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Lecture - 31 

Frequency Domain Analysis 

 

Welcome back. So we have now seen what do we mean by frequency domain analysis. What 

we do is we capture what is known as the frequency response of a system. That is we 

compute what is the amplitude ratio and phase. Compute the variation of amplitude ratio and 

phase with respect to frequency and we have seen that it can be represented as a Bode 

diagram or a Nyquist diagram. So let us now see how do we use this information to compute 

or to assess the stability of a feedback system. 
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So we will see stability assessment of the feedback system in the frequency domain. So in 

order to do that we will consider one thought experiment so that it will help us kind of 

understand what are the stability conditions when we do the stability analysis in frequency 

domain, and we are going to see two stability criteria and both these are sort of evident from 

this simple thought experiment. 

 

So let us consider an imaginary experiment of a feedback system. So let us start with a 

feedback system. This is our process Gp, a disturbance transfer function. This gives you 

output y, then you have a measurement, then you have this measured output. If we go back 

from here, you have the valve transfer function, before that we have the controller transfer 



function and this is error and error ε is the difference between the measured value and a set 

value. 

 

So I have deliberately not shown this particular link because in this thought experiment we 

are going to inject sinusoidal input here. So we are going to say the set point trajectory is a 

sinusoid input. So let us say this is A*sin(ω*t). We are going to input a sinusoid here that 

brings in why we are in the frequency domain. 

 

Now we monitor how does ym look like. Although we are assessing the stability of a feedback 

system, the analysis or the thought experiment actually starts with the open loop, that we 

have opened this loop, we are not going to feedback the measured value, we are just 

assesseing the feedback value. So if you see what we have is in this case, the error is yset - ym. 

 

Here ym is not supplied, so it is considered to be 0 which is equal to A*sin(ω*t). So your error 

is A*sin(ω*t), and if you look at what is the transfer function between ym(s) and ε(s), it is if 

you have to go from ε  to ym. It is Gc * Gv * Gp * Gm, and this is also represented called as 

GoL. So it is called an open-loop transfer function between the measured output and the error 

which is the product of these four transfer functions. 

 

And we are going to give a sinusoidal input here as yset, but it is going to be equal to ε  

because ym is 0 and as there are these four processes depending on these four transfer 

functions, we will see the output ym will again be a sinusoid. So even though I am saying we 

want to monitor ym, it is going to be a sinusoid with a certain phase. So it will have a certain 

phase, and it will have a certain amplitude ratio. 

 

So we have already seen how do we compute these two. So we know that if this is the input 

sinusoid and we are interested in finding the output, then this AR and φ would be obtained by 

using the frequency response of this particular transfer function which is the product of these 

four transfer functions. So depending on the frequency, this phase, as well as amplitude ratio, 

would change.  
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So we will consider a frequency ω such that the corresponding phase is –л or -180
o
. So in that 

case if I say ym will be equal to whatever is the amplitude ratio * A*sin(ω*t)+ φ(ω*t- л), so it 

is going to be equal to –A * AR sin(ω*t). So what we are seeing is so this ym is inverted form 

of yset because it is minus and we have some magnification or reduction in terms of 

amplitude. 

 

But if you look at overall signal y is equal to yset, so this is actually AR-AR*y set. That is why 

I said it is inverted because there is a minus sign, there is a gain of AR, or otherwise, it looks 

very much like yset. So now coming back to our thought experiment. Now let us see that we 

have this particular frequency ω at which phase is -л so that this is -AR * yset and at that 

whenever you have that we have found that frequency. 
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You now close the loop so at that particular point, we are going to close the loop and we are 

going to make it 0. 
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So what we are going to do is we are going to close the loop and yset goes to 0. Now let us 

look at what would be the error. Error is still yset - ym so now yset is 0 and ym we have just 

calculated as –A*AR*sin(ω*t). So this is equal to A*AR*sin(ω*t). So you can see that earlier 

our error was A* sin(ω*t). Now it looks very similar to that even though the set point is not 

there, we have still had an error as A* sin(ω*t) which is multiplied by AR. 

 

So let us consider that if AR = 1 then ε(t) = A* sin(ω*t). So you see that ε  is A* 

sin(ω*t)which is the same as what we had put in earlier. So that means before closing the 

loop, the system was oscillating at A* sin(ωt) with frequency ω, and the moment I close the 

loop and even though there is no set point change, so when I say yset = 0 all these are 

deviation variables, that means the system is not subjected to any external conditioning and 

still this ε  = A* sin(ω*t), it will go through all these transfer functions and what comes out is 

still A* sin(ω*t) and then the system will keep on oscillating at A* sin(ω*t). So the 

implication of this is that even though yset = 0, the system continues to oscillate even though 

the original source of the oscillation is gone. 

 

So that means if I have a phase of –л and if the corresponding amplitude ratio is 1, then I am 

going to get sustained oscillations. 
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So what are the results from the thought experiment. If phase is  -л and corresponding AR=1, 

we get sustained oscillations and if you recall from the previous definitions of stability, this is 

as good as marginal stability and it tyлcally represents the limit of stability. Now let us 

consider if for the same φ =л, AR is >1. So we go back to this same figure. Before closing the 

loop, we know that this ym for this recirculating error is going to be A*AR* sin(ω*t). 

 

So what does that mean? We close the loop, we made the yset to be 0 and if AR is >1 if I put 

in A* sin(ω*t) what I get is something which is more than A* sin(ω*t). Then, that goes into 

this next cycle, what we will get is even higher than that. So every successive cycle amplitude 

grows because you will get (AR)
n
. So the amplitude will keep on becoming A*(AR)

n
. 

 

So what does that mean? The system is unstable because the system will have growing 

oscillations and similarly you can also show that for the corresponding case, AR <1, in that 

case, every successive oscillation would have a smaller magnitude. So oscillations diminish 

and what you have is a stable system. 

 

So simply by looking at what happens when your phase is –л, through this thought 

experiment, we can claim that if at this particular frequency if amplitude ratio is 1, the system 

has a stability limit, is at the stability limit. If that corresponding amplitude ratio is >1, the 

closed-loop system is unstable, and if that corresponding amplitude ratio is <1, then you have 

a stable system. 
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So what all we need to do is in order to assess the stability, you start with the open-loop 

transfer function which is Gp Gv Gc Gm. Then you compute its amplitude ratio and φ which 

is the amplitude of GoL and angle of GoL. Then, you compute ω equal to what we call as a 

crossover frequency such that φω crossover = -л and then you compute AR at ω crossover. If it is 

equal to 1, you get sustained oscillation or marginal stability. 

 

If it is<1, it is stable. If it is >1, unstable. So this principle we will be using in order to 

formulate the two stability criteria in frequency domain, the first of which is known as a Bode 

stability criteria, is presented here. 
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So you can see that in the Bode's stability criteria, it starts with an assumption that if AR 

amplitude ratio and φ are the monotonous functions of frequency which are tyлcally most of 



the cases is most of the times is the case. The feedback system is unstable if the amplitude 

ratio at the crossover frequency which is when phase is equal to -л or -180
o
 >1. So that is the 

Bode stability criteria and in order to compute that we need this GoL which is Gp Gv Gc and 

Gm. 

 

So it follows directly from the thought experiment that you compute the frequency at which 

ω at which φ is –л and compute the corresponding amplitude ratio. If it is >1, the system is 

unstable. If it is <1, it will be stable. So here it is represented as a Bode diagram for a stable 

system, you can see that. At this particular frequency, you would see that the phase is -л and 

then you move up into the first figure, you compute what the corresponding AR is. 

 

This is a Matlab plot, so in Matlab, AR is given as in a decibel unit, so it is 20 log of 

amplitude ratio. So if the amplitude ratio is equal to 1, this decibel will be 0. So as long as 

this decibel value is positive which means AR is >1, the system is unstable. Here this decibel 

value is negative, so the system is stable. So by just naturally following from this thought 

experiment what we have found is that using the Bode stability criteria all we need is 

compute the corresponding crossover frequency and check the amplitude ratio. 

 

If it is >1, the system is unstable. Then, so the major assumption in the Bode’s stability 

criteria is that this AR and φ are monotonous functions of frequency and by that we mean as 

we keep on increasing ω from 0 to infinity, AR and φ both change in the same direction and 

for a first-order system, second-order system this is indeed the case for most of the time that 

AR and φ both will decrease like this figure. 

 

But in some cases, this condition is not satisfied. So what do we do? So in that case, we have 

to look at more rigorous stability criteria which are given by Nyquist, and that is why there 

are two diagrams. 
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One is given for Bode and one for Nyquist. So the Nyquist stability criteria also follows from 

the same thought experiment; however, it is more general compared to the Bode stability 

criteria. What you see in the Bode’s criteria or from the thought experiment is that in order to 

assist the stability all we need is this signal should be sort of an inverted form of this, so this 

inversion will happen when you have a phase of –л. 

 

But the same thing will also happen at the phase of -3л or -2(n+1)л. So this Nyquist plot then 

looks at all these successive periodic values of frequency when these phases are multiples of 

(2n+1)*л and then takes into consideration. So if AR and Φ are, particularly if AR is not a 

monotonous function of ω, then just satisfying this condition at -л is not sufficient, you have 

to look at the condition at every successive (2n+1)* л and ensure that all those AR’s are also 

<1. 
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So the Nyquist condition checks for amplitude ratio at φ = -л, -3л, -5л and so on and it says 

that all these should be <1 to ensure stability. So in a way, it incorporates Bode’s stability 

condition as well, and the way this stability condition is specified is using a Nyquist diagram. 

It says that if you generate a Nyquist plot of a feedback system and here you are computing 

the Nyquist response for negative frequencies as well. This is so that the Nyquist plot has a 

good shape. So what you do is,  you draw the Nyquist plot for all these frequencies, and if it 

encircles point (-1,0) then the closed-loop system is unstable. So now what is so special about 

this point (-1,0)? 
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So (-1,0) point says its amplitude ratio is 1 and the phase is –л, -3л and so on. So this 

represents all these points at which you are going to have this inversion of the signal and so 

therefore if your Nyquist plot does not encircle this particular point which means we will 



have a stable response. So here is a figure, so this particular figure shows this is the -(-1,0) 

point which is shown in red. 

 

So for this particular Nyquist plot has, the AR is not a monotonous function of ω, but you can 

see that (-1,0) lies outside all this. So it is a stable system. Whereas for this particular system 

this (-1,0) point has been encircled using this circle. So it is going to be an unstable system. 

So this is the stability assessment in the frequency domain. 
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So now if you want to get some results from this what we would see that, for a first-order 

process, where G is kp/(τ s+1). So the maximum φor the maximum phase lag we are going to 



get is л/2 because the phase is -90
o
, so because of that the phase will never reach, so the 

phase never reaches –л. So ω crossover does not exist. As ω crossover does not exist, this 

simple first-order process is always stable under P control. 

 

Because when you have a P control, it is just going to add to the gain of the system. So it has 

no effect on the phase. Now when we look at the simple second-order process, G is kp/(τ
2
s

2
 

+2 ξ τ s+1). What you will see is that the maximum phase lag is л at which ω tends to infinity 

and AR tends to 0. So the ω crossover is actually an infinite frequency at which a second-

order system will give you phase of –л and the corresponding AR is always 0. 

 

So even this second-order system is also always stable under P control. So if you recall the 

example which I had shown you, 3 tanks in series because even if I would had considered a 

single tank or two tanks in series without any delay, those systems will always be stable. So 

only when you have any system which is higher than the second-order without a delay that 

will have some limitation in terms of the proportional controller gain. 

 

Any first or second-order system will not have any finite ω crossover. But the case changes 

when you have any delay. 
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So if you have, a "first-order + dead time" when you have [kp/(τ s+1)]* (e–
td*s

), the phase is -

tan
-1

(τω) –td*ω and because of this term φ = -л even for finite ω. So ω crossover exists and is 

finite, and therefore you also have finite kc for stability. So the moment you add any time 

delay, you are going to have some restrictions on the stability limit. 



 

Note that we never approximated e–
td*s

, so all the analysis which we have carried preserved 

the transfer function e–
td*s

. Therefore, the stability analysis which we are going to get from 

this is going to be accurate, or it is going to be more accurate compared to a Laplace domain 

analysis. So let us now complete this discussion by looking at the same tutorial problem of 

the Blender. 
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So the Blender problem, so back to Blender problem which had measurement delay, so the 

Laplace domain analysis, as approximate stability limit was kc,max=8403. So now let us look 

at what happens. 
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So here is the root locus diagram for that particular system when there is no measurement 

delay, it is a simple flat line. It's all the poles move towards negative infinity, it is all stable 

because it is a first-order process. When you have a measurement delay, and we 

approximated by Pade’s approximation, you can see that the root locus diagram does cut the 

imaginary axis at these two points when the gain is 8403. So that was the stability limit 

computed by using Laplace domain analysis. 
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When we move to the Nyquist plot even though we consider any gain which is less than the 

stability limit which in this case is 8400, you will see that it is encircling the point (-1,0). So 

this frequency domain analysis is correctly pointing out that this particular controller gain is 

unstable. 
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And if we do the frequency domain analysis for this system, what we will analyze is that for 

frequency domain analysis our GoL, in that case, is (8.33*10
-4

)/(3s+1). So this is Gp, Gc is 

Kc, Gv is 1 and GM is e
–s,

 so it is more or less like a first-order plus dead time system. You 

can compute ω crossover such that φ = -л so that ω crossover roughly comes out to be 1.5 

radians per whatever is the time unit. 
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And correspondingly if you equate and your AR is=8.33*10
-4

 kc/√(1+9 ω
2
). So kc,max will be 

given by at stability limit φ = -л, ω =ωcrossover, AR should be equal to1. So substituting it to be 

1, you will get 1+9 ω
2

crossover /8.33*10
-4

 which comes out to be 6446. So the correct stability 

limit, in this case, is 6446 as against what we have found using the Laplace domain analysis 

which was 8403. 



 

So if we have used any gain between 6446 and 8403, the Laplace domain analysis is going to 

say that the system is stable, but the frequency domain analysis is going to say that the system 

is unstable and if you simulate the system, you will indeed find that the maximum stability 

limit is close to 6446. 
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And here is the corresponding Nyquist plot or when you use any kc which is <6000, you will 

see that this (-1,0) point is outside this Nyquist plot, so the system is going to be stable. 
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So we have now seen that how do we accurately capture the stability analysis of systems 

where there is significant dead time and that we do by using a frequency domain analysis 

which will be like capturing the amplitude ratio and phase as a function of ω and then finding 



out typically the crossover frequency would suffice the job, and then you compute what is the 

amplitude ratio at that particular cross frequency. 

 

If it is <1, the system is stable, and if it is >1, the system is going to be unstable. So that is 

about how do you assess the stability of feedback systems using frequency domain analysis. 

Thank you. 


