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Lecture - 35
Cauchy-Poisson problem in cylindrical coordinates

We had obtained the solution to the Cauchy-Poisson problem for deep water waves, surface

gravity waves in rectangular geometry. The final answer was expressible as a Fourier integral.

A natural question arises how does one evaluate these integrals particularly for more

complicated initial conditions? We will look at some examples later on.
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But let us now keep the answers right now in integral form. We will also see that one can also

approximate these integrals in the limit of t going to infinity using a particular kind of a

mathematical technique.

Now, before we do this let us extend the solution to the Cauchy-Poisson problem for waves in

a circular geometry or rather waves in a cylindrical geometry. So, you can think of throwing a

stone in a pool.
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So, you can see that in when we throw a stone in a pool, waves come out in a circular manner.

And so that problem is naturally defined in a cylindrical coordinate system where the

coordinate r represents the radial coordinate. There is a center of the pool and we will assume

that the pool is horizontally unbounded like before.



So, horizontally and vertically unbounded like before. This implies that in this r z coordinate

system. So, we are also going to assume that the waves are axisymmetric which implies that

all del by del theta is equal to 0. 

So, this is my coordinate system as I have indicated on the left and the axis of symmetry is the

vertical axis, the z axis and there is no variation if I go around the z axis. So, this becomes a

planar problem, but we have to remember that we have to visualize it in three dimensions and

we have to use a cylindrical coordinate system.

Once again my depth of my pool is infinite and in the radial direction, it goes up to infinity.

So, we ignore the presence of any confining boundaries. So, you can think of a very large

pond where the boundaries are very far away and we throw some kind of a stone or something

and then it causes ripples. And we want to understand how these ripples spread out.

This problem is also known as the Cauchy-Poisson problem. Cauchy-Poisson has provided

the solution to the problem, both in cylindrical as well as Cartesian geometry. We have

already done the Cartesian geometry. Let us understand how we do the cylindrical geometry

probably.

So, first we will do it for a simple case, where there is only one mode present in the system.

Just as we had done it earlier. We will do it, first for the simple case and then we will make

the initial conditions more complicated. So our governing equations like before and I am

straight away going to do a linearized analysis. So, linearized, so everything is at order

epsilon only. We know what are the equations at order epsilon; there is a linearized kinematic

boundary condition, there is a linearized Bernoulli equation and there is a Laplace equation.

So, we just have to write the Laplace equation in cylindrical axisymmetric coordinates.

Earlier we had written it in Cartesian coordinates and now we will write it in cylindrical

axisymmetric coordinates. And the form of the kinematic boundary condition and the

Bernoulli equation remains the same.



So, del eta by del t minus del phi by del z and z is equal to 0 is 0. This is my familiar

kinematic boundary condition; linearized. Then the linearized Bernoulli equation is del phi by

del t plus g eta is equal to 0 and this is evaluated at z is equal to 0. This is obtained once again

by saying that the gas above which in this case could be air exerts negligible pressure. So, the

pressure is 0. We put pressure equal to 0 and ignore the non-linear terms.

And then, of course we have finiteness conditions because our domain is unbounded. So, we

have to make sure that as r goes to infinity, in this case we will also have to worry about r

equal to 0. So, and z goes to minus infinity, everything is finite. So, we do not want things to

diverge that will eliminate some of the constants of integration, ok.

So, now let us start with and we would like to also maybe specify some initial conditions. So,

now let us specify the initial condition as a 0, because this is cylindrical geometry you will

see that the Bessel function which we have encountered before when we studied vibrations

small amplitude vibrations of a circular membrane clamped at the boundaries, we have made

the Bessel function before. So, I am going to specify this as a Bessel function.

You will see that the Bessel function here plays the same role as cos and sin plays in a

rectangular geometry, ok. So, I will keep the initial conditions very simple. Just deform the

surface in the form of a Bessel function and we do not give any initial impulse at time t equal

to 0. 

This is the equivalent of what we had done earlier for Cartesian coordinates. There I had

deformed the surface as a cos k 0 x and phi was 0 at the surface. This was the initial condition

for which we solved. Here the eta is defined in the shape of a Bessel function j 0. It is j 0

because it is axisymmetric, ok.

So, if you want to recap, go back and look at your, the video where we discussed the Bessel

function. The Bessel function will is an oscillatory function and it decays very slowly with

distance, ok. So, j 0. And its argument is non-dimensional. So, k is like a wave number and it

has the dimensions of inverse length.



So, now let us solve this problem first before we hit the Cauchy-Poisson problem where our

initial condition will be arbitrary. So, we will have to specify some arbitrary function of

radius, ok and that will represent the pebble in the pond problem. But right now let us take a

slightly artificial initial condition as a single Bessel mode of a given wave number k.

So, how do we solve this? So, once again let us go back. So, solution so this is r. So, solution,

so let us write the Laplace equation in cylindrical axisymmetric coordinates. Once again, we

are going to do a normal mode analysis. So, r z and t and I will write it as some eigen mode

like before which is a function of the spatial variables only into e to the power i omega t. I am

looking for standing wave kind of solutions.

Now like the Cartesian coordinate system even in this coordinate system the Laplacian is

variable separable. So, the Laplace equation can be solved by variable separation ok. So, I am

going to say that this phi which depends on r and z in the Cartesian case, it was x, y or x, z

here it is r, z. So, it will be some function of small r and some function of small z. They are

separable. We go back and plug this form back into the Laplace equation. If we do that, you

will find the following equation.
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So, z d square R by d r square plus z by r d R by d r plus R d square Z by d z square is equal

to 0. I define both sides by capital R and capital Z, the product of capital R and capital Z. So, I

will get a 1 by R d square R by d r square plus 1 by R 1 by z d square Z by d z square equal to

0. Now you can see that this part depends only on small z.

So, I do the same trick that we did before. We take everything which depends on small r on

one side, everything which depends on small z on the other. So, we have 1 by R d square R by

d r square plus 1 by R. And this I will put it equal to some separation constant k. This k is the

same k that we want in the initial conditions, it will represent a wave number. Once again, I

would encourage you to think why did we choose the negative sign of the separation constant.

Think what happens if we choose a positive sign?



Now, with this we get two equations for capital R and capital Z. Let us write the capital R

equation first. So, you can see that I can multiply both sides by r capital R and so, I will get d

square R by d small r square plus 1 by R plus k square into R. So, I am using this equality and

I am equating the left-hand side to minus k square and this is going to give me one equation

for capital R.

We have done a similar procedure when we looked at vibrations of the membrane. When we

did vibrations of a circular membrane, our membrane was clamped here. The liquid pool on

which we are going to get waves, it is going from R equal to 0 to all the way to R equal to

infinity. So, there is no confining boundaries. That is the only difference here and you will see

that we will find standing wave kind of solutions here as well.

So, this is our equation for R. Similarly, we can get an equation for Z by equating those two

and the equation for z just turns out to be d square Z by d z square minus k square Z is equal

to 0. Now we have looked at this equation before. So, I am not going to repeat those things.

Recall that this equation is related to the Bessel differential equation. It has two linearly

independent solutions j 0 and y 0. Before we express it in that form, we need to

non-dimensionalize r because the argument of Bessel function, both the Bessel functions are

non-dimensional

So, let us say that some r bar is k into small r k has the dimensions of 1 by length. So, r bar is

non-dimensional. If we do that and I multiply this equation throughout by small r square, then

I can straight away write r bar square d square R by d r bar square plus r bar d R by d r bar

plus r bar square into R is equal to 0.

You, if we have done two steps in going from here to here. Firstly, we have multiplied the

equation at the top with small r square. So, that has introduced r square in the first term and r

in the second term and a k square r square in the third term as its coefficients. Then we have

converted from small r to small r bar. If you do that everywhere consistently, you are going to

get that equation.



We know that this is the Bessel’s equation and the order of the equation is 0. So, the solutions

are; so R in this case is a function of r bar is some linear combination of J 0 r bar plus y 0 r

bar. We have encountered both of these functions before. I have also told you that y 0

diverges at r equal to 0, ok.

So, in order to prevent that divergence as I said earlier in the last slide that we will have to

worry about divergences both at r equal to 0 and r equal to infinity. So, the r equal to 0,

divergence is there in y 0. So, we will have to get rid of C 2. So, this is 0. So, therefore, we

obtain R of r bar is equal to sum C 1 J 0 of k. We can straight away write r bar is kr.

Similarly, this equation is also solvable easily. So, capital Z of small z is just again the same

procedure e to the power k z plus some other constant e to the power minus k z because of

divergence at z is equal to minus infinity we have to set this to 0, and so this just gives us D 1

e to the power k z.

You can see that our Eigen function capital phi for the velocity potential had capital R into

capital Z. We have determined capital R into capital Z. Both of them contain one arbitrary

constant of integration. The product of those two in this case, C 1 and D 1, we can represent it

as some other constant, ok. So, generically I can write down the form for phi.
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So, phi in this case is going to have the form some constant C 1 into D 1, I will call it alpha.

Alpha could be complex in general; J 0 of k r the same exponential that we encountered

earlier into e to the power i omega t, that is because we are doing normal modes. Again here

the base state is again quiescent. The pressure variation is hydrostatic like before. It is only

we are doing the problem in a cylindrical coordinate system, not in a Cartesian coordinate

system.

Now, looking at the form of eta in the equations, recall that the Laplace equation satisfies

governs phi and then, there are boundary conditions which couple phi to eta. If you look at the

boundary conditions for the kinematic boundary condition and the Bernoulli equation, once

again you find that phi and eta have the same radial dependence. This was the same argument



that we used earlier where we found the horizontal dependence of phi. It was some linear

combination of cos k x and sin k x, here it is just J 0 of kr, ok.

So, you can readily see that the horizontal dependence. In this case, the r dependence of eta is

going to be the same as the r dependence of phi. If that is the case, then we can write some

other constant I will put beta in general complex. Again, it is the same horizontal dependence

as phi and then, eta is not a function of z. So, I do not have to worry about the e to the power

k z and then, once again normal modes into plus c c. So, this is our anticipation for the form

of phi and eta.

Now, we do the same procedure. We plug these forms into the two boundary conditions it

will give us two linear equations in alpha and beta. These are homogeneous equations. The

determinant of the matrix will tell us the allowable frequencies. The equations just turn out to

be; the equations are i omega beta minus k alpha is equal to 0 and then, we have i omega

alpha plus g beta is equal to 0. The first one is the kinematic boundary condition, the second

one is the linearized Bernoulli equation, there is a gravity in it.

This we can write it as a matrix. So, minus k i omega; i omega g into alpha beta is equal to 0.

This again gives us the same dispersion relation. The determinant of the matrix has to be 0

omega square is equal to g k. Interestingly we find that waves in deep water have the same

dispersion relation independent of whichever geometry they are described in. At least in these

two geometries, you can expect the same result from dimensional arguments.

Now let us anticipate the general solution. So, the general solution is the same as before. So, I

will write it as beta times J 0 e to the power i omega t plus c c. So, it will be beta plus beta bar

into cos omega t J 0 is any variable plus i times beta minus beta bar sin omega t, the whole

thing multiplied by J 0 of kr.

And phi, you can see that we can express alpha from this equation. For example, we can

express alpha as i omega beta by k and omega is square root g k. So, it is i times square root g



by k beta. So, I only have one constant one complex constant in both the expressions; into J 0

of k r e to the power k z e to the power i omega t plus c c.

And now, I can absorb this i into e to the power i omega t. This is exactly the same procedure

as before g by k and then, I can write the final expression as beta plus beta bar cos it will be

omega t plus pi by 2 because there is a factor of i here which will be absorbed into e to the

power i omega t, it will be e to the power i pi by 2; plus i beta minus beta bar sin omega t plus

pi by 2. And once again this is real, this is real in both the expressions so we can replace it by

some equivalent real expressions.
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So, let us write it in terms of real expressions. Eta is equal to L cos omega t plus N sin omega

t whole thing into J 0 of kr. Phi is equal to square root g by k minus l sin omega t plus N cos

omega t into J 0 of k r e to the power k z. Those are the solutions, let us take the initial



condition. The initial condition was eta of r, 0 is sum a 0 into J 0 of kr and we had not put any

impulse at the surface. So, at z is equal to 0 at time equal to 0 is just 0. We have written this

initial conditions earlier. You can see them here, ok.

So, I want to determine the constants, the unknown constants using these initial conditions

just like we did it in Cartesian coordinates. So, using this if you just substitute and time equal

to 0 in these and equate it to these initial conditions, you will find readily that L is equal to 0,

n is equal to 0. 

And thus, we have eta of r, t is equal to a 0 J 0 of k r cos omega t and phi of r coma z coma t

is minus a 0 g by k, J 0 of kr e to the power k z sin omega t and we have already found that

omega is equal to square root g k, ok. So, these are our solutions for those initial conditions.

For these initial conditions.

Compare this to what we found earlier in Cartesian geometry. The only difference was instead

of J 0, kr we had a cos k x, ok. That is because we had a cos k x in the initial condition, ok.

So, J 0 k r behaves like cos k x cos k x is a periodic function of x. J 0 k r is not a periodic

function of x; its oscillatory, but the distances between the roots are not exactly equal. I have

told you what those roots are when we were looking at the vibrations of a circular membrane.

Note that this is also a standing wave solution. The space and the time part are separate. So,

every place where the space part goes to 0, the displacement of the interface or the free

surface remains 0 at those points at all times. So, the places where the Bessel function J 0 of k

r depending on k, you will have intersections with the undisturbed location.

So the, so it will look like this. So, if this is the undisturbed location and this is your Bessel

function initially, so it is a slowly decaying function as we go further and further. So, these

are the points where it vanishes, where eta is 0 at time t equal to 0.

You can note from the expression that these at these places at these nodes, eta will always

remain 0. That is the property of a standing wave. So, we have found standing wave like



solutions even in a cylindrical axisymmetric geometry. You can go back and substitute this,

you can do this exercise using the full problem where we do not say that del by del theta is 0.

So, we could put a perturbation along the theta direction as well. So, it could be, it would be

have to be of the form cos m theta, where m has to be an integer. So, you can put that and you

can see what is the effect on the dispersion relation.

So, now we are looking at waves in a cylindrical geometry deep water linearized surface

gravity waves. Now, let us ask the question that we are now going to perturb the interface let

us say via Bessel mode. Just as we had asked the same question earlier that our initial

condition is not a cos k x mode. It is a more general initial condition. It could be some

arbitrary function of x f of x. And in that case, we had found that the general answer can be

written as a Fourier superposition over the Fourier transforms of the initial conditions. 

Let us see what is the equivalent answer here. And this process of what whatever we are

going to do now we will answer the pebble in the pond problem. So, let us first do.
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So for this, we will introduce a transform which is called a Hankel transform. This is once

again an integral transform. It is like a Fourier transform. I will give you references for

reading up on the Hankel transform in case you have not encountered it before. One can

derive the Hankel transform from the two-dimensional Fourier transform. It involves the

transform involves the Bessel functions.

So, the Hankel transform of a function f of r. So, if you have a function f of r and its Hankel

transform is indicated. Let us say by F tilde of once again k, but this is now a Hankel

transform. So, I will call it H. So, the relation between, so given f of r how do we obtain F

tilde of k? This is obtained by the following formula 0 to infinity f of r, J 0 of k r r d r and

how do we go? So, this this gives us that if we get f of r and if you plug it into this integral,

then if this integral converges, then it will give us the Hankel transform of the function f of r.



Similarly, if we want the function back from its Hankel transform, then we will get f of r and

the inverse is represented as f of k or F tilde of k. Once again J 0 of k r and this is k d k.

Notice the extra factor of r here and the extra factor of k there, ok. We I will give you some

references where you can reference to be given where you can read a little bit more about this

integral transformation.

What is the utility of these transforms? Recall that in the Cartesian case, the Hankel; the

Fourier transform converted the del by del x square to minus k square. This is what allowed

us to solve the Laplace equation as if it was an ordinary differential equation and we could

write it down its solution along the z direction as exponentially in z with the prefactor which

was k dependent.

We will see that the Hankel transform will do the same thing here. The Hankel transform

here, the horizontal direction, the Laplacian operator has a more complicated structure. There

is a del r square by del r square plus there is a 1 by r del by del r. The Hankel transform

precisely has the property that when it applies on that part of the operator, it converts it into

minus k square into the Hankel transform of the function.

So, we will recover very analogous results compared to what we did earlier.
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