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Okay, welcome back. Before the break, we were working on liquid surge tank where we were 

considering that there is a valve at the outlet and we were considering a case when the flow 

through that valve is proportional to the square root of the height. 

 

 

 

The equation which we got for this particular system is, 

 

 

We said that the last term in this equation, the  is a nonlinear term and we cannot proceed 

further with Laplace transform for this system because it is nonlinear. The first thing we have to 

do is to linearize this system. So, let us look at how we can linearize a nonlinear function. 

 

 



The mathematical rule which we are going to use to do is Taylor series expansion. You might be 

aware of the Taylor series expansion. Let me revisit it again. If we have a function of variables 

x1, x2,…,xn, I can approximate this function around the function value at any point let us say 

f(x10, x20, xn0). So, this is some point where we evaluate the function around which we are 

linearizing the function and this can be written as the multiple successive derivatives of the 

function. 

 

 

 (x1 – x10) is the departure of any point away from the point around which we are linearizing the 

system. All the first order derivatives will be calculated for all the independent variables. All the 

first order derivatives are linear in terms of the variables of interest. The Taylor series expansion 

actually goes for the higher order terms (HOT), but for this approximation, we will make an 

approximation that the higher order terms are negligible. We will approximate the entire thing 

only up to first order point and say that this is approximately equal.  If you consider only up to 

first order term, then we will have to replace equality by an approximate sign which gives, 

 

 

 

So we will be approximating any nonlinear function as a function value at some point which 

would be typically a steady state in most of the cases. Also, we will see what is the advantage of 

doing that plus first order derivatives evaluated at the steady state times the deviations from the 

steady state. So, automatically it gives 

 all the deviation variables when we linearize the system. 

 

Let us now try to do this Taylor series expansion based linearization for our example. The 

nonlinear function was . 



We will approximate it by a function value at steady state. This is a single variable function. So, 

we will have only one derivative and not even a partial derivative. It will be a pure derivative of 

.  

We will have Taylor series expansion evaluated at the steady state as, 

 

Now, let us substitute this in the original dynamic equation which is, 

                                                                       (1) 

The steady state equation will be, 

                                      

Now we will subtract 2 from 1 and we will write the equation for deviation variable. This will 

give us,  

 

Here the term of will get cancelled and .  

We can again simplify this equation or rearrange this equation and we will get, 

 

 

 

We will again compare this with the original first order equation and that it gives us, 

 

So, for this system where we approximated a nonlinear system by a linear equivalent, we have 

obtained, 

 

and the gain as, 



 

 

Here, I would like to point something that time constant (𝛕) and gain (Kp), both are the system 

constants and  they are functions of the original steady state. 

 

The interesting thing is, if I linearize the system at a different steady state, then the values of tau  

(𝛕) and Kp are to be different. For this example, if I linearize the system at 50% level, it will give 

me a value of the time constant and Kp; but if I linearize it around let us say 75% or 25% then 

these cases will give rise to different time constants. So even though I am saying it is the 

constant, it actually depends on the original steady state and the dynamics would heavily depend 

on the steady state around which that dynamics is linearized. 

 

Whenever we linearize a nonlinear system, the parameters which we obtain for the system are 

going to be dependent on the steady state. As long as the deviation from that steady state is not 

significant, the approximation of linearization would work. We will see that through simulation 

also, sometime later in this lecture.  

 

So here, we have seen that the tank where the outlet flow is a nonlinear function of height, we 

can approximate it as the linearized version. We can show that it is indeed a first order system 

and the resemblance to the first order system will always be there. The deviation from the first 

order dynamics will always be seen if the system is excited beyond a certain range, the changes 

in the height are more. In that case, the deviation from the approximation of the linearized 

version will also be more.  

 

Let us now take the fourth example of a stirred tank heater where the fluid comes in at flow rate 

‘Fin’ and the inlet temperature of ‘Ti’. 

 



 

 

It gets heated by some source. The amount inside the tank is ‘V’, the temperature inside the tank 

is ‘T’ and the outlet flow rate is the same as inlet but with the updated temperature of ‘T’. For 

this system, we had derived a dynamic equation for the system in the last lecture which looked 

like 

 

                                                     (1) 

 

We can write a similar equation at steady state as, 

                                          (2) 

 

We will assume for now that ‘Fin’ is not changing as a function of time and the only disturbance 

here is ‘Ti’. ‘Qss’ is the steady state value of the heat input. In order to write this dynamic 

equation in deviation form, we will take the difference between equation 1 and 2. 

We will get as, 

 

 

  Now we will take the Laplace transform as, 

 



 

 

Here, because we are assuming the steady state as the initial point.  

Simplifying this equation, we will have- 

 

 

 

From this, we can come up with an expression for T(s). We will try to write it in a standard form 

of  . It can be written as, 

 

 

We can see from the above equation that the outlet temperature transfer function, the Laplace 

domain variation of  is composed of the effects of the changes in inlet temperature and changes 

in the heater duty.  Both of them follow the same form of the first order, so the first transfer 

function is, 

 

Similarly, the second transfer function is, 

 

 

Summarizing, 

 

Where, 

 

And  



 

 

 

The system is composed of the parallel effect of two first order dynamics. Typically, V/F 

represents the residence time in a CSTR and from here, we can recollect that ‘V/Fin’ is similar to 

the residence time of the system. So, that is exactly the same time is appearing as the time 

constant of the system. The system has two capacities and both are of first order nature. 

 

Lastly, let us take an example which combines both the effects, i.e. the thermal effect and the 

material effects.  

 

 

 

The fifth example we are going to take is the stirred heater with variable volume. We will 

remove one of the assumptions of the previous system that the volume of the tank remains 

constant because there is always the possibility that the inlet and outlet flow rate are not kept at 

the same value. So we may have inlet ‘Fin’, inlet temperature ‘Ti’, volume at any time inside the 

vessel is V, the temperature is T and what goes out let us call it as ‘Fout’ at T where ‘Fin’ may 

not be equal to ‘Fout’ all the time. We have the same heat duty ‘Q’.  

 



In this case, the original equation still remains the same. Now here instead of just the energy 

balance, we also have to write the material balance. We will start with the material conservation 

equation as, 

 

 

There is no generation or consumption of material which is then eventually equal to the rate of 

change of material content which is rho times V. We have assumed that density is independent of 

temperature or time and in that case, 

                                                                        (1) 

 Here, equation (1) captures the dynamics of material balance. 

 

Let us now write energy balance for this system which will get slightly modified because ‘V’ is 

no longer constant. 

 

 

As there is no generation or consumption of energy in the system. We can see that here there is a 

multiplication of variable volume (V) as well as temperature (T) on the right hand side. So, we 

have to use the product rule for the derivative. 

 

 The right hand side will be, 

 

  

Substituting Eq. (1) in above, 

 

 

Again substituting the above in Eq. (2), we will get- 

 



 

we will simplify this equation to write it in terms of  ( .  

 

 

Rearranging, equation appears as, 

 

 

 

 

Eq. (3) is the final form of the dynamic equation for temperature. Here note that this is again 

nonlinear equation because our volume is a variable which is appearing in the denominator. 

Another variable, ‘Fin’ which is multiplying the third variable like ‘Ti’ or T. Similarly, Q is a 

variable and volume is a variable. So both these terms are nonlinear. Our next step is to linearize 

it around the steady state. 

Let us take each of these terms separately and try to linearize it. 

The first nonlinear term we will linearize is, 

 

 Here, we have four variables. Let us assume, 



 

 

We will approximate it around the steady state value. The first term will be the function value at 

steady state followed by the four first order partial derivatives. First, we will partially 

differentiate with ‘Fin’, the second term is ‘Ti’. The third term will be with respect to ‘T’ and the 

last term will be with respect to the volume. The linearized approximation will be as, 

 

 

 

You can see from the above equation that there are a bunch of steady state values which are 

multiplied by the deviation forms of the variables around the steady state. 

 

Now, we will take the second term which is, 

 

In this term, there are two variables. Let us assume, 

 

So, the approximation for the second term will be, 

 

 

Let us now include both these linearized terms into the original equation (3) and we will get is, 

 

 

 

 



 

 

 

This is the final equation which we get and you can notice that there are some terms which are 

coming directly from the steady state. So, if I write the original equation (3) at steady state, we 

get as, 

 

 

 

This simplifies our analysis and the final form which we get is, 

 

 

 

So this is the final dynamic equation in the deviation form. Taking a Laplace transform will get- 

 

 

As at time zero, the system is at steady state, it gives 

 



 

 

 

Rearranging the equation,  the final form of Laplace transform for the output will be, 

 

 

Lastly, we want to compare it with the transfer function of the form of  . So we will have 

multiply everywhere by (Vss/Fin,ss) and end up getting the final form as- 

 

 

So this is the final form of the transfer function. The relationship of output temperature is a 

summation of three effects. It is a summation of three first order capacities and they are 

corresponding to the three input variables ‘Fin’, inlet temperature ‘Ti’, and heat duty ‘Q’. 

We can rewrite this equation as, 

 

 

Where, 

 

 

 



We have seen the 5 examples where we could show that the relationship between output and 

different inputs follows first order dynamics. So out of these examples, let us try to delve further 

and see what is so special about these 5 systems. 

 

 

 

All these 5 examples if you see, the first 3 examples, those systems have a capacity to store mass 

or material. Whereas the last 2 systems have a capacity to store energy and especially the last one 

has the capacity to store mass as well as energy. So, all of these systems have a way to store 

material or energy. That is a very defining characteristic of a first order system that they have the 

capacity to store material. 

 

Now if you look further, except the first example all the other examples there is also a 

mechanism or a resistance for this capacity building. If we look at the surge tank with a linear or 

nonlinear outlet flow rate, as the flow is proportional to the height inside the tank. 

 



 

 

So if you see, 

 

 What does this do is, as ‘h’ tends to increase which means the material inside the tank is 

increasing, the outlet flow rate also increases. This causes ‘h’ to decrease. So, an increase in ‘h’ 

is eventually triggering an action which is causing a reduction in ‘h’. This is the resistance to 

capacity building. This will allow the system to do what is known as self-regulation or self-

stabilization. This feature will allow keeping a check on how the height changes inside this tank 

and it will not under most of the cases allow an infinitely large change in height. So as the height 

increases the ‘Fout’ also takes care of reducing the height. Same phenomena you can see is also 

present in the last two examples where there is a storage of energy. 

So what happens in those cases, 

 

This is the mechanism by which energy can exit the system. Now if you can see that as the 

temperature inside the tank increases, ‘Qout’ is also going to increase and as ‘Qout’ increases, 

there is more exit of energy than the inlet and eventually, it will cause the temperature to go 

down. 

 



You can see the similarity between the second and third example and the fourth and fifth 

example. Whenever there is an increase in the state variable, there is a mechanism which 

eventually leads to a decrease in the total inventory. The total inventory of energy in this 

example would again have resistance. So there is a resistance to capacity or inventory building. 

So all these examples 2 to 5, they have two features. 

 

 

 

We have seen that first order systems are characterized by the capacity to store which may be 

material, energy. Mostly for Chemical Engineering systems, these will be the two types of 

storages. And sometimes they are also accompanied by resistance to capacity building. These are 

the two important features or characteristics of first order systems.  

 

Now for the second point, I excluded the first example. So, when we have the purely capacitive 

process which is also known as an integrator, the outlet flow rate we had considered as an 

independent of the height. There was no such resistance to capacity building. There was only a 

capacity to store and there was no resistance and that is why these systems are also known as 

purely capacitive systems or integrators. Thank you. 

 

 

 



 


