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Internal Effectiveness Factor I

In the last lecture we defined what is an internal effectiveness factor and we started to derive

the relationship between the internal  effectiveness  factor  and the thiele  modulus.  We will

continue from there, in this lecture. 
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So, we concerned a spherical catalyst pellet, where the concentration of the reacting species is

C A S at the exterior surface of the catalyst pellet,  which is diffusing inside. And there is

simultaneous  diffusion of the species  and the surface reaction  which is  happening in  the

catalyst. So, we observed that the, we can define an internal effectiveness factor as a ratio of

the rate at which the reaction happens. 

The  actual  reaction  rate,  divided by the  rate  at  which  the  reaction  happens  if  the  every

internal surface is actually at the same concentration as that of the surface. Suppose if the

temperature of the surface is T S, then one can say that the r A S, which is the rate at which

the  reaction  happens,  if  the  every  location  inside  the  catalyst  palette  is  at  the  surface

concentration and surface temperature. 



We also observed that this is = – r A prime by – r A S prime. And that is also = – r A double

prime by – r A S double prime; which is basically rate based on the density of the catalyst and

this is rate based on the actual surface area which is available for reaction. And that should be

= the rate at which the moles of species that is consumed per unit time, divided by the moles

of the species that is consumed if the concentration and temperature everywhere inside the

reactor is that of the exterior pellet surface conditions. 

We also saw in the last class that M A S, which is the rate at which the species reacts if the, if

every location on, inside the catalyst is the surface conditions, that is = – r A S into 4 by 3 pi

R cube; where R is the radius of the pellet. Now, if it is a first order reaction, then this is

essentially = k 1 C A S into 4 by 3 pi R cube. So, if you are able to estimate what is M A, then

we are done. 

We should be able to find out what is this internal effectiveness factor. If you know, you

already know M A S. If we find out what is M A, we should be able to estimate what is the

internal effectiveness factor for this particular case. 
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So, let us try to find out what is the actual rate at which the species is actually consumed per

unit time when the reaction is actually happening. Now, intuitively, because we assume the

steady-state conditions, one can actually think of the total rate at which or the total rate at

which the species is consumed because of the reaction. Should essentially be = rate at which

the species actually enters into the catalyst pellet at the exterior surface of the pellet. 



And clearly, so if I draw a catalyst pellet here. So, whatever is the rate at which reaction is

happening inside in this volume, should be = whatever rate at which the species is actually

entering from the exterior surface of the catalyst pellet. So, we can take advantage of this

aspect and we can attempt to find out what is the actual rate at which the species actually

undergoes reaction. 

So, let us see how to do that. So, M A is essentially the flux of, let us say species A, into the

pellet, @  r = capital R. That multiplied by the exterior surface area which is essentially 4 pi

R square. Now, how do we find flux of the species that enters into the pellet at the exterior

surface that is r = R. We know the flux equation. We know what is the relationship between

the flux and the concentration gradient. 

And that is essentially given by W A in the radial direction. Remember that we have assumed

that the increasing r is my, is the positive direction. So therefore, the flux at which the species

is entering at the exterior surface, is essentially = – D e, effective diffusivity, into d C A by d

r, evaluated at r = capital R. Now, we know what is the relationship between concentration

and position. 

So,  suppose  if  we  introduce  the  dimensionless  quantities.  Recall  that  the  dimensionless

quantity psi is essentially = C A by C A S. And lambda is r divided by capital R. And so, we

can introduce the dimensionless quantities here. So therefore, M A is essentially = – of – D e

into C A S into d C A, C A S into d psi, divided by d lambda. And that multiplied by 4 pi r

square. 

So, we can cancel out this. And that should be = D e C A S into d psi by d lambda into 4 pi R.

And this evaluated at lambda = 1. This evaluated at lambda = 1. So, we know what is the

relationship between psi and lambda. We already know the solution of the equation. So, from

that we can actually estimate what is d psi by d lambda. And we can plug in here and find out

what is M A. So, psi is essentially given by; 
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The solution of the equation which we saw in the last class is, sin hyperbolic phi 1 lambda,

where phi 1 is the corresponding thiele modulus. Sin hyperbolic phi 1. So, from here we can

find out that d psi by d lambda, is essentially = phi 1, cos hyperbolic phi 1 lambda, divided by

lambda sin hyperbolic phi 1 – sin hyperbolic phi 1 lambda, divided by lambda square into sin

hyperbolic phi 1. 

Now, if we evaluate this at lambda is = 1; so, we need to evaluate this expression at lambda is

= 1. So therefore,  d psi  by d lambda at  lambda is = 1, is essentially  given by phi 1 cos

hyperbolic  phi  1 divided by lambda sin hyperbolic  phi  1  – 1 by lambda square into sin

hyperbolic phi 1 divided by sin hyperbolic phi 1. So, these 2 terms essentially will cancel out.

And so, this is = phi 1 by lambda. And cos hyperbolic by sin hyperbolic is nothing but cot

hyperbolic phi 1 – 1 by lambda square. So, d psi by d lambda at lambda = 1, is essentially

given by this expression here, which is phi 1, thiele modulus corresponding to the first order

reaction,  divided  by  lambda,  which  is  basically  the  dimensionless  position,  into  cot

hyperbolic phi 1 – 1 by lambda square. 

And we can also substitute lambda. This lambda is essentially = 1. So that is given by phi 1

cot hyperbolic phi 1 – 1. So, recall that, we need to substitute this is = 1 and we have to set

lambda square is = 1. 
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So, from here we see that d psi by d lambda at lambda is = 1, is essentially given by phi 1 cot

hyperbolic phi 1 – 1. So, this we can substitute in the rate at which the species is consumed.

So, that is M A, which is = D e C A S into phi 1 cot hyperbolic phi 1 – 1, into 4 pi R. Now,

recall that M A S is essentially = k 1 C A S into 4 by 3 pi R cube. So, thus the internal

effectiveness factor eta, is essentially given by M A by M A S. 

And that is = D e C A S into phi 1 cot hyperbolic phi 1 – 1 into 4 pi R divided by k 1 C A S

into 4 by 3 pi r cube. So, we can cancel out the like terms here; pi goes away. We can cancel

out 4. And C A S goes away. And one R we can cancel out. We will get this. So essentially,

this is nothing but phi 1 cot hyperbolic phi 1 – 1 divided by k 1 into R square by D e. And

that whole multiplied by 3. 

What is this term in the denominator? This is nothing but phi square. So, we know that this =

phi 1 square, which is for the first order reaction. So, clearly from here we can find out that

eta is =; 
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The  effectiveness,  internal  effectiveness  factor  eta,  for  first  order  reaction,  for  spherical

catalyst particle is essentially given by phi 1 cot hyperbolic phi 1 – 1. So, this effectiveness

factor relationship with the thiele modulus is actually a very powerful relationship, because

this helps in identifying when the reaction is  actually  surface reaction limited or internal

diffusion limited. Suppose we look at, suppose let us say we plot this expression here. 

You want to plot this expression, 5 versus eta. Let us say that we are actually plotting it in log

scale. Let us say we plot it in log scale. And what is the maximum value of eta as per the

definition?  So,  in  the  case  of  spherical  catalyst  pellet,  under  isothermal  conditions,  the

maximum  rate  at  which  the  reaction  can  happen  is  actually  at  the  surface  condition.  If

everywhere inside the catalyst pellet it is at the surface conditions. 

When there are, when it is a constant density system, where there is no volume changes. So,

therefore, eta which is the internal effectiveness factor, essentially it is = 1, if the surface

reaction  is  controlling.  If  surface  reaction  is  controlling.  Now,  if  surface  reaction  is

controlling, it means that the diffusional limitations are essentially absent. And recall that, if

diffusional limitations are absent, then essentially the thiele modulus is actually a very small

number. 

We observed in the last couple of lectures that when thiele modulus is large, it is essentially

the diffusion limitation, diffusional limitations which is controlling the overall reaction rate.

And if phi is very small, it is essentially the surface reaction which is actually controlling the



overall reaction rate. So, from here, when eta is = 1, essentially it corresponds to the fact that

phi 1 is actually small. 

So, this corresponds to, when phi 1 is small. So, let us try to plot this eta versus phi. So, eta

goes from 0 to 1. Recall, remember that it is log scale. And phi can have any value, starting

from very small value to very large 10, 20, 30, whatever number that is. And so, we expect

that, close to phi, very small value, the effectiveness factor essentially is, behaves as though it

is surface reaction controlling. 

So, eta is essentially close to 1, when phi is very small. But then when, as phi increases, the

effectiveness factor goes down which means that the diffusion is actually now controlling the

overall reaction rate. And the diffusion limitation, so this region is essentially the diffusional

limited region. And this region is the surface reaction controlling region or surface reaction

controlling region. 

Now, so in between these 2 regions, it cannot be said what is actually controlling. It could be

both surface reaction controlling or could be the diffusion reaction, diffusion limit. In fact,

there  will  be  contributions  of  both  the  surface  reaction  and  the  diffusional  limitation

simultaneously, actually controlling the overall rate of the reaction. Now clearly, this picture

has a strong implication in terms of the design of the reactor. 

So, moment we know what is phi, which is essentially the, essentially given by the properties

are intrinsic properties of the reaction and the species that is diffusing. Moment we know that

we can actually find out whether the reaction is surface reaction controlling or diffusional

limited, diffusional limitations which are actually controlling the overall rate of the reaction. 
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Now, in principle, the exercise can be done for other orders of the reaction. It can be done

even when the reaction is actually second order, third order, or any nth order reaction. So,

typically for an nth order reaction, phi n square which is the thiele modulus, square of thiele

modulus is given by k n which is the corresponding rate constant, into R square into C A S

power n – 1 into the effective diffusivity. 

So now, if I try to approximate the values of eta. One can actually approximate the values of

eta for large phi, for large phi. Let us say we first considered the case of first order reaction.

First  order  reaction,  where  eta  is  essentially  given  by 3  by  phi  1  square  into  phi  1  cot

hyperbolic phi 1 – 1. So, if I now plugin the values of, different values are phi, what we

essentially find is that, when the thiele modulus is, let us say approximately 20. 

When thiele modulus phi 1 is approximately 20, then the eta essentially scales as 3 divided by

phi  1.  So,  this  expression  essentially  approximates  to  3  divided  by  phi  1.  That  is  the

functional  form  of  eta  and  phi  1  for  large  values  of  the  thiele  modulus.  And  so,  that

essentially is what you see in this picture here. For large values of thiele modulus, you will

see that it essentially goes as an inverse relationship with the corresponding thiele modulus. 

Eta goes as 3 over phi in the diffusion limited regimes. Now one can do this exercise of

approximation  for  an nth order reaction  as  well.  So,  let  us  do that.  So,  for an nth order

reaction; 
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Let us say phi n is the corresponding thiele modulus, for under diffusion limited conditions,

that is phi n is large. Then, eta which is the internal effectiveness factor essentially goes as 2

by n + 1, to the power of half, into 3 by phi n, which is essentially = 2 by n + 1, to the power

of half into 3 by R, into square root of D e divided by k n, into C A S to the power of 1 – n by

2. 

So, for large value of phi, for any nth order reaction, when n is the order of the reaction, eta

would essentially still scale as 3 by phi n, except that you now have a premultiplication factor

which corresponds to the order of the reaction that you are looking at.  So now, one can

actually make this plot of eta versus phi. Suppose let us say I plot phi n. And once again I use

log scale. So, for a first order reaction, this is the typical curve that you see, for a first order

reaction. 

So, this is for n = 1. And for a second order reaction, what is seen is that the eta versus phi,

still has a similar profile, except that it is actually slightly below the, it is slightly below for

the second order case. So, this is for n = 2. And for a 0 order reaction, essentially this is the

eta versus phi graph. So, this is for n = 0, which is a 0 order reaction. And this is for n = 1.

And this blue line is essentially for n = 2. 

So, that is the typical eta versus phi graph for reactions of different order. And this is, and this

can  be  sketched  for  any  order  of  the  reaction  using  the  corresponding  expression  or

relationship between eta and the thiele modulus. So, what is the purpose of finding such an

effectiveness factor? 
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What is the purpose of finding an effectiveness factor? So, if we recall that the definition of

effectiveness factor is the actual rate at which all the observed reaction rate to the rate at

which the reaction would happen; if every location inside the catalyst has the same condition

as that of the surface conditions. So therefore, we can now rewrite the actual reaction rate, as

effectiveness factor eta, multiplied by – r A S, which is basically the intrinsic property. 

r  A S depends  on,  only on the  intrinsic  kinetics.  So,  it  is  often  not  possible  to  measure

everything  that  is  happening  inside  the  catalyst.  So,  if  we know eta  versus  phi  and eta,

because this can be expressed as a function of the thiele modulus. And thiele modulus is

basically  a  combination  of  the  intrinsic  parameters.  One can  estimate  phi  using  intrinsic

parameters. So, for a given system, if we know the intrinsic parameters, we can estimate the

theory modulus. 

If we know the thiele modulus from the relationship between effectiveness factor and the

thiele modulus, we can actually find out what is the effectiveness factor. So, if we know the

effectiveness factor, then we can easily predict what is the actual or overall rate at which the

reaction is happening, irrespective of what is the regime in which the reaction is actually

happening. So, even if it is, even if the reaction is happening; and this is log scale. 

So, even if the reaction is happening in the middle range, where we do not know whether it is

exactly surface reaction controlling or the diffusion limited conditions. We can still actually

find out what is the overall rate at which the reaction is happening, using the relationship



from the effectiveness factor; which for most cases for an nth order reaction, can actually be

estimated as a function of thiele modulus, which is only a function of the intrinsic parameters.

So therefore,  we can  actually, simply  based on the  intrinsic  parameters  and the  intrinsic

kinetics, we should be able to predict what is the overall rate at which the reaction might

happen for the given conditions at which the reaction is being conducted. And this actually

has phenomenal advantage because the rate at which this reaction would happen at surface

conditions is controlled by the concentration of the species at the surface. 

And  we  have  assumed  that  the  concentration  of  the  species  at  the  surface  is  =  the

concentration of the species at bulk, because there are no external mass transport limitations.

In that case, if we know the bulk concentration, then we essentially know what is the overall

rate at which the reaction is actually happening in the catalyst  pellet.  And this has strong

implications in terms of the design of catalytic reactors. 
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So, for a first  order reaction case,  for the first  order reaction case,  if  internal  diffusional

limitations exist,  controls the rate,  controls the overall  rate,  then we can simply write the

overall  reaction  rate  r  A,  is  essentially  given by 3 by phi  into – r  A S. And – r  A S is

essentially  given by 3 by phi 1 into k 1 into C A S where k 1 is the corresponding rate

constant. So, from here if we substitute for phi 1, we will see that this is = 3 by R, into square

root of k 1 by effective diffusivity, into k 1 into C A S. 



And that is = 3 by R into square root of k 1 D e into C A S. So, simply by using the eta versus

phi relationship, one can actually find out what is the actual overall rate at which the reaction

actually  happens.  Now, this  exercise of finding the relationship between eta versus thiele

modulus,  can actually  be done for different  geometries  as well.  So,  we can do the same

exercise for a slab geometry. So, what we looked at is basically spherical catalyst. 
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What we so far looked at is the, is a spherical catalyst pellet. And recall the example that we

saw in one of the lectures where I showed the actual catalyst.  The catalyst pellets can be

cylindrical in nature; can be cylindrical catalyst pellet. For instance, the cylinder could be at

where the species actually is diffusing from the curved surface and radially into the catalyst

pellet. And there could be a third case where you have a slab catalyst. 

So,  we can have a situation where the catalyst  is  a simple planar geometry. And species

actually diffuses in one of the dimensions, let us say. And let us say that we actually, you

know seal 1 end of the catalyst. This framework is also applicable when we have a cylindrical

catalyst pellet. So, the framework that you developed for slab catalyst where we look at 1

dimensional diffusion and reaction, is applicable for cylindrical catalyst pellet as well, when

the  fluid  species  is  actually  diffusing  in  the  actual  direction  and the  reaction  is  actually

happening anywhere inside the catalyst pellet. 

So, if you want to model the slab catalyst, we have to follow the same procedure of writing

the diffusion and reaction model. So, the procedure is to write the diffusion, write the mass

balance.  Basically, one has  diffusion  + reaction  in  the  mass  balance  because  we assume



steady-states. And then we can solve the model. Solve and find out what is the relationship

between thiele modulus and phi. 

What is the relationship between thiele modulus and the effectiveness factor. And we will see

that in the next class. We will see how to find out the relationship between thiele modulus and

the effectiveness factor for a slab geometry in the next class. Thank you.


