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Shape oscillations of a spherical interface (contd.)

We were doing normal mode analysis for perturbations about a spherical base state, we had a

perturbation velocity potential outside as well as an inside and we had guessed the forms and

we had arrived at all the boundary conditions. There were two boundary conditions coming

from the kinematic boundary condition the linearized kinematic boundary condition and then

there was a boundary condition which is coming from difference of pressure.

(Refer Slide Time: 00:38)

We have already used one of the equalities in the linearized kinematic boundary condition to

achieve a homogeneous equation in E and B. So, let us call this equation A where we have



utilized this equality let us utilize the second equality. So, I want to set del phi in by del r at R

0 to be equal to del phi out by del r at R 0 small r is equal to R 0 and I have to use those

expressions for phi in and phi out and take the derivatives.

If I do that then you can see that for phi in I get l times. So, B l R 0 to the power l minus 1 p l

e to the power i omega t this remain intact is equal to del phi out by del r. So, there will be a

minus sign a R 0 to the power minus l plus 2 and then we will have a p l and e to the power i

omega t. The p l and the p l will cancel, the e to the power i omega t will cancel because they

are not 0 at all times and so the other side I will write a first. So, l plus 1 R 0 to the power

minus l plus 2 into A plus l times R 0 to the power l minus 1 into B is equal to 0.

This is my second homogeneous equation in the 3 unknowns A, B and E, I will call this

equation B. So, I have one equation which is homogeneous in the unknowns which is

equation A and I have one more equation I need one more equation and that has to come from

the pressure boundary condition that we have just written.
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So, equation 5, because equation 5 is a lengthy equation. So, I am going to rewrite this and

then use the expressions for phi in phi out and eta to obtain a homogeneous equation in the 3

unknowns from equation 5. So, let us write the pressure boundary condition once again.
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So, rho out into del phi out by del t at R 0 minus rho in del phi in by del t also at R 0 minus t

by R naught square twice eta plus cot theta del eta by del theta plus 1 by R naught square del

square eta by del theta square.

We have to remember that the expressions for phi in and phi out I will write it here, so that

you can follow the algebra. So, eta was E times p l I not write the cos theta i just indicated it

as a dot to save some space phi in was A times r to the power minus l minus 1 p l e to the

power i omega t phi out sorry this was this will be out and this will be in, B times r to the

power l or i omega t. So, we have to simplify this equation using these expressions.

If I substitute it then I get rho out there is a derivative with respect to time. So, i omega R 0 to

the power minus l plus 1 because it has to be evaluated at capital R 0 into A into p l of dot

that takes care of the first term. Then we will have minus rho in again i omega R 0 to the



power l B p l and then there is a e to the power i omega t you know all the terms which I am

going to cancel. So, I am not going to write it is equal to minus T by R naught square.

So, twice eta so, that is twice E into p l dot plus cot theta there will be a E and then there will

be a d p l by d theta, again I am not writing the e to the power i omega t you can see that all

the terms will have e to the power i omega t and that can be cancelled out. So, I am not

writing that plus the last term. So, there should be no R naught square here yeah.

So, the R naught square has already been taken common outside the bracket. So, that was a

mistake. So, del square eta by del theta square. So, there will be an E here and then this is just

d square p l by d theta square.

Now, let us look at the right hand side of this equation, you can see that there are derivatives

with respect to. So, let us look at the right hand side the R H S of this equation, we will have

to do something about the right hand side without which we cannot just get our dispersion

relation because you see what appears on the left hand side is p l of theta in both the terms.

Whereas, what appears on the right hand side. One term contains p l of theta, but the other

two terms contain the first derivative and the second derivative of p l with respect to theta.

So, if you want a dispersion relation which is independent of theta we will have to somehow

convert the right hand side make all the terms proportional to p l of theta. Let us see how.

So, I will take the right hand side of this equation and I will see; I will write it as R 0 square I

will write the highest derivative first. So, there is an E over all. So, I am writing I am going to

write the E at the end. So, every term has a E. So, I am just going to write the highest

derivative which is the last term above, then the next highest derivative which is cot theta

times d p l by d theta and then the first term which is twice p l the whole thing get multiplied

by E.

Recall that p l comes from the solution to an or second order linear differential equation that

was my Legendre’s equation we have written that earlier.
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So, p l comes from the solution to this equation. So, you can see that p l satisfies the equation.

So, p l satisfies d square p l by d theta square plus cot theta d p l by d theta plus l into l plus 1

p l is equal to 0 all I am doing is just taking p l and replacing it in this equation which I have

put inside a red rectangle, you can see that all I have done is I have just replaced capital F by

p l.

Why? Because I know that the solution to this equation one of the solutions to this equation is

p l of cos theta. So, p l of cos theta must satisfy this equation. So, I know that this is the

equation that p l of theta satisfies. So, if p l of theta satisfies this equation then I can use this

equation to express d square p l by d theta square plus cot theta d p l by d theta as minus l into

l plus 1 p l. This just comes from this equation I have just rearranged this equation.



What do I gain by this? I have seen this expression earlier we have made this expression

earlier this is exactly this expression in my boundary condition. So, it allows me to replace

the second derivative and the first derivative with just minus l into l plus 1 p l. So, the whole

term on the right hand side of this equation becomes proportional to p l because on the left

hand side both the terms already have a p l, I can cancel out the p l and what I will get is an

equation in A, B and E whose coefficients do not depend on theta that will be my third

equation in A B n. Let us do the algebra.

So, I am just going to take this identity that we just wrote and I am going to replace this term

plus that term there is a E common. So, I can pull that out and I can replace the sum of those

two terms using this, if I do that then this is what I obtain. So, we obtain.
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So, the left hand side remains the same. So, rho out i omega R 0 to the power minus l plus 1 I

am just rewriting the left hand side A into p l of dot and I am not going to write the e to the

power i omega t because that will get cancelled out minus rho in i omega R 0 to the power l B

into p l of dot is equal to the right hand side.

The right hand side has three terms the first term is left as such because the first term is just

two times E times p l of dot. So, the first term is just this we do not do anything with this and

we replace the next two terms using the identity that we have just obtained. So, we obtain

inside 2 minus l square minus l it is just l into l plus 1 with a minus sign into p l of dot into E.

You see the Legendre’s equation has helped us simplify the expression drastically on the right

hand side.

Now, you can see that there is a p l everywhere I can cancel it out, once I have done that the

coefficients of this equation which contains A, B and E become independent of theta. So, I

can get an equation which looks like rho out into i omega R 0 to the power minus l plus 1 into

A minus. So, I can keep this in a bracket to remind us that this is the coefficient of A.

Similarly, a coefficient of B rho in i omega R 0 to the power l into B minus I am shifting the

term on the right hand side to the left, if I do that and I will keep it as minus because I am

swapping I am pulling out a minus from here. So, you can see that I can write this term as T

by R 0 square and I can factorize what is inside as l plus 2 into l minus 1, you can multiply

and convince yourself that this is correct.

So, that is my third equation. So, I will call it C we had three equations. So, let me write it

again. So, we had i omega E minus l R 0 to the power l minus 1 into B is equal to 0 this was

my equation A. Then I had an equation again. So, this was obtained from the linearized

kinematic boundary condition.

Then I had one more from the linearized kinematic boundary condition which was l plus 1 R

0 to the power minus l minus 2 into A plus l R 0 to the power l minus 1 into B is equal to 0

this is equation B. And then we have equation C. So, those are our three equations in three



unknowns not all the unknowns appear in all the equations, but they are linear homogeneous

equation algebraic equations in the three unknowns.

Once again we can write it as a matrix equation, as a homogeneous matrix equation and the

unknown vector will be A, B and E. The determinant has to be equal to 0 in order to obtain

non trivial solutions to A, B and E. If we do that I leave it to you to work out the determinant

I will just tell you the dispersion relation, it is a little bit of algebra it is not difficult you can

try it out for yourself.

If you work out the determinant of this you have to be careful you have to rewrite these

equations such that in every equation. So, if you write it in the order A, B and E then you

have to make sure that you are writing down the coefficients correctly. So, for example,

equation A has to be written with B first and the term with E as next, similarly equation B

equation B is already written in the correct form. So, equation A has to be the two terms have

to be switched.

If we work out the algebra then it just turns out that the dispersion list, you can see that it will

give us a quadratic equation in omega and that quadratic is the following. So, it is omega

square into rho in into l plus 1 plus rho out into l is equal to T by R naught cube l l plus 1 l

plus 2 into l minus 1. You can see where this is coming from the l plus 2 and the l minus 1

was already there. So, and then we are collecting more and l into l plus 1.

I can shift everything to the right hand side except omega square and I can write it as T by R

naught cube and I will pull out a rho in because T by R naught cube into density has the

dimensions of frequency squared. So, whatever is left must be a non-dimensional quantity.

So, this is l into l plus 1 l plus 2 l minus 1 divided by l plus 1 plus rho out, it is a density ratio

divided by rho in because I have taken rho in common into l.

Once again we achieve the same form these are surface tension driven oscillations. So, I can

write a non-dimensional frequency as T by R 0 cube into rho in and this is some



non-dimensional function of the density ratio and l. So, this is some non-dimensional function

G of l and density ratio and we have determined the form for G.

So, this is our dispersion relation. Let us compare this dispersion relation with all the other

pure capillary driven dispersion relations that we had obtained so far.
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So, we had obtained earlier for pure capillary waves on a pool of finite depth tan hyperbolic K

H, the right hand side is non-dimensional this was for capillary waves on a rectangular pool

of depth H. We have seen this before.

Then we had waves on a cylinder on a liquid cylinder this was T by rho R 0 cube I am writing

the non-dimensional frequency on the left hand side and whatever is left on the right hand

side is a non-dimensional function of its arguments. So, this was K R 0 we had found an



instability here K R 0 square minus 1 the modified Bessel functions I 1 and I 0, this was for

capillary waves on a liquid cylinder ignoring the gas outside of radius R 0.

Then we have found in the same problem we have found T by rho R 0 cube is equal to the

same formula K R 0 into K R 0 square minus 1, but now the other Bessel function modified

Bessel function and these are capillary waves on a cylindrical gas bubble of radius R 0, here

too there was instability. Here in the third formula we are solving for the liquid outside we are

ignoring the effect of the gas inside, in the second formula we are solving for the liquid inside

we are ignoring the gas outside.

Now, we have added one more to this list and that is omega square by T by rho in R 0 cube is

equal to l l plus 1 l plus 2 l minus 1 divided by l plus 1 plus rho out by rho in the density ratio

into l. And these are the dispersion relation for capillary waves on a spherical interface, this

takes into account the density of both the fluids.

So, this should give you an overall sense of what we have looked at so far. The first problem

that we looked at was a Cartesian geometry, the second and the third problem was a

cylindrical geometry, the fourth problem was in spherical geometry, these three are the most

common geometries that we encounter typically in engineering applications.

And we have looked at waves on (Refer Time: 20:39) base states in all the three geometries

with the exception of the first we have ignored gravity in 2, 3 and 4. In the first problem we

have included gravity as well and we have found what is the effect of gravity we have looked

at capillary gravity waves in writing the formula 1 I have just said G is equal to 0. So, this is

these are the various formulas that we have found until now.

Let us look a little bit in more detail at this dispersion relation, recall that l is a positive

integer. So, 0 1 2 3 and so on this comes from the subscript of the Legendre function. I have

told you the form of p 0 of x p 1 of x p 2 of x and so on. So, you can see that for l is equal to 0

and l is equal to 1 this frequency is 0 because there is a l and l minus 1. So, the frequency is 0

for l equal to 0 l equal to 1.



Apart from these two for everything else for all other positive values of l, l equal to 2, 3, 4, 5

and so on, you can see that this will never give you omega square negative omega square is

always positive. So, the first conclusion is that that this base state the spherical base state

unlike the cylindrical base state the spherical base state is stable to small amplitude

perturbations we always get oscillations or waves we never get instability. So, this dispersion

relation does not contain any instability.

Now we will understand the l equal to 0 the l equal to 0 and the l equal to 1 limit. So, because

the both of these predict that omega square is 0, 0 frequency relation ok. In one of the

assignments early on in the course we have seen examples where examples of mechanical

systems where the one of the normal mode frequencies was 0, one of the cases here is related

to that.

Let us look at this dispersion relation in slightly more detail now. So, we will write two limits

of this dispersion relation.



(Refer Slide Time: 22:48)

First, so, one is the drop limit, the drop limit is the limit where we are saying that the outer

fluid is a low density fluid typically a gas and so, we can ignore the density of the outer fluid

compared to the inner fluid. So, it is a liquid bubble surrounded by let us say air. So, a water

bubble in air rain drop is a good example.

So, the drop limit we set row out to 0 retaining row in, if we do that then the dispersion

relation simplifies. So, our dispersion relation is. So, I am just going to write it in dimensional

form T by R naught cube and I am going to pull the push the row in inside. So, that is easier

for me to set things to 0 l plus 2 minus 1 divided by there was a rho in. So, this is rho in into l

plus 1 plus if I push the rho in inside then this ratio just becomes rho out into l.

So, now if I take the drop limit of this dispersion relations so, then omega square of drop is

equal to. So, I just set rho out equal to 0. So, the l plus 1 and the l plus 1 get cancelled out, I



get a rho in here and then I have l into l plus 2 into l minus 1. This is a very well-known

dispersion relation it is used frequently in analyzing the natural oscillations of liquid droplets.

There is a bubble limit also bubble limit, here we set row in to 0 we are saying that there is a

liquid outside and there is a gaseous medium inside. So, we are going to solve for the liquid

outside ignoring the gas inside that is a that is the bubble limit, you can think of an air bubble

in water in that case the density of air is negligible compared to water. 

So, we will set the reverse we will set rho into 0. So, omega bubble square is equal to. So,

now, we are going to set rho in to 0. So, I will get a T by R naught cube into rho out, the l and

the l will cancel out and so, I will get l plus 1 l plus 2 into l minus 1 this is the dispersion

relation for bubble.

Note that these govern what are known as these are all oscillations, these are frequencies

which tell us the frequencies of small amplitude oscillations note that these are shape

oscillations. What does that mean, this implies that there is a shape, but at linear order there is

no change in volume. 

So, these are shape oscillations. In particular in the case of bubbles volume oscillations are

also possible when the air behaves as a compressible medium inside the gaseous medium

behaves as a compressible medium inside, these dispersion relations govern shape oscillations

and not volume oscillations.

So, let us understand the origin. So, as I said earlier the full dispersion relation gives omega

square is equal to 0 at l is equal to 0 and 1, why is the case let us understand this in a little bit

more detail, for this we will need to calculate the volume of the perturbed drop.
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In spherical coordinates the volume of the perturbed drop the volume of the perturbed drop in

spherical coordinates has to be computed through integration, in r theta phi coordinate system

that is spherical coordinates the volume of the perturbed drop is given by this this integral.

So, r goes from 0 to R naught plus eta and eta itself is a function of theta and T and theta goes

from 0 to pi and psi goes from 0 to 2 pi nothing really is a function of psi. So, the psi integral

will be the easiest to evaluate. So, this is r square sin theta d r d theta d psi you can look this

up in any text book on calculus, this is the volume of the perturbed drop we have put some

surface perturbation at the drop and we are calculating what is the volume of this perturbed

drop.



So, the psi integral is the easiest to do as I said earlier that is because none of these quantities

depend on psi, the eta here is a function of theta and time. So, I can do this psi integral and

that will just give me a 2 pi because the limits of psi is 0 to 2 pi.

So, the psi integral goes out and I am left with let me write the theta integral theta equal to 0

to pi because that will be the integral which will be done last into d theta and then we have

the r integral which is 0 to R naught plus eta which is a function of theta. So, it will affect the

theta integral and this one will be r square I should keep a sin theta here and then r square d r.

If I do this then this just becomes 0 to pi d theta sin theta and r cube by 3 so, this will become

R 0 plus eta whole cube.

We will continue this integral in the next video.


