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Derivation of the Stokes travelling wave

Until now we have looked at linearized interfacial waves, now we will start with an example

of non-linear surface waves. This is also the example that we are going to do is also known as

Stokes waves. It is named after George Gabriel Stokes who was the first person to derive it

analytically. 

Now because the algebra tends to be lengthy because this is a non-linear wave, so, we are

going to make a number of simplifying assumptions all of which will help make the reduce

the length of the algebra.
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So, we are going to assume deepwater. We already know what is the deepwater

approximation. So, we are going to pretend that in the base state the pool is infinitely deep.

We are going to have a free surface which means that we are going to ignore the density of

the fluid above.

So, if this is an air water situation we are going to ignore the density of air. We are also going

to ignore surface tension and keep only gravity as the restoring force. As usual the base state

is quiescent and the pressure is hydrostatic. We have already seen these approximations

before. So, this is a pictorial depiction of the base state. So, the z is equal to 0 line represents

the free surface in the base state and there is no velocity in the fluid below it.

Then we introduce a perturbation which are governed by the equations that we have

encountered before. Let us go over that once again. So, the velocity field perturbations are



governed by the Laplace equation governing the velocity potential the perturbation velocity

potential.

We then have a kinematic boundary condition which is basically an equation of mass

conservation. Note that we have written the full kinematic boundary condition now we are not

linearizing it because we are going to do a non-linear calculation now. So, we need to write

the full kinematic boundary condition. So, this is the full kinematic boundary condition. We

have derived this earlier.

We also have the condition that pressure is equal to 0 at the free surface both in the base state

as well as in the perturb state there is no surface tension. So, the pressure at the free surface is

always 0. We can write the Bernoulli equation add the free surface set pressure equal to 0 and

that gives us the Bernoulli equation applied at the perturb state. Note that this is applied at z is

equal to eta now. In the linearized description we were earlier applying it a z is equal to 0.

In addition we also have the finiteness condition because this is a deep water calculation. So,

the finiteness approximation says that the perturbation velocity potential remains finite as we

go to deeper and deeper regions of the fluid. Like before we assumed the surface and the fluid

is horizontally unbounded. So, the free surface extends from minus infinity in x to plus

infinity and it goes from plus eta in z to minus infinity. So, with those approximations let us

now analyze these non-linear equations. 
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First let us so, non dimensionalization. We have done this before and the choice of scales

have been known before. So, note that I have put a hat over all the variables because I want to

introduce non dimensional variables without hat. So, this is a non dimensional x, this is a non

dimensional z, this is a non dimensional time. These scales should be familiar to you know

they come from the deepwater approximation and this is a non dimensional eta and this is a

non dimensional phi.

If you put these scales into the equations that we wrote earlier then you will see that some

things will scale out and you will get another set of equations. Now, I am going to do two

steps in one exercise. So, I am going to non dimensionalize that is I am going to substitute

these scales, but I am also going to do something additional. What I am going to do is I am

going to take the equation for the this is Bernoulli equation applied at the free surface that

allows me to eliminate pressure.



What I am going to do is I am going to take the D by D t hat of this equation derivative of this

equation and. So, I am going to take the D by D t of this equation and you can see how that

helps. The main help comes in this term the last term of the equation this term. This term is

actually g into eta because this term is going to be evaluated at z hat is equal to eta. So, this is

actually going to be g into eta hat and so, when the operator operates on this term g is anyway

a constant.

So, this will just become g into D eta hat by D t hat that is exactly the left hand side of my

kinematic boundary condition. Using the kinematic boundary condition I can replace that

term in the Bernoulli equation with this term. How does that help? That helps because all the

3 terms now in my Bernoulli equation now become just depend on phi hat because I am going

to replace D eta hat by D t hat as del phi hat by del z hat.

You will see that this has some advantages and it simplifies the algebra a little bit. So, we are

going to what we are going to do is we are going to analyze the Laplace equation. This is the

same equation that we have written before and now we will have two copies of the Bernoulli

equation.

The Bernoulli equation without this operator acting D by D t the Bernoulli equation in its

original form and then the Bernoulli equation with the D by D t applied on it in addition plus

using the kinematic boundary condition to eliminate the D eta hat by D t hat term. This will

give me a Bernoulli equation with a g into D eta hat by D t hat.

So, I will have two copies of the Bernoulli equation one written in the original Bernoulli

equation and one Bernoulli equation D by D D by D t hat of the Bernoulli equation and this is

also equal to 0. So, I am going to use instead of using the Bernoulli equation and the

kinematic boundary condition I am going to use a Bernoulli equation and a slightly modified

Bernoulli equation as my two boundary conditions.

Note that the kinematic boundary condition is not going to be explicitly used that is because

in deriving the second copy of the Bernoulli equation, the kinematic boundary condition has



already been used. So, using this these two boundary conditions I am going to solve the

Laplace equation using a perturbative expansion and we will see what happens at non-linear

order. This is essentially our goal.

So, let us continue further. So, once we non dimensionalize and do that step of applying D by

D t hat operator on the Bernoulli equation we get another copy of the Bernoulli equation

along with the kinematic boundary condition, it becomes a modified Bernoulli equation.

So, now I have a Laplace equation, I have two Bernoulli equation; one the original one the

modified and then I have some finiteness conditions and I can use all of these scales to non

dimensionalize all of those equations. Once we do that we obtain the following set of

equations. 

So, the Laplace equation remains the same. Now, it is a non dimensional Laplace equation.

The Bernoulli equation the original Bernoulli equation, this is the boundary condition. g just

get scaled out after non dimensionalization and now all variables do not have a cap on top.

So, I will call this equation 1, this is equation 2 and in addition as I told you earlier we have

another Bernoulli equation that is obtained by taking the capital D by D t the total derivative

operator on the Bernoulli equation. So, now, you can see I am going to just write it out in

because recall that the D by D t operator now it is a non dimensional operator is basically del

by del t plus u dot grad u is grad phi that grad, this is my operator.

So, when you do the second Bernoulli equation is, basically applying this operator on that

equation and use modifying this term using the kinematic boundary condition. So, if I open

up the D by D t operator then I will get del square phi by del t square this is because of del by

del t operating on this term plus grad phi dot grad operating on del phi by del t plus. So, this is

D by D t operating on just this term.

Now, D by D t also has to operate on this term. So, again I am opening up D by D t and

writing it as del by del t plus grad phi dot grad operating on this term. So, that will give me a

del by del t operating on half grad phi square plus grad phi dot grad operating on the same



thing. And then the last term is D eta by D t which is just del phi by del z from the kinematic

boundary condition which you are not using anymore and this whole thing has to be applied

at z is equal to eta is equal to 0.

So, that is my 3rd boundary condition or rather 2nd boundary condition. So, this is boundary

condition 1 and this is boundary condition 2. These are boundary conditions because these

equations are true only at z is equal to eta they are not true in the bulk of the fluid ok. And so,

I have to solve equation 1 subject to 2 and 3 and of course, we have this restriction that we

have the familiar restriction that as z goes to minus infinity phi has to stay bounded.

So, I will not explicitly write that. We have to keep that in mind. So, now, I have to solve 1

subject to 2 and 3 2 and 3. Now, you can see that this is a complicated exercise because

although our equation is linear our boundary conditions are non-linear. We have seen this

before and so, we are going to use a perturbative expansion.

I am going to straight away right perturbative expansion with an expansion for time also just

as we had expanded the frequency in the rather we had expanded the timescale for the

non-linear pendulum. This should remind you of the Lindstedt Poincare technique and at the

end of this calculation I will justify why we need to expand we need to do a perturbation

expansion for time as well ok.

It is exactly the same reason unless we do that they will be secular terms in the expansion and

unless we do that expansion for time we will not be able to eliminate those secular terms. We

have seen this before in the context of ordinary differential equations, now we are seeing this

in the context of partial differential equations. So, let us proceed.
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So, perturbative expansion. So, we will do a perturbative expansion the base state is 0 plus

some small parameter which is related to the product of amplitude into a wave number plus

now, we have to write at least up to order epsilon square because this we need to do a

non-linear calculation. 

This is also 0 plus epsilon eta 1 plus epsilon square eta 2. And as I said earlier I am

introducing a stretch time variable which is basically my non dimensional time into 1 plus

epsilon square into omega 2 plus dot dot dot. You will see that the first correction appears at

order epsilon square this is familiar to us from the pendulum calculation. 

We will see that at linear order we do not need any correction to time. So, the first correction

appears at non-linear order and this will basically introduce an amplitude dependence in the

dispersion relation. So, with those let us proceed. So, because now time is also expanded, so,



we will have to express all partial derivatives with respect to time small t with respect to tau

and that is just.

So, let me write it like this. And this is just 1 plus epsilon square omega 2 plus dot dot dot

into del by del tau. We have second derivatives with respect to time and so, this just becomes

1 plus epsilon square omega 2 whole square into del square by del tau square. With that we

have to go back and substitute these expansions and these expansions in our equations that we

have written earlier, equation 1, 2 and 3.

At linear order we will get back exactly what we have got until now. There will be no

surprises there. We are interested in what are the corrections at non-linear order, but as before

first we need to solve the linear equations at order epsilon before we can go to the order

epsilon square equations. Like before we will see that the first order solution appears as an

inhomogeneous term in the second order and so, we will have to first solve for the linear

order before we can proceed to the non-linear order.

So, if we substitute into this and then collect terms at order epsilon there is nothing at order 1

because order 1 is just the base state which is trivial here. So, this is grad square phi 1 is equal

to 0. It is just putting that expansion into the Laplace equation and collecting terms at order

epsilon. Then we have from the Bernoulli equation I will explain this, we have already seen

this before, but now is just derivative with respect to tau.

And then the modified Bernoulli equation; so, these are our equations at order epsilon. The z

is equal to 0 should be familiar to you from the Taylor series argument that we have already

gone through. We just need to understand the origin of these terms. So, let us look at the

equations. So, equation 2 has this term del phi by del tau or del t and we are going to replace

del by del t with del by del tau.

Del by del tau is just this and you can see the del by del t and del by del tau or the same as far

as linear order is concerned. The difference between them order appears only at order epsilon

squared. So, we are right now at order epsilon and so, I can just replace del by del t with del



by del tau which is what has been done here. And so, this term which I have put in a red box

here is just becoming at order epsilon it is just becoming del phi 1 by del tau.

Recall that this was applied at z is equal to eta. So, this was applied at z is equal to eta. So, by

that usual Taylor series argument we have to apply this at z is equal to 0. Now, this term does

not contribute at linear order or order epsilon. So, the only contribution will be from this term

and that is applied at eta and eta is itself expanded as epsilon eta 1. So, at order epsilon this

will just become eta 1.

So, we will have del phi 1 by delta tau plus eta 1 and del phi 1 by del tau will be evaluated at

z is equal to 0. So, this is our order epsilon equation from equation 2. Similarly, from

equation 3 you can see what is the at order epsilon what will happen. At order epsilon del

square by del t square is the same as del square by del tau square, again evaluated at z is equal

to 0.

So, there will be a contribution from here and this will become del square phi 1 by del tau

square. This is a non-linear term this is also a non-linear term. So, is this a non-linear term.

The only other contribution from at linear order will be from here and this will again become

del phi 1 by del z at z is equal to 0. So, this is how I have written those two equations.

So, let us call this equation A1, B1 and C1. Now, until now we have stopped at this level and

then we have gone on to solve these equations. We will do the same here, but before we do

this let us write down the equations or let us learn how to write down the equations at order

epsilon square.

You will see that this leads to in homogeneous equations. The solution at order epsilon will

appear as in homogeneities at order epsilon square. So, let us understand how to write down

the equations governing phi 2 and eta 2 at order epsilon square. 
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So, it order epsilon square. So, let me write down the equations and then I will explain. So,

this is Laplace equation is easy it just becomes at order epsilon square grad square phi 2. The

two boundary conditions have phi 2 in eta 2 appearing on the left hand side. Note that the

form of the operators remain the same, but what changes is only on the right hand side.

So, on the right hand side we have and then on the right hand side we will only write those

things which depend on the previous order. So, they will be only things with subscript 1. So,

phi 1 and eta 1, only those things can appear on the right hand side. I will call this A2, this

has B2 and there is one more. 

Again the left hand side of the equation remains the same except that it operates on phi 2 and

then the right hand side is slightly more complicated. So, this is at z is equal to 0. And I will

call this B sorry B2 this is C2.



So, clearly in the right hand side has become complicated now. There are a whole bunch of

terms and we will have to understand how to look at or how to derive these terms. So, let us

look at them one by one. So, let us first understand the origin of this term, so, this term. The

pattern remains the same.

We will basically have to take the terms. Substitute the perturbation expansions and then

appropriately do a Taylor series expansion up to as far as possible until we ensure that there

are no terms which appear at that particular order which have been left out. So, let us

understand the origin of this term in the green box.

So, this term is basically coming from. So, let us write the term. The term is del phi by del tau

into 1 plus epsilon square omega 2. So, this is the term and this is a prefactor and this is

applied at z is equal to eta. So, let us now apply the perturbation expansions to this term.

So, the prefactor remains the same and we will write this as del. So, there will be an epsilon

here del phi 1 by del tau plus epsilon square del phi 2 by del tau and this whole thing gets

applied it z is equal to eta. Now, let us expand on this. This is 1 plus epsilon square. So, you

can already see that even before we expand you can already see that the there is no need to

retain this term in the prefactor because this term all the terms inside the square bracket is

either epsilon or epsilon square.

So, if I have to retain at we are trying to obtain the expansion at order epsilon square. So, you

can see that this is already an order epsilon square term and so it will multiply this with this

and give you an order epsilon cube term or epsilon to the power 4 term. So, as far as at this

order is concerned the prefactor is just 1, it is just this term 1 multiplied by what is inside the

square bracket. Now, let us look at what is inside the square bracket.

Now note that what is inside the square bracket is del phi 1 by del tau the first term. Using a

Taylor series approximation I can write this as del phi by del tau at z is equal to 0 this is what

we had done at order epsilon. But now I will put one more term in the Taylor series and that



will be del phi 1 del square phi 1 by del z del tau again at z is equal to 0 into eta. There is an

epsilon here and eta itself is epsilon eta 1 plus epsilon square eta 2 and so on.

So, you can see that this is what? This is the term that we would have written at order epsilon,

but this is the new term that is coming at order epsilon square. The product of this epsilon and

that epsilon makes the whole term and order epsilon square term and this is exactly what we

have written. So, this term is going to appear on the left hand side of the equation and we are

going to shift it to the right hand side. So, this is the origin of the term that I have written in

this green box.

Let us also understand what else would be there in this expansion. So, the first term will just

give these two terms one at order epsilon and one at order epsilon square. The second term at

order epsilon square would just give one term which is del phi 2 by del tau at z is equal to 0. I

will not write one more term because you can see that if I had written one more term that

would be a higher power of epsilon than 2.

It would be epsilon square into del square phi 2 by del z del tau this is the next term in the

Taylor series approximation into eta an eta is itself epsilon eta 1 at least. So, this the product

of these two would be an order epsilon cube. Since we are right now discussing order epsilon

square, I do not need to write this term. So, that is why I have stopped the Taylor series

expansion at this order here.

So, you can see that at this order epsilon square we are getting two terms. One of which is this

and another of which is that. The term in the red box has been shifted to the right hand side

because it depends on quantities which have already appeared at the previous order. They are

depending on phi 1 and eta 1.

Whereas the term this term in the black box I have written it on the left hand side because this

is depending on phi 2. So, this is basically this term in the expansion. I encourage you to try

these expansions by hand. Unless you try this yourself it will not be clear. Clearly the algebra



is a little bit complicated because you can see that in equation B2 there is one more term, in

equation C2 there are many more terms.

In particular the complicated aspect of this calculation is that that we are basically trying to

determine what is ok we called what is omega 2. Omega 2 is our expansion of time and as we

will see later omega 2 is the amplitude correction in the dispersion relation. This will bring an

order epsilon square correction in our dispersion relation that has not happened so far. So, far

we have found that the frequency of the wave depend only on its wave number or other

parameters on the problem, but not on epsilon itself.

Here we will see that the moment we go to order epsilon square epsilon itself will start

appearing in the dispersion relation just had just as it had appeared for the non-linear

pendulum. So, what we really want to know is what is the value of omega 2. Omega 2 is

basically a number and we need to know what is its value because that will appear in the

dispersion relation.

Here in this problem in order to determine omega 2, we will actually have to do the

calculation up to order epsilon cube. At order epsilon cube the equations are extremely

lengthy, but the process remains the same. One has to correctly do the Taylor series expansion

and include as many terms are as necessary so that one does not miss out any contribution

which would have appeared at the given order where one is working.

So, this is the same procedure. It is just that that as you go to higher and higher orders the

Taylor series expansion keeps getting longer and longer and consequently you keep getting

more and more terms on the right hand side which appear as inhomogeneities. So, this is the

way in which I have written the first term. I encourage you to try the second term.

So, this term once again it is on the right hand side. So, it has to depend on the previous order.

So, it must depend on phi 1. You can readily see looking at the structure of this term you can

see where it must have come from. So, it has come from this term. It has come from this term.

Write this term yourself, expand it out and see what it produces at the given order and



convince yourself that it does not contribute anything to the left hand side. It just keeps

contributing to the right hand side.

So, notice that the left hand side of the operator the left hand the operator which appears on

the left hand side has the same structure at order epsilon square as it was at order epsilon.

Here it is del phi 2 by del tau at z is equal to 0 plus eta 2. What was it at order epsilon? It was

exactly the same thing except that it was now operating on del phi 1 by del tau at z is equal to

0 plus eta 1.

So, it is as if you have just replaced the phi 1 and eta 1 with phi 2 and eta 2. In all successive

orders that you will do this calculation this feature will always there be there. The left hand

side of the operator remains the same, the right hand keeps getting more and more

complicated. We have also encountered the same thing when we did the doffing oscillator,

the non-linear pendulum except that these are partial differential equations there we had

encountered ordinary differential.

Carry this calculation first to order epsilon square. So, these are the equations at order epsilon

square. So, this is the second set of equations. So, this is one set of boundary conditions this

is another set of boundary conditions. You can try deriving these terms and convincing

yourself where they come from.

Note that all the terms even an non-linear order are applied at z is equal to 0 that is because in

a Taylor series expansion every successive derivative appears only at z is equal to 0 and you

just multiply it by higher than higher powers of eta. So, you will have eta, eta square eta cube

and so on depending on how far you go in the Taylor series approximation ok and then you

will have to substitute eta itself as epsilon eta 1 plus epsilon square eta 2 plus so on and so

forth.

Again I am mentioning that what appears on the right hand side should only depend on the

previous order, what appears on the left hand side should have the subscripts relevant to the

order at which you are working. So, now, our task at this order is to solve equation A2 which



is just Laplace equation for phi 2 subject to equations B2 and C2; so, equations B2 and

equations C2.

Our task at linear order was much simpler. The equations B1 and C1 had the same structure

as B2 and C2, but B1 and C1 are homogeneous equations, the boundary conditions are

homogeneous ok. So, these are homogeneous equations whereas, B2 and C2 have terms on

the right hand side. So, we will first we will have to in order to solve these set of equations

we will have to determine the solution to first A1, B1 and C1 that we have already done

before and we are just going to repeated quickly.

Once we know phi 1 and eta 1 we are going to and this will also determine the dispersion

relation at this order. We are going to go back to order epsilon square. Substituted into the

right hand side of equation B2 and C2 because these right hand sides depend only on phi 1

and eta 1, which are now known. So, we will substitute we will determine what are those

expressions explicitly and then we will have to solve equation A2, B2 and C2.

In order to determine the numerical value of omega 2, we will have to actually write down the

equations up to order epsilon cube. We will not be able to we will not need to solve the

equations are order of epsilon cube, we will only need to eliminate the secular terms at order

epsilon cube and we will see that that process will generate. This is very similar to what we

had done for the simple pendulum. We will continue this in the next video.


