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Lecture – 29 

Laplace Domain Analysis - Part II 
 

Welcome back, let us now consider another method of computing the maximum value of 

controller gain which can be used for that particular example or in general, in Laplace domain is 

known as direct substitution. 
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So, direct substitution method directly gives you the value of controller parameters when the 

system reaches stability limit. If you feel the effect of kc or the controller gain on the stability of 

the feedback system with 3 CSTRs, we see that for a small value of kc, the system was almost 

very much stable without any sustained oscillation. As you keep on increasing the value of 

controller gain, the oscillation will increase till a value of kc = 64; the system just sustained 

oscillation which is marginal stability.  

 

And then any value of kc greater than that will result in growing oscillation or instability. So 

there is another way of calculating this limit when the system has sustained oscillation, and that 

is known as the direct substitution method. You substitute s = iω in the characteristic equation. 



So, what it means is; it tries to find out the value of the controller parameters at which the poles 

will lie on the imaginary axis. 
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This is the condition when poles of the closed-loop system lie on the imaginary axis. Let us 

apply this method to our example of 3 CSTR’s for which the characteristic equation was, 

S
3 

+ 3S
2
 + 3S +1+ Kc / 8 = 0 

Now we substitute S = iω, so what we are going to get is; 

(iω) 
3
 + 3 (iω) 

2
 + 3 iω + 1 + Kc / 8 = 0, 

which on simplification what we get is, 

– ω
3
 i - 3ω 

2
 + 3 ω i + 1 + Kc / 8 = 0. 

And then we bring the real and imaginary terms together, so what we will have is 1 + Kc / 8 – 3 

ω
2
 that is the real term + (3ω – ω

3
) i = 0, so when we say this equation = 0 which is same as 0 + 

0i, so we can equate the real term to 0 as well as the imaginary term to 0, so that will give us 2 

equations.  
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So, what we get is from the imaginary term = 0 gives us, 

3ω - ω
3
 = 0 or ω * (3 – ω

2
 )= 0 

That is ω = 0 or ω
2
 = 3, when we say real term = 0 that gives us, 

 1 + kc / 8 – 3ω
2
 = 0 

When ω = 0, we will get 1 + kc / 8 = 0 kc should be > -8  

When ω
2
 = 3, what we get is 1 + kc / 8 - 3 * 3 = 0, so kc = 64. 

 

As we have kc > 0, we again get the maximum limit on the controller gain, which is the same as 

the one which we obtained by using Routh Hurwitz criteria. If you have a controller gain of 64, 

the closed loop will have sustained oscillation, if we increase the gain, it will lead to instability, 

and if we reduce the controller gain, here we will have decaying oscillations. 

 

So, kc should be < = 64 for stability. By using this method also we can compute the stability limit 

or what is the maximum value of controller parameter which we need to use to satisfy the 

stability criteria or to ensure that the feedback system will remain stable.  
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Now, all this information is typically presented in the form of a Root Locus diagram which will 

be used to design a feedback controller. Root Locus diagram is the locus of poles of the closed-

loop system as the controller gain goes from 0 to infinity. It is the locus of all the poles of the 

closed-loop system as you move from an uncontrolled or open loop process to a closed loop 

process with infinite gain. 

 

Now, this is always plotted as a trajectory of controller gain. If we are plotting this diagram for a 

PI control, we will have 1 Root Locus diagram for each value of τI and same way if it is the PID 

control, will have 1 Root Locus diagram for each value of τI and τD. You can see that if we have 

a PI controller or a PID controller, we will have large number of such Root Locus diagrams 

which we will have to draw depending on the values of τI and τD. 
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So, how does this Root Locus diagram look like; so if we see the 3 CSTR example, this is how 

the Root Locus diagram will look like. You will see that the Root Locus starts with the point 

which has a triple root of pole = -1. 
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So, for 3 CSTR system, when kc = 0, at that time, what we have is, S
3
 + 3S

2
 + 3S + 1 = 0, which 

gives me S = -1. It is triple root, so all the Root Locus diagram will start with the point of -1, and 

you can see that as the kc value of the controller gain increases, one of the root moves along the 

real axis towards negative infinity. 

 



It is never going to cross the imaginary axis and will never go into the right of the plane. The 

other roots bifurcate into complex conjugate roots, and they have the real part which is 

decreasing as you increase the controller gain and when the controller gain reaches 64, you have 

a pair of complex conjugate roots, if you increase the controller gain, it will go into the right of 

the plane. 

 

By representing this closed loop behavior using Root Locus diagram, you can again represent 

what is the maximum value of controller gain which you can have. The additional information 

which Root Locus diagram also provides is the nature of instability, so here it shows that a pair 

of complex conjugate roots are moving into the right of plane. 

 

So that means the closed-loop system will have growing oscillations. Root Locus diagram 

additionally gives you an information about how does the response of the system look like, even 

before the controller gain value < 64, let us say some value around 50, it will say that the system 

will have decaying oscillations, it will also tell you what is the corresponding damping 

coefficient, so you can also calculate the period of oscillation. 

 

So, Root Locus diagram kind of condenses all this closed loop information along with the limit 

of the stability. This is a very commonly used method to represent the stability analysis data for a 

closed loop system or a closed loop feedback system. You draw this Root Locus diagram, and 

then that will tell us what is the maximum value of controller gain which can be used for that 

particular system, may be it is the P controller, PI or a PID controller. 

 

So far we have seen these 2 methods in the Laplace domain; one was the Routh Hurwitz criteria, 

and the other one is the direct substitution, both these methods give you a limit up to which the 

controller gain can be o increased or controller parameter can be changed, so that you maintain 

the stability of the closed-loop system.  
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Now, let us say we have a blender. Blender is a very commonly used chemical engineering piece 

of equipment. Here a stream of flow rate W1 or the mass flow rate W1 and mass fraction of x1 is 

coming into the system and what you desire is some particular fixed purity x. To achieve that 

you generally add a blending agent which is a pure component, so that you can achieve the 

desired value of the product purity.  

 

Typically if I am using a feedback control on the system, you will first analyze what is the 

corresponding purity, it will be given to the controller, the desired set value or xset, will be given 

to a controller and then that controller will change the flow rate of this blending agent. 

 

So, for one such example, the process transfer function which is the transfer function between 

this product purity and the flow rate of this blending agent that can be given as 8.33*10
-4

/( 3S+1) 

and we can again see, what is the effect of controller gain. If we are using a proportional 

controller, we can assume that measurement is instantaneous, valve dynamics is also fast. So, in 

that case, if we are trying to analyze the Laplace domain. We will find out that the closed loop 

transfer function is 1 + Gp Gc Gv Gm = 0. 
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So, we get 1 + 8.33*10
-4

 *kc /(3S + 1) = 0, which on simplification will give us 3S + 1 + 

8.33*10
-4

 *kc = 0 or S = (- 1- 8.33*10
-4

 *kc )/ 3. Again this is the reverse acting controller, so kc 

is always > 0, so you can see that S is always negative, for any kc > 0. What we will realize is 

that the feedback system is always stable. Now, let us slightly tweak this system and try to look 

at a more realistic picture. 

 

What we are doing here is that we measure the composition and accordingly, the system is taking 

action. Composition measurement is very slow, so typically, temperature, pressure, level and 

flow, all these can be measured almost instantaneously, and there is almost no lag in terms of 

change in the variable and what you get as a measured value. 

 

However, the same cannot be said about composition. Composition measurements are very 

tricky and even though, we have sophisticated instruments like GC, it will still have some 

amount of lag by the time, you have the measurement in a digital form. So even though I am 

saying that the measurement is almost reliable, what typically ends up happening is a transfer 

function where you have some delay. 

 

So, measurement is delayed by an amount of time = tm, which is known as measurement delay. It 

is a very common feature whenever we are working with composition measurements, so let us 

see what happens to this stability analysis if you have some measurement delay. 
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So, with measurement delay, the closed-loop transfer function on simplification will give us 3S + 

1 + 8.33 10
-4

 *kc * e
–tm*s

. Now you can realize that this is no longer a polynomial because of this 

exponential term, because of that we cannot directly use the method of Routh Hurwitz to assess 

the stability or even the direct substitution method will not be directly applicable. 

 

This is a major limitation of Laplace domain analysis. Whenever we have any dead time in the 

system, or there is measurement delay or the original process transfer function has a delay, they 

cannot be accurately handled, so delays or dead time cannot be accurately handled. So, does that 

mean if we have a delay, we cannot use Laplace domain analysis? 

 

So that is not entirely true, we can do sort of an approximate analysis, and that can be done by 

approximating this dead time term. So will have to approximate e
–tm*s

 and that approximation is 

done by what is known as Pade’s approximation. 
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So the Pade’s approximation can be of different orders. Very commonly we use the first order 

Pade’s approximation. It says that if you have the transfer function of this form(e
–tm*s

) which is a 

pure delay, we can approximate it as [1 - (tm /2) s] /[ 1 + (tm /2) s ]. So we split the contribution 

of this transfer function as numerator and denominator dynamics. So, if we use this for our 

example, for the blender system, we get, 

                                                             

So, now if you try to simplify this system, what we will get is, 

(3S +1)( 1 + 0.5S) + 8.33 10
-4

 *kc * ( 1- 0.5S) = 0. 
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So, if we simplify this further what we will get is, 



1.5 S
2
 + 3.5 S + 1 + 8.33 10

-4
 *kc - (8.33 10

-4
 *kc /2)* S = 0 

In a condensed form what we will get is;  

1.5 S
2
 + (3.5 - 4.165 10

- 4
 kc )s+ 1 + 8.33*10

-4
 kc.  

So, now if we use the Routh Hurwitz criteria, we will have 3.5 - 4.1652*10
-4

 *kc should be > 0 

that is kc should be < 8403. 

 

So, you can note that earlier when there was no delay in terms of measurement, I could use 

infinitely large controller gain and the system would remain stable. However, the moment I have 

a measurement delay of let us say one unit, the controller gain reduces to 8403 and you can 

easily test that if the delay in the measurement keeps on increasing, the stability limit will also 

keep on reducing. 

 

So, if there is a larger measurement delay, then the maximum controller gain which you can use 

without affecting the stability or without destabilizing the system keeps on reducing. By using 

this Pade’s approximation, we can approximately do the stability analysis, and the reason why I 

say approximately is; let us say for this particular system, if I use kc = 8000, then Laplace 

domain analysis tells me that closed-loop system will be stable. 

 

However, if I actually implement/stimulate this particular system in kc = 8000, what I will realize 

is or in reality, kc = 8000 is unstable. So why is this happening? My Laplace domain analysis is 

telling me that the maximum controller gain I can use is 8400 however, even if I use kc = 8000 

for this system, the oscillations are growing, and I get instability. The reason for that is the way 

we are doing the stability analysis is that we are approximating the delay as by Pade’s 

approximation as a proper transfer function of numerator and denominator which is not correct. 

 

Whenever we do approximation, we are going to get an approximate stability, and the limit is not 

going to be true, and you can see that it is quite a drastic difference.   Even if I use kc = 8000 

which is quite low compared to the stability limit. Especially for that reason, we need to have a 

method which would not require such an approximation of dead time. 

 



That will be possible if we do the stability analysis in frequency domain. We will take a break 

here and when we comeback, we will see how stability analysis for systems with dead time can 

be accurately handled. If we do the analysis in frequency domain which is inverse time domain 

as against the Laplace domain which is the complex time domain. So, we will stop here for this 

lecture and when we come back, we will look at the frequency domain stability analysis, thank 

you. 


