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So now, let us move to the next model which is the maximum mixedness model. Let us look

at the maximum mixedness model. So, the segregated fluid is one where the mixing between

the fluid globules actually does not occur. So, there is no exchange of material between the

globules  which are  present  inside  the reactor. So,  the  flow is  essentially  like  a  series  of

globules which are actually flowing through the reactor. 

On the other hand, on that is called the minimum segregation, minimum mixedness model,

where the globules do not actually interact with each other. And each of the globules behave

like  a  batch  reactor.  On  the  other  extreme  is  a  maximum  mixedness  model  where  the

globules, the matter which is present in different globules, they are allowed to actually mix

and interact with each other. 

And therefore, the molecules which are of different ages they all mix with each other and that

is, that kind of a representation or that can of a situation is called the maximum mixedness

model.  So, let us look at how to estimate the conversion for that kind of a situation.  So,



maximum mixedness this is achieved when there is complete mixing as fluid enters. So, as

soon as they get into the reactor, all the globules can actually exchange matter with each of

them. 

And so, therefore there is complete mixing, the maximum mixedness is the complete mixing

of the fluid right at  the entry point  of the reactor. So, how do we depict  such kind of a

situation is, we can consider a plug flow reactor with side feed. So, where the feed is actually

fed through the sides of the plug flow reactor at different locations. And that can be used to

depict the situation of maximum mixedness in a non-ideal reactor. So, suppose if we know

the residence time distribution function. 
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So, if we know the E of t of a real reactor, then we can actually mimic the reactor by using a

plug flow reactor. And instead of providing a feed at the entry to the plug flow reactor whose

volume is V, we can actually split the, we can actually feed them through the sides. We can

feed them through the sides and the feed through the side can actually be according to the, we

can split the feed and feed them through the side. 

And the feed could be according to a certain distribution function which is the residence time

function of the real reactor. So, the residence time distribution function could be something

like this where the side entrance is actually according to this distribution function. So, which

suggest that the mixing actually occurs as early as possible and then they actually go into the

reactor. So, mixing earliest possible which corresponds to the maximum mixedness situation

in the reactor. 
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So now, suppose we define lambda as the time to move from a particular point to end of the

reactor. So, that is the taken, the time taken by a fluid element to move from a particular

location inside the reactor to the end of the reactor. Remember that we have now represent

the non-ideal reactor using a plug flow with a side stream in different locations in the side of

the plug flow reactor. 

So now, this also reflects the life expectancy at that point. That is, the amount of time that

actually the fluid particles are going to spend inside the reactor which is actually fed into the

reactor at that point in the site. So now, we can now draw a schematic of this reactor. So,

suppose if this is the plug flow reactor with a volume V and then we now make a feed. We

feed the fluid,  we feed the  reactor  with fluid  along the sides  and according  to  a  certain

residence time distribution function. 

Now, if we assume that this is lambda = 0. Because the time that is actually spent by the fluid

that is pumped into the reactor near the exit of the reactor is almost = 0. So, therefore lambda

= 0, the life expectancy of the fluid that enters the reactor in this location is going to be 0. So,

lambda = 0 starts from here. And then, and lambda = infinity which is the maximum time that

is taken inside the reactor, is at the entry of the reactor. 

And if the volumetric flow rate of the fluid is V. And V = 0 is this location. And V = V

nought, that is the full volume of the reactor. Now, if we now identify a small element and if

the volume of that element is delta V. And the flux with which the fluid actually enters that



element is given by v into C A. That is the volumetric flow rate at that location. And if this

point is lambda in the life expectancy dimension. 

And this is lambda + delta lambda. So, that is the difference in the life expectancy from this

point to this point. So, this is will be v to C A at lambda + delta lambda. And whatever is

leaving from here will be v C A at lambda. Now, what is the amount of fluid that actually

enters through the side. So, that amount of the volumetric flow rate with which the fluid is

actually going to enter is let us say is given by v at that location and we will be calculating

that in a short while. So, what is the flow rate with which the fluid actually enters a small

element delta V. 
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So, the flow rate in at delta V. So, that is = the volumetric flow rate v nought, that is the

overall volumetric flow rate of the reactor. So, we are essentially trying to calculate what is

the volumetric flow rate with which the fluid is actually entering in this small element delta

V. So, flow rate in at delta V should be = v nought which is the volumetric flow rate with

which the fluid is being pumped into, multiplied by the fraction of fluid with between with

life expectancy. 

So, let us call this life expectancy, life expectancy between lambda and lambda + d lambda.

So, that is = v nought multiplied by the corresponding E lambda times d lambda where E

lambda is the, essentially the RTD function which says what is the residence time distribution

of the fluid element inside the reactor. So now, once we know this, the, we can now write a

flow rate balance. We can now formulate a flow rate balance. 



And the flow rate balance is volumetric flow rate at lambda should be = the volumetric flow

rate of the fluid at lambda + d lambda + whatever is actually added through the side. So, the,

that will be = v nought into E lambda d lambda. So, this is the flow rate in through the side.

So, this is the, that is the flow in through the side of the plug flow reactor. And, so now we

know, so now we can actually take the limits of delta lambda going 0. 

So, limit delta lambda going 0, this essentially becomes d v lambda by d lambda. That is = –

v nought into E lambda. So, that is the differential equation which captures what is the flow

rate with flow rate at a certain life expectancy lambda. So now, v nought is the flow rate with

which the fluid is actually flowing at the entrance of the reactor. 
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So, which means at entrance, that is, when conversion is actually = 0. So, before at, v nought

is the overall volumetric flow rate of the fluid that is actually flowing through the reactor. So,

now we can actually integrate this expression as v lambda = 0 at as lambda tends to infinity.

So, the flow rate of the fluid that is actually at the entrance is v nought and the conversion at

that location is = 0. 

And so, therefore, the amount of fluid that is actually right at the entry point of the reactor;

remember  that  it  is  a  feed  that  is  coming  at  different  locations  in  the  side.  So,  at  the

volumetric flow rate of the fluid whose age is almost = infinity, is = 0 and v lambda is = v

lambda at some lambda = lambda. That is, at certain age, let us assume that v lambda is the

corresponding volumetric flow rate. 



And so, using these 2 as limits, we can now integrate to find that v lambda = v nought into

integral 0 to, integral lambda to infinity E lambda d lambda which is = v nought into 1 – F of

lambda. So, that is the volumetric flow rate with which the fluid is actually flowing at any

location lambda. So now, in the objective is to find the overall conversion, need to find X. So,

that is the objective. 

So, how do we find X? We need to write a mole balance of the species in order to find the

conversion of the species in the reactor. So, before we write a mole balance, we need to know

certain aspects of the reactor, a certain aspects before we write the mole balance. 
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For example, the what is the amount of species; what is the rate at which enters the small

element delta V. So, this can actually be found by using what is the volume of the fluid whose

life expectancy is actually between the, between lambda and lambda + d lambda. So, the

volume of the fluid with life expectancy between lambda and lambda + d lambda; so, if we

know this volume, this volume multiplied by the concentration will tell us what is the number

of moles that is actually entering that particular element delta V. 

So, that is =, so delta V will be = v nought into 1 – F of lambda. So, that is the volumetric

flow rate multiplied by the corresponding age delta lambda will tell us what is the volume of

the fluid with a certain life expectancy that is =, that is somewhere between lambda and

lambda + d lambda. So now, what is the rate of generation of the species? What is the rate of

generation of species? 



That is actually given by the rate at which the species is being consumed multiplied by the

corresponding volume delta V. So, that is = r A into v nought into 1 – F lambda into delta

lambda. So, we now have all information that we need to write the mole balance. So, let us

now write the mole balance for this particular species. 
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So, the mole balance for the species is, so mole balance on A between with life expectancy of

lambda and lambda + d lambda. So, let us write a mole balance for this. So, what is the rate at

which things are coming inside at lambda + d lambda? Remember that the age of the fluid is

actually decreasing from the exit of the, increasing from the exit  of the reactor while the

positive direction is actually increase of volume from the entry of the reactor to the exit of the

reactor. 

So, in at lambda + d lambda + the introduction through the side. What is rate at which things

are actually introduced into the reactor through the sides – what leaves reactor, what leaves

that element at lambda + whatever is generated by reaction. So, that should be = 0. So, that is

the mole balance on A for age between lambda and lambda + d lambda. So, we know all these

quantities. So, v nought into 1 – F lambda. 

So, that is the volumetric flow rate at lambda, lambda + d lambda into C A at evaluated at

lambda + d lambda will tell us what is the rate at which the species is actually getting into

that element + the whatever is introduced through the sides. That is given by v nought into E

lambda d lambda multiplied by C A nought where C A nought is the concentration of the

species in the feed stream – v nought into 1 – F lambda into C A evaluated at lambda + r A



into v nought which is the volumetric flow rate of the feed into 1 – F lambda multiplied by d

lambda = 0.  So, that is the mole balance on A between the age lambda and lambda + d

lambda. 
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So, now we can actually divide this expression by v nought into delta lambda. We can divide

this expression by v nought and d lambda and take limit as d lambda goes to 0. So, that will

be C A nought into E lambda + d by d lambda into 1 – F of lambda into C A lambda + r A into

1 – F of lambda = 0. So, that is the expression for, that is the mole balance. And so now, we

can open up this differential here. 

And we can rewrite the expression as C A nought into E lambda E of lambda + d C A lambda

by d lambda into 1 – F lambda – C A lambda into d F lambda by d lambda + r A into 1 – F

lambda = 0. Now, if we stare at this expression, this d F by d lambda is nothing but the RTD

function E lambda where F is the F-curve or the cumulative distribution function. So, using

this property we can actually write the mole balance. 

(Refer Slide Time: 17:08)



So, the final mole balance essentially is d C A of lambda by d lambda. That is = – r A + C A –

C A nought into E lambda by 1 – F lambda. So, that is the mole balance for the species for a

maximum mixedness  model.  And so,  in  terms  of  conversion,  we can  actually  write  this

expression as – C A nought d X by d lambda. That is = – r A – C A nought into E lambda by 1

– F of lambda. 

And so, that can actually be written as d X by d lambda = r A which is the rate of generation

of the species divided by C A nought which is the concentration of the species in the inlet

stream into E lambda by 1 – F lambda into the conversion X. So, while solving this equation,

we will be able to find out what is the conversion if we know the residence time distribution

function. 

So, what are the boundary conditions for this equation. The boundary conditions are very

simple. So, lambda goes to infinity when C A = C A nought. That is, at the entry point into the

reactor, the age of the fluid is actually approximately infinity. So, how do we integrate this?

We have to integrate this equation from backwards, starting from a very large lambda. 
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So, we have to integrate this equation by starting from large lambda and move backwards till

lambda = 0.  So,  that  is  the method to  integrate  this  equation  and once we integrate  the

equation,  we  will  be  able  to  find  out  what  is  the  conversion  in  under  the  situation  of

maximum mixedness. So now, so if RTD is known, then the conversion for the maximum

mixedness situation can actually be, model can be estimated. 

So,  this  conversion  provides  a  bound for  the  conversion  of  the  species  in  the  non-ideal

reactor.  And  so,  for  n  equal,  n  >  1,  it  has  been  observed  that  for  n  >  1  the  maximum

mixedness model gives the lower bound on the conversion.  So, the maximum mixedness

model actually gives the lower bound on the conversion and the complete segregation model

gives the upper bound on the conversion. 

So, now we have looked at the single reaction case. Now, is it possible to extend it to multiple

reactions? In reality, many reactions are, can actually occur simultaneously in parallel. So,

there can be sequence reactions, there can be sequential parallel reactions and etcetera. So,

several reactions can actually happen simultaneously in a reactor. So, is it possible to predict

conversion when there are multiple reactions happening inside the reactor. And the answer is

yes, it is possible. 
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So,  it  is  very  simple  to  extend  the  segregation  and  the  maximum mixedness  model  for

multiple reactions. So, if there are multiple reactions which are actually happening and let us

say A and B are the reactants. And P is let us say the products which is formed. And if it is a

segregation model, if it is a complete segregation model, then if you assume that each globule

has different concentrations of A and B. 

And  if  you  assume  that  each  of  them behave  like  a  batch  reactor  which  is  one  of  the

assumptions of the segregation model, each of these globules. Then C A bar which is the

concentration of the species, the average concentration of the species. Remember that if you

are  looking at  multiple  reactions  and multiple  species,  it  is  actually  better  to  work with

concentrations rather than conversion. 

So, the average concentration of species A will simply be 0, integral 0 to infinity C A of t, E

of t d t where E of t d t is the residence time function distribution function of that reactor. And

similarly, C B is given by integral 0 to infinity C B t into residence time of the reactor. And

the C A t and C B t are essentially the concentrations of, can be achieved from a batch reactor,

because this is the concentration of the species in each of the globule. 

And we assume that each of these globule actually behave like a batch reactor. So, now if you

write the, a batch reactor performance equation for each of these species. 
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So, if there are a q reactions occurring simultaneously. So, if the reactor volume is V and q

reactions are occurring, and there are q reactions which are occurring simultaneously. Then

for batch reactor we can write the performance equation as d C A by d t. That is = the rate of

generation of r A. So, that is = sigma 1 to q. That is, some over all the reactions and the

reaction rate of the individual reactions which is leading to the formation of species A. 

And similarly, we can write for the species B, d C B by d t = r B which is = sum 1 to q r i B.

Now this actually has to, in order to find the concentration of the species as A and B in this

model  in  this  reactor  following  the  segregation  model.  So,  these  2  batch  reactor  rate

expressions has to be solved simultaneously with the other 2 reactions which represent the

overall concentration of the species in the reactor. 

So, d C A bar by d t, that is = C A t into E of t. So, that defines how the concentration of the

species, overall concentration of the species in the reactor that changes with time. And the

corresponding equation  for  species  B,  that  is  =  of  t  into  E of  t.  So,  by  solving  these  4

equations  simultaneously  this  1  equation  1,  equation  2,  equations  3  and  4,  so,  these  4

equations have to be solved simultaneously and we need to find C A of t and C B of t. 

So, that gives us the concentration of the species as a function of time which actually follows

the  segregation  model.  So  next,  let  us  look  at  the  multiple  reactions  for  the  maximum

mixedness model. 
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So, for a maximum mixedness case, so, if it is the maximum mixedness model, if once again

if we assume that there are q reactions which are actually happening simultaneously, then the

model equation is d C A by d lambda is just an extension of the single reaction case. So, d C

A by d lambda is – summation of reaction rate over all reactions which is actually happening

simultaneously + C A – C A nought where C A nought is the concentration of the species in

the feed stream of the reactor multiplied by E lambda which is the distribution function for

that particular reactor divided by 1 – F lambda. 

And similarly, for d C B by d lambda, that is = – sum i = 1 to q r i B + C B – C B nought into

E lambda by 1 – F lambda. So, where E is the RTD function for that particular reactor and F

is the cumulative distribution function. So now for, once we know the rate law for all of the

reactions, so, if we know the rate law, so we can simply have to plug in this rate law and then

solve for the concentration. 

So, solve for C A and C B from large value of lambda to lambda = 0. So, once we solve this

equation, we will be able to find out what is the concentration of C A and C B as a function of

different age. So, this is the set of equations and this can actually be extended for many other

species. Even if n species are participating, one can actually write the maximum mixedness

model for all n species and similarly for the segregation model. So, let us summarise what we

have actually discussed in the last several lectures in the residence time distribution problems.
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So, first we looked at the ideal versus non-ideal reactors. And then we looked at the RTD

functions,  what  is  RTD function,  why do we need RTD function,  etcetera.  And then we

looked at measurement of RTD functions, measurement of the RTD distribution function in

real reactors where we looked at the pulse tracer input and we looked at the step tracer input

and we looked at how to perform these experiments and how to actually estimate the RTD

function, what to measure, etcetera, etcetera. 

And then,  we looked at  RTD properties  of  distribution,  properties  of  RTD function.  So,

particularly we looked at the mean, we looked at the variance and then we looked at the

skewness of the distribution which actually tells us how skewed is the function around the

mean of the distribution. And then, we looked at RTD that is the residence time distribution in

ideal reactors. 

We looked at plug flow reactor, we looked at single CSTR and then we looked at the laminar

flow reactor. These are the 3 cases that we looked at for RTD in ideal reactors. And then, we

observed that the RTD function can actually be used for diagnostics purposes in order to

estimate whether the reactor is operating under perfect conditions. Usually it never is perfect

but how close is it to a perfect operation. 

Whether there is bypassing of the fluids that is actually entering the reactor or and if there is a

dead  volume  which  may  be  present  inside  the  reactor.  And  then,  we  looked  at  the

combination of reactors. We looked at combination of reactors, particularly we looked at the

PFR-CSTR combination. And we looked at how to estimate the residence time distribution



and we also observed that if the residence time distribution for PFR followed by CSTR and

CSTR followed by PFR is actually same. 

However, the sequence actually dictates us to what is going to be the performance of the

combination of reactor. So, which we suggested that the RTD function alone is insufficient to

actually predict the complete conversion or it is not the complete picture of the performance

of the reactor, additional piece of information is required. And from there we marched on to

the next topic of looking at the predicting the conversion. 

So,  in  this  case  we  looked  at  the  segregation  model  and  we  looked  at  the  maximum

mixedness model. And then, we extended, we looked at these models for first order reaction

and we also extended this to multiple reactions. Thank you.


