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We were looking at the dispersion relation for capillary gravity waves in deep water. We had

found that the dispersion relation was given by this relation gk plus Tk cube by rho the whole

thing to the power half. We had plotted the phase speed as a function of k and we had found

that there is a qualitative difference due to the inclusion of surface tension.

In particular, the phase speed for a pure gravity wave is a monotonic curve whereas, the phase

speed for a capillary gravity dispersion relation has decreases at small k, but then again starts

increasing at large K. So, there is a minimum. So, this is the minimum. We had also found



that for sufficiently small k the dispersion relation can be well approximated as if it is a pure

gravity wave.

For sufficiently large K it can be again approximated as a pure capillary wave. In an

intermediate regime which is in this regime not neither the green curve nor the orange curve

represents the full dispersion relation accurately in that region one has to take into account the

effect of both gravity and capillarity.

Let us make a quick estimate of what is the wavelength, when we should be taking full both

gravity and capillarity into account and what are the wavelengths where we do not need to

worry about one of them. So, as you can see the phase speed expression has two parts to it g

by k plus T k by rho to the power half.

For k going to 0, c p is well approximated as g by k to the power half; for k going to infinity c

p is once again well approximated by T k by rho to the power half. At intermediate values we

expect both terms to be of the same size and that is the regime when both capillarity and

gravity effects are of the same size and neither of them can be neglected in favour of the

other.

So, we can make a very quick estimate we are saying that we are looking for that range of k

where g by k is the same size as T k by rho; g, T and rho are fixed for a given set of fluid

parameters, surface tension the density of the fluid and acceleration due to gravity is fixed.

This tells us the range of wave numbers or a particular cut off wave number around which

capillary gravity waves are important or rather capillary gravity effects are important and far

away one of these two limits is valid. So, you can immediately see that that k is given by rho

g by T to the power half.
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If we compute the lambda corresponding to that k so, k is given by rho g by T to the power

half; k is 2 pi by lambda. So, this is 2 pi by lambda which is equal to rho g by T to the power

half. So, one can compute lambda is 2 pi T by rho g to the power half. If you plug in air water

values of surface tension T that is around 72 in cgs units rho is 1 for water and g is 980 in cgs

units. If you plug in this and calculate you will find that lambda is approximately 17

millimeter.

So, this is telling you that for wavelengths lambda much much greater than 17 millimeter the

wave is nearly a pure gravity wave. So, lambda becoming very large, this implies k going to

0. Lambda much much less than 17 millimeter this is nearly a pure capillary wave. Lambda in

the window of 17 millimeter 17 plus minus some delta capillary and gravity effects are both

important and this becomes a capillary gravity waves.



One cannot drop either gravity from the dispersion relation or capillarity from the dispersion

relation. Again, these estimates are valid only for air and water. If we change the fluid then

the surface tension value will change and so, these estimates will change. In this region when

neither the green curve nor the orange curve are good approximations to the blue curve we

have to be careful and we have to include both capillarity effects and gravity into the

dispersion relation and the resultant waves will behave as capillary gravity waves.

Note that the phase speed has a minimum. The phase speed is not a monotonic function. In

particular I encourage you to think about the groups velocity of a capillary gravity wave. You

will see that the group velocity, so, if you take the full dispersion relation omega is equal to g

by k plus T k by rho to the power half and if you compute d omega by d k, the group velocity

for capillary gravity waves. You will find that even that has a minimum.

This has a lot of physical consequences for example, the existence of this minimum and

below which there is no so, the phase speed looks like this as we have seen, a similar curve

will also be there for group velocity. This has physical consequences. I encourage you to think

about this particularly in relation to the Cauchy – Poisson problem.
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In the Cauchy – Poisson problem we had found that omega by k; so, for t going to infinity and

for an observer whose x by t is constant, we had found that omega by k or rather d omega by

d k is the dominant contribution is given by this equation. Now, when your group velocity

curve has a minimum, then below a certain speed this equation does not have any solutions.

So, when x by t is below a certain speed, there is no solutions to this equation; above a certain

speed there are two solutions. There is one k here and there is another k there; one k coming

from the capillary branch of the dispersion relation, another coming from the gravity branch

of the dispersion relation. The wavelengths will be very different. This has physical

consequences for what the observer sees locally. I encourage you to think about it.

Now, let us look at this limit of lambda becoming much much greater than 17 millimeter. So,

in the case of air water you can immediately see that if we deal with let us say a 1 meter wave



which would be the case when we are in an oceanic context, then you can immediately see

then in oceans waves are almost exclusively gravity waves. So, a wave of this wavelength or

above is typically a gravity wave. Tsunamis are entirely gravity waves. In fact, they do not

even behave like deep water waves as we will see shortly.

Now, as we take this limit lambda going to infinity it is also clear that the deep water

approximation itself is going to break down. Remember that we had said that we are going to

assume that the depth of the fluid is infinite. Now, in practice in a given situation the depth is

never infinite and so, that approximation is valid only when the waves that we are looking at

are sufficiently the wavelength of the waves is sufficiently small compared to the depth of the

fluid.
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So, if I have a situation where the wavelength of the fluid of the wave is much much smaller

than the depth the undisturbed depth H. So, this is the wavelength then I expect this to be a

situation. So, lambda is much much less than H. So, I expect this to be a situation where the

deep water approximation should hold good.

However, as I make lambda bigger bigger and bigger, you can see that the deep water

approximation is going to fail because as lambda becomes of the same size of H, the wave

will start feeling the presence of a bottom wall. In particular, when lambda becomes much

much greater than H then we have the reverse limit which is called the shallow water

approximation.

We will look at the shallow water approximation in some detail later in the course. Let us

first work out what is the correction to the dispersion relation when we have a pool of finite

depth. So, waves on a pool of finite depth. Until now we have only done deep water. We have

looked at capillary waves, we have looked at gravity waves, we have looked at capillary

gravity waves.

Now, what we are going to do is we are going to make the depth of the pool finite. We will

call it H. Our coordinate system remains exactly the same as before. So, this is my interface,

this is my undisturbed surface at z is equal to 0. Earlier z was going all the way to minus

infinity, now it will go to some lower level capital H.

So, I will put a bottom wall and the depth is a constant H. So, this is a wall and so, we will

have to repeat our analysis you can see that this is just a small modification to the boundary

condition. However, the expressions will become slightly different now because earlier we

had boundedness constraints at z is equal to minus infinity we use that to eliminate one of the

exponentials in z.

Now, both the exponentials will survive that is the essential difference which will be there as

far as the mathematical calculation is concerned. So, let us do it. So, we have the Laplace



equation del square phi by del x square plus del square phi by del z square is equal to 0 this is

like before then we have. So, I am going to do it only for gravity waves.

And, the homework for you will be to try this by putting in surface tension also. It is just a

modification to the pressure boundary condition. One has to just replace pressure with T by

rho times divergence of n as I did in the last example. I will right now assume pressure to be 0

as we have done so far. So, I will do it for gravity waves on finite depth.

So, let us write down the relations. So, the Bernoulli equation pressure is 0. So, there is no

pressure term in the Bernoulli equation. This is Bernoulli equation applied at the surface like

before plus g eta is equal to 0. Then we have the kinematic boundary condition linearized

minus del phi by del z again at z is equal to 0 is 0. And, then we also have a no penetration

condition. So, no fluid goes through the wall.

So, no penetration we have to remember that we cannot impose no slip, this is an inviscid

analysis. We cannot impose two boundary conditions at the wall, we can only impose one

where; if you do a viscous analysis then you will be able to impose a no slip condition in

order to in addition to the no penetration condition. So, we will have a no penetration

condition which is del phi by del z which tells me the vertical velocity at the wall is 0.

So, del phi by del z at z is equal to minus H. Recall that the positive z direction is upwards.

So, the negative z direction is downwards and this H is a capital is a positive quantity. So, H

is greater than 0 is 0. So, this is the only difference rest of the equations remain the same like

before and we have to ask ourselves how does this modify the analysis.
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So, let us look at it. So, by variable separation arguments once again it is a linear combination

of cos k x and sin k x. I will put a prime here because these constants will get multiplied by

something and then I will eliminate the prime. So, cos k x plus B prime sin k x in the vertical

direction earlier we were only a putting exponential k z into a constant.

Now, we will have to put both the exponentials because the domain is finite in the vertical

direction. So, in general in this direction in the z direction it is C e to the power k z plus D e

to the power minus k z. This second term was not there earlier, now it is going to be there e to

the power i omega t, eta is equal to like before some E cos k x plus F sin k x into e to the

power i omega t. This is let us call it 1 and 2; we can go and plug it into the boundary

conditions.



Now, if let us first eliminate the no penetration condition or let us first satisfy the no

penetration condition. The no penetration condition says del phi by del z at z is equal to

minus H is 0. This is the only part which depends on z, the rest is z independent. So, I can

differentiate this with respect to z, at z is equal to minus H and set the resultant expression to

0 that gives me one equation which says K times C e to the power k H or k minus H minus D

because there is a derivative with respect to z.

So, minus k will come here e to the power plus k H is equal to 0. This is the equation that we

obtain. This allows me to determine C in terms of D or rather D in terms of C. So, you can

see that C is equal to De to the power twice k H or let me express D in terms of C. So, D is C

e to the power minus 2 k H. I am going to use this to get rid of D in all my expressions.

So, this tells me that phi is A prime cos k x plus B prime sin k x into you can see that I am

going to get rid of D and express it in terms of C. So, C e to the power k z plus C e to the

power minus k z minus twice k H into e to the power i omega t. I am going to pull out this C

and multiply it with A prime and B prime these are in general complex constants and A prime

into C is going to be A and B prime into C is going to be B. This is why I had put a prime so

that I could use the symbols A and B later.

So, A cos k x plus B sin k x multiplied by e to the power k z plus e to the power minus k z

minus twice k H into e to the power i omega t. Eta like before remains the same E cos k x

plus F sin k x multiplied by e to the power i omega t. So, this is our normal mode form and

now, we have already taken into account the no penetration boundary condition.

Now, all we need to do is just like what we have done until now, take these two expressions,

substitute them into the two boundary conditions that we have and obtain the dispersion

relation. Once again, the algebra is straight forward. You can do it yourself I am just going to

write down the final answers. So, once again we are going to get four algebraic equations in

four unknowns.



They are coming from the coefficients of cos k x and sin k x and of course, there is a complex

conjugate part like before. So, our equations are going to be. So, I am going to skip the

algebra. I encourage you to try it for yourselves. You just have to take these expressions that I

have written. The expression for phi so, these two expressions take this and plug it into the

two boundary conditions, these two.

Note that we are not putting surface tension. So, we do not have to worry about calculation of

divergence of unit normal and so on and so forth. Once you have done this calculation then

you can restore surface tension back into the Bernoulli equation, add that term and calculate

what is the modified dispersion relation for capillary gravity waves on a pool of finite depth.

Right now we are just doing surface gravity waves on a pool of finite depth there is no

contribution from surface tension.

So, we have to take the expressions that I have put in this rectangular box here and we have to

substitute it into these two boundary conditions. And, then we have to eliminate we have to

set the coefficients of cos k x and sin k x in both the equations to 0 that will give us four

equations in four unknowns. Our unknowns are going to be A, B, E and F. So, A, B, E and F

in general these are complex constants as usual.
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So, I am going to straight away write down the equations that one would obtain. You can

substitute and cross check that these equations are correct. So, one equation is i omega 1 plus

e to the power minus twice k H A plus g E is equal to 0. The next equation is this is all

coefficients of cos x and sin x cos k x and sin k x then one two more. So, two of them will

come from the Bernoulli equation the other two will come from the kinematic boundary

condition.

So, i omega E minus KA into 1 minus e minus 2 k H is equal to 0 and then i omega F minus

KB 1 minus e to the power minus twice k H is equal to 0. So, like before we have four

equations in four unknowns. How do you check the validity of these equations? You can take

the limit H going to infinity, all the exponential terms will drop because they will go to 0.



And in that limit you should recover exactly the same equation that we had earlier found for

surface gravity waves in deep water. I encourage you to try this on your own and compare

with the results that we had earlier and make sure that the equation that you recover in this

limit of H going to infinity deep water limit is gives you the same equations as before.
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Let us continue, so, the matrix. So, this is like usual this is a matrix for A B E and F is equal

to homogeneous set of equations 0 0 0 0 and we are looking for a non-trivial solution. So, the

elements are i omega 1 plus exponential minus 2 k H that is the coefficient of A, then 0 is the

coefficient of B, the coefficient of E is g and then 0.

Similarly, 0 the second element coefficient of B is i omega plus e to the power minus twice k

H, the third element is 0 and the fourth element is g, then the coefficient of A is minus k 1



minus e to the power minus twice k H, second element is 0, coefficient of E is i omega then 0

and then this is 0 minus k coefficient of B 0 i omega.

If you take the determinant of that matrix to 0 this gives you the dispersion relation once

again you will get a quartic, the quartic is factorizable as a quadratic. So, you will get the

quartic omega square into 1 plus e to the power minus 2 k H minus gk into 1 minus

exponential of minus 2 k H whole square is equal to 0.

I have written it in such a form that if you said this term if you take this limit H going to

infinity then this term and this term will go to 0 and you will recover your old quartic which

was omega square minus g k whole square is equal to 0. We had done this earlier when we

did surface gravity waves in deep water. So, this just generalizes that bringing in the effect of

finite depth. So, those factors that we are getting represent the effect of finite depth.

So, let us work on this. So, we obtain omega square is equal to g k into 1 minus exponential

of minus 2 k H divided by 1 plus exponential of minus 2 k H I can simplify this a little bit by

multiplying numerator and denominator by exponential k H.
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If I do that then this becomes omega square is equal to g k exponential of k H minus

exponential of minus k H divided by exponential of k H plus exponential of minus k H.

Recall that this is related to hyperbolic functions; hyperbolic functions are defined as by

taking exponential and splitting it into odd and even parts. So, the even part is e to the power

X plus e to the power minus X by 2 and the odd part is e to the power minus X by 2. This is

cos hyperbolic of X and this is sin hyperbolic of X.

Sin hyperbolic by cos hyperbolic is tan hyperbolic of X and tan hyperbolic of X looks like

this. So, this is exactly of the tan hyperbolic form. So, I can write this as g k tan hyperbolic k

H and so, comes out our dispersion relation for surface gravity waves on finite depth.

Dispersion relation for surface gravity waves on a pool of finite depth.



What is this telling us physically? Recall that we had said that as lambda becomes bigger and

bigger. So, lambda goes to infinity or k goes to 0, we get gravity waves. Now, earlier we had

found that the phase speed of gravity waves actually increases without bound in deep water.

So, if you recall our earlier dispersion relation for the capillary gravity waves in deep water.

You can see that as k goes to as k goes to 0, the blue curve increases without bound. So, the

phase speed is becoming bigger and bigger and bigger as the wavelength is becoming longer

and longer. In the Cauchy – Poisson problem we have seen this behaviour for gravity waves.

The further we go outward the longer is the wave and the faster it travels.

So, this behaviour gets rectified once we put in finite depth. As I said earlier the effect of

finite depth starts to be felt when the wavelength of the waves starts getting comparable to the

depth of the pool on which the wave is propagating. So, if we start with the pool of finite

depth and if we have waves whose wavelengths are very short compared to the depth, then

these waves behave as if they are propagating on deep water.

However, if you take waves which are much which are whose wavelength is comparable to

the depth, then they start feeling the bottom and then the correction to the dispersion relation

is becomes necessary. In particular, if you take the limit of lambda going to infinity so,

lambda going to infinity so, holding H fixed so I hold the depth of the pool fixed and I take

lambda going to infinity.

This is equivalent to the limit k H going to 0 because when lambda goes to infinity H is

anyway fixed so, k goes to 0 so, k H goes to 0. What happens to this dispersion relation? This

dispersion relation suffers a qualitative change. So, you can see what is the behaviour of tan

hyperbolic X for very small X that is because our tan hyperbolic has argument k H and I want

this limit k H going to 0.

So, tan hyperbolic X for very small X. You can see the tan hyperbolic X for very small X is

just X. You can do a Taylor series expansion on this and convince yourself the tan hyperbolic

X for very small X is just X the first term is X. And, so, for sufficiently long waves so, long



waves omega square is equal to g k tan hyperbolic of k H for sufficiently small k is just k H it

is just X.

This is so, this is an approximation for sufficiently long waves I am just writing the first term

in the Taylor series and this is equal to k square into gH. Now, notice what has happened. For

sufficiently long waves the phase speed which is omega by k is just square root gH. This is

unlike deep water, this is unlike other all the other examples that we have seen until now

where the phase speed until now was a function of k.

Now, once the waves become sufficiently long then they effectively behave as pure gravity

waves and pure gravity waves on a pool whose depth is much smaller than their wavelength

behave like long waves and they are non dispersive or in other words their phase speed is

independent of the wavelength. This has a lot of consequences for the physics of how these

waves propagate especially when there are many of them travelling. We will see some of this

later on when we look at shallow water theory.

So, shallow water theory is basically a long wave theory. So, you can either say that the wave

is long compared to the depth or you can say that the water is shallow compared to the

wavelength. Either ways we are meaning the same thing. There is a non dimensional

parameter which represents the ratio of wavelength to depth. k H is a non dimensional

parameter. Shallow water implies that k H is much much less than 1.

So, small k limit or large wavelength limit, k is inversely proportional to lambda. So, this is

twice pi H by lambda. So, shallow water implies lambda is much much greater than H. In that

limit, surface gravity waves become non-dispersive. One can calculate for finite depth instead

of taking the shallow water limit one can stick to a pool of finite depth where the wavelength

is comparable to the depth and one can incorporate the effect of surface tension.

I leave it to you as a homework problem to work out the correction of surface tension on this

dispersion relation. So, you have to do is one has to go back to the equations to the boundary



conditions and modify the Bernoulli equation. So, you have to modify the Bernoulli equation

and you will have you will have one more term here. So, let me write it in another color.

So, there will be an additional term here which will be coming in because pressure is now not

0. It will be T by rho times divergence of n and then we already know how to calculate that

term. So, you have to include this and find your matrix and that determinant of that will give

you your dispersion relation.

So, this is the this is the dispersion relation for waves surface gravity waves you know on a

pool of finite depth. Obviously, when we go to the deep water limit or in other words when k

is very large or for a fixed depth k is very large then we recover the known behaviour. So, tan

hyperbolic.
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So, we have looked at two limits. So, our general relation is gk tan hyperbolic k H we have

looked at the limit for fixed H. So, H fixed we have looked at the limit k H going to 0 this is

the shallow water limit when the wavelength becomes much much greater than the depth.

In that limit these waves become so, in the shallow water limit these waves become

non-dispersive. So, we have gk into gH. So, tan hyperbolic k H is just k H. So, that gives me

a k square into gH. So, this implies C is equal to square root gH plus minus the phase speed C

p keeping H fixed if we take the other limit k H going to infinity.

This is of course, is the reverse limit. This is the deep water limit. In this limit it is not

consistent to ignore surface tension because my wavelengths are getting shorter and shorter

compared to the depth. So, my wavelength is much much shorter compared to the depth, but

if you ignore surface tension and just look at this dispersion relation.

Then we have to find out what is tan hyperbolic of k H for large k H. If you plot tan

hyperbolic of X as a function of X you will find that it is asymptote to the so, tan hyperbolic

of X as a function of X. You will find that is asymptote to the line y is equal to X for very

small argument and then it plateaus at plus 1. So, for very large KH tan hyperbolic k H is just

one for sufficiently large X.

So, this is for k H much much bigger than 1. If you plug that in into the dispersion relation

you can see what do we get we recover our deep water results. So, this is the shallow water

result, this is the deep water result. Very different because in the shallow water limit the

waves are non-dispersive.

C p is not a function of k all ks travel with the same speed whereas, in the deep water limit C

p as we have seen is square root g by k. So, every C p, every Fourier mode has its own speed.

So, you can compare this with that. So, this is the shallow water limit and this is the deep

water limit. You can see then in this case this is non-dispersive, in this case it is dispersive.



Later, we will see that non-linearity and dispersion can compete with each other and lead to a

lot of complications which causes a lot of interesting phenomena in the evolution of

interfacial waves. Just as we have worked out the formula for the dispersion relation you can

take this and also work out what is the expression for phi.

I leave it to you to show that phi can be written as g by omega E cos k x plus F sin k x into

cos hyperbolic divided by cos hyperbolic k H into e to the power i omega t plus pi by 2.

Similarly, there is a similar expression for eta.
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Eta is equal to E cos k x plus F sin k x into e to the power i omega t you can see that there is a

phase difference of pi by 2 between phi and eta So, that i was absorbed as a phase factor of pi

by 2. This expressions can be obtained easily. All that you have to go and do is follow



whatever we have done until now and then try to rearrange so that you get these cos

hyperbolic factors.

Recall the definition of cos hyperbolic which was e to the power X plus e to the power minus

X by 2. You have to use that definition and you will be able to obtain these expressions very

easily.


