
Chemical Process Control 

Prof. Sujit S. Jogwar 

Department of Chemical Engineering 

Indian Institute of Technology - Bombay 

 

Lecture – 28 

Laplace Domain Analysis - Part I 
 

Okay, welcome come back. Before the break, we saw that the relationship between stability 

analysis and feedback control is very interesting. Feedback control we typically use to have a 

disturbance rejection and it is our idea that when we implement the control system, it will be able 

to reject the disturbance or it will allow us the ability to move the system from one point to the 

other. 

 

But we saw through the example of 3 CSTR that the feedback control also has a tendency that if 

you use a wrong value of controller parameter, it can actually destabilize an originally stable 

system. It is very important that you know what are the bounds up to which you can vary the 

controller parameters and that will be possible by doing stability analysis of the feedback system. 

This stability analysis can be done using Laplace domain analysis or frequency domain analysis. 

 

We will start with the Laplace domain analysis because already we have studied the transfer 

function in the Laplace domain for a feedback system. Let us see how we can use that 

information to assess the stability of a feedback system. In week 3, we had seen, what do we 

mean by poles or zeros of a system and that time we had made a comment that if all the poles of 

the system lie on the left half the plane of the complex plane, then the system remains stable. In 

the sense that the system has decaying oscillation or it decaying exponential so that the system 

goes back to the original point or the deviations are limited, the system does not grow out of 

proportions. As against if the poles are on the right half plane or any of the poles is on the right 

half plane, the system either has growing oscillations or a growing exponential and eventually, 

the system will go towards instability. 

 

In terms of stability, if we are doing Laplace domain stability analysis, the key feature which we 

are going to use is if all poles of the system, it may be an open system or a closed loop system, 

are in left half plane, the system is stable or an improved definition can be that if any pole of the 



system is in right half plane, the system is unstable. Because this particular statement does not 

include if the poles are on the imaginary axis in which case the system has sustained oscillation. 

And when the system has sustained oscillation, the system kind of remains marginally stable 

because the system oscillates around a steady state. It is not going too far away from the steady 

state because you can always say that the bound is the same as the amplitude of the oscillation 

and because of that these systems are stable. If you include the imaginary axis, the system 

becomes marginally stable except, if the pole is at the origin, which is an integrator and an 

unstable process. So, the more correct definition would be if any pole of the system is in the right 

half plane, the system is unstable. 

 

All we are interested in terms of assessing the stability analysis, doing stability analysis in the 

Laplace domain is to find the pole and see if all the poles or any of the poles lie on the right half 

plane. If you recall how do we get poles of the system; so poles are the solution of an equation, 

D(s) = 0, this also known as the characteristic equation. 

 

We write the transfer function of the system, so if G(s) is the transfer function, we write it as 

N(s) over D(s) and we take the denominator polynomial = 0 and the roots of that polynomial will 

tell us the poles and depending on the pole, we will know what is whether the system is stable or 

unstable. Same logic we will be using in order to assess the stability of a feedback system. So, 

when we were talking about a feedback system, we have already derived these transfer functions 

in servo or regulating mode. 



 

 

If we are talking about the feedback system, then in the regulatory mode, the transfer function we 

had derived was, 

 

  

In the servo mode, it is- 

 

 

Here we will at least start with the fact that Gd is stable or Gp is inherently stable. If that is the 

case, we just need to make an assumption that this disturbance transfer function is stable, so it is 

not going to add any unstable pole into the characteristic equation. 

 

If that is the case, so Gd is stable that is poles are in the left half plane. Then this transfer function 

is already in N(s) over D(s) form and the characteristic equation becomes, 

 

 



which is the same for regulatory or servo. This is the equation which we have to monitor which 

also has Gc in it which will be your function of controller parameters. Using this equation, we 

would be able to find out whether the system is stable or unstable. 

 

 

Let us now try to find out the characteristic equation for the three CSTR system, which we had 

just seen. So for the 3 CSTR system, we had the process transfer function as,  

 

We have used a proportional controller, so Gc = kc and we can assume that the measurement 

dynamics are instantaneous, they are reliable and we can also consider the valve transfer function 

to be 1. 

In that case, the characteristic equation becomes 1 + Gp Gc Gv Gm = 0. It means, 

 

which you can simplify and get as, 

 

 



So this is our characteristic equation. You can see that the characteristic equation includes this 

controller parameter. So, the poles are a function of the controller gain. That is how the 

controller gain has an effect on the stability or instability of the system. 

 

So, all the poles or some of the poles of the system would depend on the controller gain. Now 

here we see a point that we have reached a cubic equation which will have three poles and we 

will have to solve this analytically for different values of kc in order to assess whether that 

particular kc value is stable or unstable. So the Laplace domain analysis can become tricky and 

numerically time consuming. 

 

In order to simplify this, especially the techniques were developed almost about a century ago 

when the digital computers were not there to assist in terms of finding a numerical solution or in 

general, all the analytical solutions of this kind of higher order polynomial systems. The 

researches at that time came up with simplified methods in order to assess the stability or what 

we are interested in this particular system is that all we are interested in to know that the poles of 

the system do not lie in the right half plane. 

 

As long as we can ascertain that irrespective of the value of the pole of the systems, we can tell 

whether the system is stable or unstable. So, in summary, we are just interested in finding out 

what is the typical range or whether the poles lie on the right half plane or the left half plane. In 

order to do that, there is a simple method which was; is a simple condition; set of conditions 

which were developed about a century ago by two scientists known as Routh; by the name Routh 

and Hurwitz. 

 

We will see now what is that method and how it can be applicable here. That avoids us that 

eliminate the need to solve these polynomial systems in order to assess stability. 



 

 

These are 2 conditions which will help us in terms of deciding whether this closed-loop system is 

going to be stable or unstable. The first condition is a necessary condition for stability, so this 

has to be satisfied and this was given by Hurwitz and these conditions are defined for a 

characteristic equation of the form; aNsN, so Nth order polynomial in s, where aN > 0 or aN is 

positive. 

 

For a characteristic equation of this particular form, for the system to be stable, the necessary 

condition is that all these ai’s are positive. So all this a1, a2 all the way up to aN, all this should be 

positive then only the system can be stable. If any of those are negative, the system will be 

unstable and if any of those are 0, then this condition; this particular analysis; the Routh-Hurwitz 

criteria cannot be used in that particular system. The system may be stable, the system may be 

unstable. 

 

Then let us say if all these coefficients are positive which most of the times would be the case 

then, we need a sufficient condition for stability which was given by Routh and that condition is; 

all the entries in the first column of the so called Routh array are positive. So, in order to apply 

this sufficient condition for stability, we have to compute something known as a Routh array. 



 

 

We will see how to construct a Routh array for any characteristic equation of this form. We have 

aN s
N, so the Routh array, the first row of the Routh array will be designated by R1, it will include 

all the alternate coefficients of this polynomial equation in s, starting with the highest power.  

So we will start with aN, so the first row will include aN and then all the alternate entries from 

that. So after aN, it will be the entry with sN-2, then sN – 4, all the way up to whether it will be aN, 

a1 or a0. In the second row, will be the remaining coefficients, so we will start with aN – 1, aN -3, aN 

– 5, all the way up to a1 or a0 depending on N is even or odd. So all the coefficients inside this 

characteristic equation are represented in the two rows by taking the alternate coefficients. 

 

And depending on the order of this particular characteristic equation, we will have multiple 

columns, this is column 1, 2, 3 all the way up to let us say N - N/2 columns. And if you go back 

to the condition in of Routh, it says all the entries in the first column of the Routh array are 

positive. So even though we are constructing this entire matrix of multiple rows and columns, in 

the end, we are going to be interested only in this column 1. 

 

So, we have populated the two rows of this Routh array by using the coefficients of the 

characteristic equation. Let us now see how to we populate the remaining entries of this Routh 

array. So this first entry of this R3, let us call it as A31 and this A31 can be calculated as, 

 



 

 

 

So, it is aN -1 time aN – 2 – aN times aN – 3. So it is actually negative of this determinant divided by 

this entry aN – 1. So that is how we will define A31. Then, we look at A32, it will be a similar 

procedure but now, the matrix we will be focusing on will be this, so it will be 

 

 now aN -3 into aN -4 – aN -2 aN -5 divided by aN – 3. So that is how all this third row will be populated 

and wherever let us say we reach this particular point in order to form this determinant, we will 

have to consider these other entries to be 0, so automatically this entry will also become 0. 

 

So, every time we finished 2 rows, we will be reducing the number of columns which has 

nonzero entries. Then we look at row 4 and all these subsequent calculations are very similar. 

Now when we are calculating the first entry of R4, let us call it A41 that will be given by the 

corresponding negative determinant of this, so it will be, 

 

 

 A31 times this aN – 3, A32 times aN – 1 divided by A31. This calculation will be repeated 

subsequently and we will keep on reducing the number of 0’s every 2 rows, one of the columns 

will become 0 and all the way we will return some value as RM will be AM1. After that, all the 

entries below will become 0. So that way progressively, we can calculate the Routh array and in 

order to apply this condition of stability, what we will be doing is; we will be focusing on this 

particular first column. 

 

And if all the entries in this first column are positive, then the full system is stable. If any of 

those entries is 0, then this particular method fails or it is not able to assess whether the system is 



going to be stable or unstable. And if any of those entries is negative, then the system; the 

closed-loop system will be unstable because one of the poles will be on the right half plane.  

So, let us now try to apply it to the three CSTR example. 

 

 

For which the characteristic equation was, 

 

 

The first row of Routh array will be this coefficient which is 1 and then the alternate one which 

is 3 and there is nothing else after that. In the second row will be starting with this 3 and then this 

. This is column 1, this is column 2.  

 

Now before proceeding, we did not look at what is the Hurwitz condition. So, for this particular 

system, the Hurwitz condition faced that all the coefficients should be > 0 which means (  

should be > 0 and which is typically satisfied as this is a reverse acting controller. So kc> 0 is 

typically the value which we select, so automatically (  would always be >0.  

 

Now, let us look at how to we populate the remaining rows, so let us say row 3 will be 3 times 3 

which is 9 –(  divided by 3 which comes out to be (8 – kc/8) /3. 



 

And then the other entry will be just 0. And when we go to row 4, it will be this particular 

matrix; 3 ( ; (8 – kc/8)/ 3 and 0, so that last entry will become ( . So, based on the 

Rouths array, the stability conditions say that all the entries in this column should be > 0, so this 

is automatically satisfied by the Hurwitz condition. So the only additional condition which we 

are getting for this system is 8 – (kc/8) should be > 0, which means kc should be < 64. 

 

So, the stability condition on this particular system is that the controller gain, if I am using a 

proportional controller should be < 64. If you recall or if you go back in the video and previous 

video and see the plots for which I had shown you the responses, one was kc = 50 where we had 

decaying oscillations and one of the plots was for kc = 70 where we had the growing oscillation 

which was unstable. If you plot it for kc = 64 actually, you will find that it is the stability limit at 

which you get the marginal stability.  

 

So, we will take a short break here and when we come back, we will look at another method of 

finding the stability limit other than using this Routh Hurwitz criterion. 


