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So  let  us  look  at  dissolution  of;  let  us  see  how to  capture  this  behavior  dissolution  of

polydispersed particles. So what is polydispersed particles? Suppose you have collection of

particles which are of different sizes for example this big one could be of size d1 it could be

d2 or it could be d3 and this could be d4 and so on and so forth. So there will be collection of

particles and each of these are different in size and so there are particles of different sizes.

Now not just that initial states the particles will be of different size there will be distribution

of sizes of particles all through the time and the dissolution is actually occurring. So therefore

clearly there is a distribution, there is a size distribution and the question is to find out what is

the dissolution time. The objective is to find the dissolution time and in order to find the

dissolution time for particles who are actually placed in the certain distribution one need to

actually follow the distribution dynamics.

So the distribution dynamics have to be followed. So let us look at what is a distribution.
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So suppose if I look at the plane of number of particles versus the fraction of the number of

particles that are actually of a particular size. So then we expect that it is a certain histogram

where the location between let say dp and dp+ delta dp which is a small increase in the small

difference in the particle size.  So in that case the area under the curve in this location it

signifies the number of particles which are actually present in the system whose diameter is

between these 2 numbers.

So therefore F dp multiplied by delta dp that is basically the number of particles between dp

and  dp+ delta  dp.  So  that  is  the  number  of  particles  and  moreover  if  we integrate  this

expression from 0 to infinity F dp*dp*dp into the differential  of diameter of particle that

should be=N0 which is the total that is the total initial particles which are actually present.

Now if we assume that it follows a log-normal distribution.
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Let us assume that the initial distribution of the particles they follow a log-normal distribution

let us assume that they follow a log-normal distribution. So now the fraction of the species

where fraction of the particles  whose size is dp at  time t=0 and that normalize by N0 is

actually given by 1/dp square root of 2 pi* ln of sigma 2 multiplied by exponential of –ln of

dp/Dg and square of that/2 times ln sigma 2 square.

So that is the expression for the log normal distribution where Dg and sigma 2 are essentially

the distribution parameters these are the distribution parameters. So now the question is in

order  to  find  out  what  is  the  dissolution  time  of  the  particles  which  are  actually  in  this

polydispersed system is to actually find out what is the how the distribution itself changes

instead of monitoring every drug particle it is better to monitor simply the population itself. 

So the question is how does the how does distribution change so that is what we are going to

look at.
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Now suppose if we look at the distribution at any time and if it is some general curve like

this.  Now we can  write  a  simple  balance  on  the  population  of  these  drug particles  and

suppose if we take a small element between dp and dp+ delta dp. So therefore the thickness

of this element is delta dp if we assume that thickness is delta dp and by this definition of the

histogram the integral of 0 to infinity F of dp, t * d dp should be=N0 that should be the total

number of particles that were actually initially present.

And because there were no new particles are added it is only the particles actually dissolve

and disappear. So therefore the integral under the curve up to infinity if we assume that the

particles are actually are of some finite sizes at all time then that should be= total number of

particles itself.  Now if that is not the case then this should be a function of time. So the

number of particles will change because some of these particles will dissolve and disappear

and when that happens then this integral between 0 to infinity should actually be a function of

time.

Now one other quantity which is required in order to model this system is the growth rate

suppose Rdp is the growth rate of every particles and of course it depends upon the size of the

particle itself. So that is the growth rate of particle whose diameter is dp then one can actually

write  a  population  balance  equations  in  order  to  capture  the  dynamics  of  the  whole

distribution itself as the reaction actually proceeds.

So the population balance equation can be written as the balance between the number of

particles which are actually growing and reaching the diameter whose size is between dp and



delta dp and also we need to account for the particles which are already present in this small

element dp and delta dp and they grow and they actually become bigger than dp+ delta dp so

which mean they leave the small element delta dp.

And there is no addition of new particles because once the drug is being fed it is just being

dissolved and so there is no other mechanism by which the particles are actually being added

into that small element that delta dp and then the other term is the accumulation term. So

therefore putting them all together.
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It will be number of particles growing into region between dp and dp+ delta dp- the number

of  particles  growing out  of  the  region between dp and dp+ delta  dp  that  should be=the

accumulation of particles in delta dp in that small element. Now suppose if R is the growth

rate which is what we have defined a short while ago then the number of particles growing

into the regions between dp and dp+ delta dp is actually given by R*dp.

So that is the growth rate when the particle is right whose size is exactly dp and then that

multiplied by the corresponding fraction will tell; will provide a clue as to what is the number

of particles that are actually growing into the region in this small interval of diameter. And

that evaluates the dp- delta dp and that should be=d/dt so that is the accumulation of particles

in delta dp=F of dp, t multiplied by delta dp.

So  that  is  the  rate  of  change  that  is  the  rate  at  which  the  particles  are  actually  being

accumulated in that small element. So now rearranging this equation and setting delta dp=0.
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So set delta dp to be 0 then it can be written as –d/d of the particle diameter into F of dp, t

that should be= dou F/dou, t so that is the expression for that is the population balance. So

now what do we do with this population balance. So we can solve this equation in order to

find the radius of the particle in order to find the how the distribution the radius distribution

actually changes.

So now this can actually be rewritten as dF/dt+R* dF/ddp+F * dR/d dp that is=0. So now

where Rdp is essentially the growth rate of the particle of size dp and if suppose in the earlier

case if the particles were monodispersed we actually found out what is the growth rate. So

therefore for every particle of a certain size that expression can be used as a growth rate of

the particle of that particular size. 

So therefore from here it will be d dp/dt that should be=-alpha/1+dp/D star so that is the rate

at  which  the  monodispersed  particles  are  actually  growing.  So  plugging  that  into  the

expression  plugging  that  into  the  population  balance  we will  find  that  so  that  is  for  the

monodispersed case.
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So plugging that into expression we will find that the rate of Rdp that is=-alpha 1+dp/D star

and so the population balance will be dF/dt+-alpha/1+ dp/D star*dF/d dp+ F* alpha/D star

*1/1+dp/ D star the whole square that is=0. So that is the expression so that is the population

balance that actually captures how the dynamics of this distribution actually changes with

time how the distribution changes with time. 

So now if we introduce a few dimensionless quantities which is actually useful in solving this

problem.
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So Psi= F* D star/N0 where F is the distribution of the particles based on the size and D star

is the ratio of the is the diameter when the mass transport rate and the reaction rate are= each

other and N0 is the initial total number of particles then epsilon is defined as 1+dp/D star and



theta is defined as alpha * t/D star. So now if we introduce these dimensionless quantities we

can rewrite the population balance as d Psi/d theta that is -1/epsilon * d Psi/d epsilon that is=-

Psi/epsilon square so that is the expression.

So this expression is of a very familiar differential equation which is of the form P of x, y*

dz/dx+ Q of x, y * dz/dy that is= R of x, y, z. So from here we can see that if a P of x, y is

nothing but 1 and Q of x, y is like 1/epsilon and R of x, y is like Psi/-epsilon square. So the

way to solve this  equation  is  basically  to  use the method of  characteristics  is  to use the

method of characteristics where this problem is posed in a slightly different way.

So dx/p sorry d theta/1= d epsilon/-1/epsilon and that should be= d Psi/-Psi/epsilon square. So

that is the way in which the population balance equation which is actually written here can

actually be post in terms of the method of characteristics.
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So now the first 2 terms in the repose problem basically it looks like d theta/1=-epsilon * d

epsilon.  So from here we can find out that epsilon square+2 theta= constant C1 and that

should be of the form H of epsilon square+ 2 theta so that should be the functional form

functional dependence of this particular expression. And then next let us look at the other

case d epsilon/1/epsilon that should be= d Psi/ Psi/epsilon square.

So this can actually be rewritten as d epsilon/epsilon= d Psi/Psi which can be solved to obtain

ln epsilon=ln Psi and that is= some constant K so that is a constant. So from here we can find

that Psi/epsilon is nothing, but some constant C2 and that can be= H of epsilon square+ 2



theta.  So that  is  the functional  dependence so next  we can actually  see how to take this

forward and find the distribution profile.
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So suppose if we can rewrite the relationship between the phi and epsilon as phi= square root

of epsilon square *H of epsilon square+2 theta. So in order to obtain the final distribution

which is  actually  present  in  the  definition  of  Psi.  So Psi  is  almost  like  non dimensional

distribution of the various size of the particles which are of different sizes. So if you look at

the initial distribution which is actually given by log normal distribution.

So the log normal distribution as it goes here root 2 pi* ln sigma 2 * exponential of –ln dp/D

star dp/Dg the whole square/2 ln sigma 2 and square of that. So that is the initial distribution.

Now if you know the initial  distributions then we can actually  introduce the transformed

variables so basically we introduce epsilon Psi and theta into this initial distribution and if

you assume that  so if  you assume that  epsilon=1+dp/D star  so this  comes from the  non

dimensional form of epsilon then from here we can get the dp=D star* epsilon-1.

Actually  this  is  the non dimensional  form of epsilon and from here we can find out the

relationship between dp and the other parameters.
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So if  we assume that  dr  if  we assume a  new variable  dr=Dg/D star  where  Dg is  some

parameter of the distribution and D star is the diameter at which the mass transfer rate and the

reaction rates are equal then we can find out that Psi= some F of epsilon, theta/ N0* D star

that should be= square root of epsilon square* H of epsilon square+2 theta so that is the

functional form of this variable Psi.

So now if you want to find out what is the final distribution we need to find this expression F

of  epsilon,  theta.  This  expression  need  to  be  found  in  order  to  find  out  what  is  the

instantaneous distribution of the sizes so how can we do this. So it can be done by actually

using the distribution at the initial distribution at the initial state where the reaction has not

started then F of epsilon, theta so this can be obtained by simply replacing epsilon square

with +2 theta in F of epsilon, 0.

So note that this is the initial distribution and final distribution can simply be obtained by

replacing epsilon square in this initial distribution with epsilon square+2 theta so that serves

as the solution methodology.
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So now we can rewrite this as Psi of epsilon, theta so that is= F of epsilon, theta so you can

introduce we can now use the initial distribution in order to find out what is the value of Psi,

what is the expression for Psi as a function of epsilon theta and that would be= epsilon/square

root of 2 pi* ln sigma 2*1/square root of epsilon square+2 theta*1/square root of epsilon

square+2 theta-1 multiplied by exponential of –ln of square root of epsilon squares+2 theta-

1/dr.

And square of that/2* ln sigma 2 to the power of square of that. So that is the distribution at

any time in the non-dimensional form so once we know this distribution we can look at the

distribution profile as a function of time.
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So suppose if this is dp the particle diameter and this is F of dp, time then if suppose if this is



the initial distribution so that is time t=0 that is the initial distribution then as time progresses

all the particles are actually undergoing the dissolution because of the heterogeneous reaction.

And so as time goes by the distribution changes and so this is t1 which is > 0 then as time

further goes by more dissolution will happen.

So this will be t2 which will be > t1 then further time elapses and then the distribution will be

this will be t3 which is > t2 and then eventually when the conversion is going to be almost

complete then the distribution will look like this where this is t4 which is > t3. So that is the

kind of distribution that one can actually obtain as a function of time for this polydispersed

particles which are undergoing dissolution.

So let us summarize what we have learnt in the last 3 lectures. So we have looked at the fluid

solid non-catalytic heterogeneous reactions and this can occur through 2 modes one is where

the particle size does not change and another one is the case where the particle size changes

as the reaction progresses and there are 3 different possible resistances which are actually

existing in this kind of a system.

One is  the gas film resistance for diffusion resistance and the other  one is  the ash layer

diffusion resistance and the third one is the reaction controlling resistance offered because of

the surface reaction. So under these 3 regimes the time that is taken by the particles to reach a

certain radius has been modeled and calculated and that is for different geometries have been

looked into for both the shrinking or the changing size particle case.

And for the constant size particle case and then we looked at an example of dissolution of

monodispersed particles and extended for a polydispersed system. Thank you. 


