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Network of First Order Reactions

So, now let us look at what if there is network of first order reactions so, this is we looked at

what is the experimental criteria and what is the Thiele modulus and effectiveness factor and

what is their relationship and how to use that information in order to find out whether there is

internal diffusional limitations or not for a single reaction. 
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Suppose, if there is network of first order reactions, then can we develop a; is there a general

framework in order to find out what is the effectiveness factor and what is the Thiele modulus

for each of these first order reactions and it  is very useful in term; in practice because the

diffusional  limitations  of  one species  can now strongly affect  the selectivity  of the desired

product.

So, therefore it is important to understand what is the Thiele modulus of each of these species;

for each of the species and the corresponding effectiveness factor so, let us now look at what is

the general framework, so this was actually done by Bischoff in 1967, so now suppose, if the

first  set of network of first order reactions is carried out in a porous catalyst  where all  the

species which is which are reactants they are; they diffuse into the catalyst.



And moment they diffuse into the catalyst, the reaction happens and some of these species they

can adsorbed onto the surface of the catalyst sites and then the reaction happens on the catalyst

site and moment the reaction is completed, the product actually dissolves, if it is in the; if it is

still adsorbed onto the active sites then it dissolves from the surface and the product leaves the

catalyst.

Now, it may be that some of these species directly go into the gas stream and so they leave the

catalyst without the desorption step which may be present so therefore, suppose if I assume that

Ai are the n species which is participating in this network of first order reactions, so Ai for all i

going from 1 to n, so there are n species which are present and n species which is participating

in this network of first order reactions.

Now, if  Cj  for  all  j  going  from  1  to  n  is  the  concentration  of  the  species,  if  Cj  is  the

concentration of species j for all values going from j = 1 to n so, now the local rate for species

Ai because it is a network of first order reactions.
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So, the local reaction rate for species Ai is given by ri which is the rate ri that will be sum j = 1

to  n,  okay and  j!  =  I,  Kij  *  Cj  -  Kji  *  Ci.  Now, Kij,  so  this  term here  corresponds  the;

corresponds to the rate of reaction where species j is converted to species i so, basically here the

reactant is species j and the product is species i now, the second term here is this corresponds to

the rate of reaction where species i leads to formation of species j, species i acts as a reactant

and leads to formation of species j, so that is the reaction rate.



So, this is the rate of reaction where a species i lead to formation of species j and the first term

corresponds to the rate of reaction where the species j is consumed and species i is the product

that is formed. So, now if I assume that all Kij, they are all first order rate constants and they

have units of time inverse and it is important to note that the that there cannot be a situation

where the species j  is converted to itself  that is why this summation does not include; this

summation should not include the ith species.

So, therefore it is represented as j! = i that is this summation is for n - 1 species with the j = i is

not included in this summation so now, if we write a; if we assume that the diffusivity of each

of this species is Di.
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So, if Di is the diffusivity of Ai, Di is the diffusivity of species Ai then, one can write a mole

balance for species Ai, so one can write a mole balance that incorporates diffusion and reaction,

mole  balance  for  Ai  incorporating  diffusion  and  reaction  that  incorporates  diffusion  and

reaction, so the mole balance will be -Di * del square i, so this is the Laplacian in particular

coordinate system whichever coordinates in which the reaction is the whichever coordinates the

pellet is actually designed or the geometry of the pellet.

And that should be equal to 1 to n j! = i Kij Cj – Kji Ci now, del square suppose, if it  is

spherical coordinates, if it is a spherical catalyst then, del square will be 1/ r square * d / dr * r

square d /  dr, so that is the Laplacian in spherical  coordinates,  if the catalyst  were to be a

spherical  particle  and remember that the first  term here corresponds to the species  reactant

being j and the product which is formed as species i.



And the second term corresponds to the reactant being species i which is being consumed in

order to form a product j, so that is the nomenclature that will be used for demonstrating the

Thiele modulus and effectiveness factor for network of first order reactions. Now, this mole

balance is valid for each and every species i for all n species and so one can write this in a

vectorial form.
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In  the  vector  form,  this  can  be  written  as  the  diffusivity  D  multiplied  by  the  Laplacian

diffusivity matrix D multiplied by Laplacian of the concentration vector C that should be equal

to the rate constant matrix K multiplied by the concentration vector C so, now the diffusivity

matrix is essentially a diagonal matrix, it is a diagonal matrix and that looks like D1, Dn, D2, so

it is an n cross n matrix where the diagonal elements are the diffusivity of each of the molecular

n molecular species.

(Refer Slide Time: 09:16)



Now, similarly the concentration C, the concentration vector can be written as the concentration

vector C is essentially a vector of concentration C1, C2 etc. up to Cn so that is a n cross 1

vector, it is a n rows and 1 column, so n cross 1 vector where containing the concentration of

this n species which is actually participating in the network of first order reactions then, one can

look at the rate constant matrix.
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So, the rate constant matrix is essentially looks like this, so where K is rate constant matrix and

that is given by sum j = 1 to n Kj1 where j!= 1 - K12 all the way up to – K1n and the second

term will be K21, this will be sum j = 1 to n Kj2, where j! = 2 – K2n and similarly, we can fill

this matrix and that will be – Kn1, -Kn2 and that will be sum j = 1 to n, j! = n Kjn, so that is the

rate constant matrix.



So, this contains all the information about the rate constants for; first order rate constants for all

the reactions which is involved in the network that is being considered so now, one can actually

find out  so because of  the presence of  diffusion because of  the diffusional  limitations,  the

observed kinetics based on the observed reaction rate can be different from the what is the

actual true kinetics.

So, the kinetics is falsified because of the presence of the diffusional limitations and that can

actually be expressed in terms of vectorial form for the network of first order reactions.

(Refer Slide Time: 11:26)

And that is given by; see the observed reaction rate constant matrix; observed rate constant

matrix is given by suppose, if K observed is the observed rate constant matrix, so that should be

equal to the true rate constant matrix which is what we just wrote in the last slide and multiplied

by the corresponding effectiveness  factor  matrix,  so this  is  the internal  effectiveness  factor

matrix.

In the presence of the internal diffusion, the reaction rate that is observed is actually falsified

and the observed reaction rate which is given by this matrix which contains; it is an n cross n

matrix  containing  all  the  reaction  kinetics  rate  constants  and that  is  given by the  true rate

constants  multiplied  by  the  corresponding  effectiveness  factor  matrix,  so  what  is  this

effectiveness factor vector?
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So, it can be defined as the; if we solve the equations and find out what is the effectiveness

factor, so the effectiveness factor matrix is given by 3 that is the matrix of Thiele modulus, it is

the square of the inverse, inverse of the square of the matrix of Thiele modulus multiplied by

matrix of Thiele moduli and took cot hyperbolic of the; it is a matrix of cot hyperbolic minus

the identity matrix, so this is the Thiele modulus, so phi is the Thiele modulus matrix.

And this  is  the  cot  hyperbolic  of  the  Thiele  modulus  matrix,  so  that  is  the  matrix  of  cot

hyperbolic and it is a diagonal matrix and the I is the identity matrix and eta is the effectiveness

factor matrix, eta is the internal effectiveness factor matrix and this is essentially a diagonal

matrix and this is diagonal because the Thiele modulus matrix turns out to be a diagonal matrix

and the cot hyperbolic function of the diagonal matrix also is a diagonal matrix.

And  therefore,  the  effectiveness  factor  matrix  is  also  a  diagonal  matrix  consisting  of  the

individual effectiveness factor of each of these networks of reactions. 
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So, now the cot hyperbolic of the Thiele modulus matrix that is a matrix is given by it is a

diagonal matrix, it is the cot hyperbolic of phi 1, 0, cot hyperbolic of phi 2, etc. cot hyperbolic

of phi n, so that is a diagonal consisting of the cot hyperbolic of each of the Thiele modulus

corresponding to each of these species and the overall Thiele modulus matrix which is again a

diagonal matrix.

It is the square of that is given by R square which is the length scale of the catalyst multiplied

by the diffusivity matrix which is again a diagonal matrix inverse of that multiplied by the

corresponding rate  constant  matrix  first  order;  network of  first  order  reaction  rate  constant

matrix. So, this is again a diagonal matrix and so the network of the; so once we know the

Thiele modulus matrix, we should be able to find out what is the cot hyperbolic.

And we can substitute that in the expression for the relationship between the Thiele modulus

matrix and the effectiveness factor matrix and from that the effectiveness factor matrix can be

found out and using that one can actually find out what is the actual observed kinetics and

express that in terms of the true kinetics. So, from experiments if we measure the actual kinetics

and from the effectiveness factor.

We will be able to use that expression to find out what is the true kinetics of the network of first

order  reactions.  So,  this  is  important  because  the  diffusional  effects  strongly  affect  the

selectivity of the product that is desired.
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So, the diffusional effects; they affect selectivity and so because the effectiveness factor matrix

is a diagonal and the Thiele modulus matrix is also a diagonal matrix, one can easily deduce

that the species with that has smallest eta, smallest internal effectiveness factor will actually

have the largest Thiele modulus, so species n whose Thiele modulus is the largest will have the

correspondingly smallest effectiveness factor that can be deduced simply from the expressions.

So, now let us look at what are all the experimental limiting cases from what; how to deduce

these limiting cases from the experimental  data,  so if you want to summarize what are the

features of the experiments or what are the information from the experiments that needs to be

used in  order to  deduce whether  a  particular  limiting  case exists  in a  given heterogeneous

catalytic reaction, so that can be summarized quite nicely depending upon the dependence of

the rate on various parameters or various system parameters.
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So, let us look at the limiting cases from experimental data, look at the limiting cases from

experimental data so suppose, if we look at the external mass transport limitations, then the

reaction suppose, if the reaction is controlled by the external mass transfer then the reaction rate

- rA is given by the mass transport coefficient Kc multiplied by the area per unit volume of the

catalyst into the concentration of the species; the bulk concentration of the species.

So where Kc is the mass transport coefficient and this can typically be estimated using various

correlations;  appropriate  correlations  for  example,  one  could  use  a  Thoenes  Kramen’s

correlation, so one could use a Thoenes Kramen’s correlation in order to estimate what is the

mass transport coefficient and the ac is the area per unit volume of the catalyst and CA is the

concentration; bulk concentration of the species.

Now, if we look at this the dependence of the mass transport coefficient on various system

parameters,  so  we  could  now  look  at  the  Thoenes  Kramen  correlation  because  the  mass

transport  is given by these correlations,  so let  us take an example and look at the Thoenes

Kramen relationship.
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So that will be that is given by the Sherwood number = the Reynolds number based on the

particle diameter, so to the power of 1/2 multiplied by the Schmidt number to the power of 1/2

so that is the dependence of the Sherwood number or the Reynolds number of the part; based on

the particle diameter multiplied by the Schmidt number. What is the Reynolds number? 

Reynolds  number  is  given  by the  superficial  velocity  u  multiplied  by  the  diameter  of  the

particle dp divided by 1 - porosity into the kinematic viscosity remember that phi here is not

Thiele  modulus,  this  is  the  porosity;  porosity  of  the  bed,  of  the  catalyst  bed  in  which  the

reaction is being conducted and the Schmidt number SC is given by kinematic viscosity divided

by the diffusivity of that species, molar diffusivity of that species.

And so from here and Sherwood number is given by mass transport coefficient Kc multiplied

by the diameter of the particle dp divided by the corresponding diffusivity * phi/ 1 – phi, once

again here phi refers to the porosity of the bed, so from here we can substitute these expressions

into the Thoenes Kramen relationship, so this is the Thoenes Kramen relationship, so from here

we can see that Kc dp/ DAB * phi/ 1 - phi that should be =u * dp divided by 1 – phi * nu to the

power 1/2 * nu / D to the power of 1/3.

So, now from here we can deduce that the mass transport coefficient Kc is a function of square

root of dp which appears in the Reynolds number term and then if we bring this dp, if we divide

this expression by dp, so we will find that we can bring this to the denominator.
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And we will find that the mass transport coefficient Kc is now a function of; is now a function

of Kc is now proportional to 1/ square root of dp, now in addition to this, the mass transport

coefficient is proportional to square root of the superficial velocity now, the surface area per

unit volume of the catalyst is essentially proportional to 1/ dp because it is the surface area per

unit volume.

And therefore, we can say that the reaction rate; the reaction rate of that particular species is

proportional to 1/ square root of dp * 1/ diameter of the particle and that is = 1/ dp to the power

of 3/2 and the mass transport coefficient Kc is proportional to the temperature at which the

reaction  is  being  conducted,  so  which  means  that  the  reaction  rate  is  now proportional  to

temperature.

So, what we have looked at in this lecture so far is we have looked at the generalized criterion

for  determining  what  is  the;  whether  based  on  the  experimental  data  whether  the  internal

diffusion controls the overall catalytic reaction; heterogeneous catalytic reaction and then we

had looked at what if there is a network of first order reactions, what is the general framework

for finding the effectiveness factor and Thiele modulus of various species that participate in a

network of first order reaction.

And then we initiated discussion on how to use experimental data and to identify what are the

various kinds of limitations and how the rate depends upon various systems parameter and so

we will continue with this in the next lecture, thank you. 


