the z-direction only. Obtain
concentration profile and flux at the interface using the
fallowing boundary conditions:
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Then the boundary conditions which is given this will be reduce to t at t equal to 0, z less
than infinity less than 0, C will be 0, t greater than 0, at z equal to 0, C will be interfacial
concentration C i; that is equal to C Ai minus C A b and at t greater than 0 at z equal to
infinity, C will be 0. So, with these boundary conditions these equations may be

conveniently solved using Laplace transform.
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C bar, if we say Laplace transform of C we can write integral 0 to infinity e to the power
minus p t C dt, then we can write del C bar del t will be equal to integral 0 to infinity e to
the power minus p t del C del t dt. Now, putting the limit this will be equal to e to the
power minus p t C 0 to infinity plus p integral 0 to infinity e to the power minus p t C dt.
We know that when t equal to 0, C equal to 0 from the boundary condition. So, this will

be 0 and it will be p and this part will be C bar, so p into C bar.
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Now, using the Laplace operator we know that del 2 C del z 2 will be equal to del 2 C
bar del z 2. So, if we take the Laplace transform for both sides this part will be p C bar

will be equal to D A B del 2 C bar del z 2. So, this will lead to del 2 C bar del z 2 it
minus p by D A B C bar will be equal to 0.
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So, this is an ordinary differential equation of C bar, and the solutions of this equation is
C bar will be equal to B 1 e to the power root over P by D A B z plus B 2 e to the power
minus root over P by D A B z. We know that when z equal to 0, C A will be C Aiand C



will be C Ai minus C A b is equal to C i. And when z equal to infinity, C A will be C A
bulk, and C will be 0.

So, using this boundary conditions we can obtain B 1 is equal to 0, and B 2 is equal to C
I. So, we can write the solution C bar will be equal to B 2 e to the power minus root over
P by D ABinto zis equal to C i e to the power minus root over Pby D ABinto z .
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So, now B 2 is equal to integral 0 to infinity C Ai minus C A b e to the power minus p t
dt which is equal to 1 by p C Ai minus C A b. So, then we can write C bar is equal to 1
by p C Ai minus C A b e to the power minus root over p by D AB z. So, taking inverse
transform we can obtain C will be equal to C A minus C Ab is equal to C Ai minus C Ab
into e r f ¢ - complimentary error function into z by 2 root over D AB t. We know the

definition e r f x is the error function of a x e r f ¢ x is complimentary error function of x.
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So, by definition we can write e r f C complimentary error function of x is equal to 2 by
root pi integral x to infinity e to the power minus x square dx, and since integral 0 to
infinity e to the power minus x square dx is equal to root pi by 2 e r complimentary error
function goes to 1 to 0 when x varies from 0 to infinity. So, the concentration gradient
we can obtain by the differentiation of the previous equations, these equations we can
differentiate and obtain the concentration profile, so that is 1 by C A minus C A b del C
A del z will be equal to del del z of 2 by root pi integral z by 2 root-over D AB t from
this to infinity e to the power minus z square divided by four D AB t d of z divided by 2
root over D AB t.

So, therefore we will get del C A del z will be equal to minus C Ai minus C Ab 2 by root
five 1 by root over D AB tinto t e to the power minus z square by four D AB t. So, this
will be equal to minus C Ai minus C Ab into 1 by root over pi D AB t into e to the power

minus z square by four D AB t.
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The mass transfer at any position z at time t can be obtained as N A is equal to minus D
AB del C A del z, if you substitute del C A del z obtained about here, then this will be
equal to C Ai minus C A b root over D AB by pi t e to the power minus z square by 4 D
AB t. The mass transfer rate per unit area of the surface per unit area of the surface can
be written, that is N A at t z equal to 0 will be minus D AB del C A del z at z equal to 0,
so if we put in this equation that z is equal to 0, this will be is equal to C Ai minus C A b

into root over D AB by pi t, this is known as the local mass transfer coefficients.

So, K L tis root over D AB by pi t. So, this is the local mass transfer coefficient. So,
then K L average we can obtain 1 by t integral 0 to t K L t dt is equal to 1 by t integral 0
tot KL tis D AB by pi t to the power half into dt, which is equal to 2 into root over D
AB by pi t. So, this is the average mass transfer coefficient obtained using penetration

theory.
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Example

Pure CO, is absorbed in water at 28°C and 1 atm pressure
in a laminar et contactor where the contact time ks very
short so that the penetration theory is applicable. The
waler |4 initially CO, free. The interfacial concentration s
0.03 kmolim® at x‘i‘ﬁd 1 atm pressure. The unsieady
s15%8 mass fransfer takes place for 1 minute. Calculate the
liquid phase mass transfer coefficiont and the fux of CO,.

Given that Degg e = 2 107 miis at 26°C.

o

HFTEL

Now, let us considered a simple example pure carbon dioxide is absorbed in water as we
have discussed similarly problem earlier, at 25 degree centigrade and 1 atmosphere
pressure in a laminar jet contactor, where the contact time is given very sorts. So, that the
penetration theory is applicable, the water is initially CO 2, free interfacial concentration
is given at particular temperature and pressure, unsteady state mass transfer takes place
for 1 minute, calculate the liquid page mass transfer coefficient and the flux of CO 2, and

the diffusion coefficient of CO 2 in water at 25 degree centigrade is given.
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So, according to penetration theory we know the average mass transfer coefficient K L
average is equal to 2 into root over D AB by pi t, and given that D AB is equal to 2 into
10 to the power minus 9 meter square per second, t is equal to 1 minute which is 60
second.

So, we can calculate K L average will be 2 into root over 2 into 10 to the power minus 9
meter square per second divided by pi into 60 second. So, this will be equal to 6.52 into

10 to the power minus 6 meter per second.
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Now, we can calculate the flux or the rate of absorption, which is N A K L average into
C Ai minus C Ab. C Ai is given 0.03 k mole per meter cube, and initially water is CO 2
free. So, C Ab is equal to 0. So, flux N A would be mass transfer coefficient meter per
second into C Ai 0.03 minus 0 k mole per meter cube is equal to 1.96 into 10 to the

power minus 7 k mole per meter square second.
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So, now consider another theory which is surface renewal theory, and one serious
drawback for penetration theory is that. The assumption of equal contact time or same
contact time for all a liquid elements - same contact time for all liquid element. So, it is
highly or more likely more probable that there is a distribution of the age is at the gas
liquid interface, due to turbulent flow conditions, the eddies may swept away the
interfacial elements of fluid. So, they will leave the surface very quickly, and some
element may stay at the surface for longer time, some elements may quickly swept away
by the eddies or some element may stay at the gas liquid interface for longer time. So,
there is a age distributions of the fluid elements in contact with the gas at the gas liquid
interface. So, this way the situations was visualized by P V Danckwerts in 1951, that is

what this theory is also known as Danckwerts surface renewal theory.
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The important assumptions are assumptions: liquid elements at the gas liquid interface
are being randomly replaced by fresh liquid from the bulk. At any moment each of liquid
element at the gas liquid interface has the same probability of being replaced by fresh
liquid element. And unsteady state mass transfer occurs mass transfer occurs at the gas
liquid interface, so that the K L average can be obtained as root over D AB into S, where

S is the fractional rate of surface renewal.
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We know that there will be a age distribution for this unsteady state mass transfer. So, if
we considered E eth t is the age distribution function, then fraction of element of age
group between t and t plus dt is equal to E t dt. So, the surface age distribution function E
t can be obtained as S e to the power minus s t. So, this is the age distribution function
for this case. Now, as we know K L average will be equal to integral 0 to infinity K Lt E
t dt. So, this k L t as we derived earlier is the point mass transfer coefficient which is root
over D AB by pi t.
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So, the K L average is equal to integral O to infinity root over D AB by pi t S e to the
power minus s t dt, which is equal to D AB S by pi root over integral 0 to infinity s t to
the power minus half e to the power minus s t d st. So, this is known as gamma function.
So, this is equal to root over D AB S by pi into root pi, so which is equal to root over D
AB S.
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Example

Puie COy I8 absorbed In waler i a continuous stirfed gas-
liguid contactor at 256 °C and 1 atm pressure. The flow rate
of water is maintained at 8.5 litmin. The concentration of
CO; in the oullet solution is 0.028 kmolim®. The
equilibrium concentration of CO, al 25°C and 1 aim
pressure iz 0034 kmolm®. The volume of the stimed
solution is § litres and the specific interfacial area is 40
miim’ of the stirred solution. The diffusivity of CO; in
water at 25°C is 210 mis. If surface renewal theory s
applicable, then calculate the fractional surface renswal
rate.
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Now, let us considered our earlier problem, which we have discussed in case of
boundary layer theory pure CO 2 is absorbed in water in continues tear gas, liquid
contactor at 25 degree centigrade and at 1 atmosphere pressure, the flow rate of water is
maintain at 0.5 litre per minute, the concentration of CO 2 in the outlet solution in is
0.025 kilo mole per meter cube, the equilibrium concentration at 25 degree C n 1 at
atmosphere presser is 0.034 kilo mole per meter cube. The volume of the stirred solution
is 5 litre and the specific interfacial area is 40 meter square per meter cube of the stirred
solution, the diffusivity of CO 2 in water at 25 degree centigrade is 2 into 10 to the minus
9 meter square per second. If the surface renewal theory is applicable then calculate the

fractional surface renewal rate.
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Volumetric florid which is given which is equal to 0.5 litre meter per minute, so obtain
this is equal to 8.33 into 10 to power minus 6 meter cube per second, and the outlet
concentration is 0.025 k mole per meter cube. So, the steady state absorption rate
absorption is 8.33 into 10 to the power minus 6 meter cube per second into 0.025 minus
0 kilo mole per meter cube. So, this is equal to 2.08 into 10 to the power minus 7 k mole
per second. Now, Vv is given it is 5 litre, so which is equal to 0. 005 meter cube, and

interfacial area is 40 meter square per second.

So, we can calculate mass transfer coefficient v into a K L C equilibrium minus C is
equal to 2.08 into 10 to the power minus 7 k mole per second. (()) here it is substitute k a
b and equilibrium concentration is given, and C is known to us which is given C is 0.025
and this is 0.34. So, substituting these values we can calculate K L is equal to 1.15 into
10 to the power minus 4 meter per second. So, now according to surface renewal theory

we know that K L is equal to root over D A B into S.
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So, K L we have calculated, K L is equal to 1.15 into 10 to the power minus 4 meter per
second, and K L average is equal to root over D AB into S. So, S is equal to K L average
K L average square divided by D AB. So, D AB in this case it is given D AB, the
diffusion coefficient of CO 2 in water is 2 into 10 to the power minus 9 meter per second
at 25 degree centigrade, so which is equal to 1.15 into 10 to the power minus 4 square
divided by D AB 2 into 10 to the power minus 9, so this will be 6.61 second inverse. So,

this means the surface is renewed for 6.61 times per second.

Thank you.



