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Resistances in Composite Wall case

Alright.

(Refer Slide Time: 00:16)

So  we  stopped  by  looking  at  the  Resistance  Network  qualified  by  strength  thermal

Resistance Network for composite walls. So, that is where we stopped in the last lecture.

So, supposing there are multiple walls which are associated; so if the length is l 1, l 2 and

l 3 and we have fluid which is flowing on either side of the Composite wall. 

So, that is the Composite wall. And if the conductivities are k A, k B and k C. So, we

said that we could construct the network which has essentially 5 resistances, that is this x

direction. And if the heat transport coefficient is h 1 on this side and the temperature is T

infinity 1 and this is h 2 and t infinity 2. So, we said that it is t infinity 1 and t infinity 2

and the resistances are 1 by h 1 A, l 1 by k 1 A, l 2 by k 2 A and l 3 by k 3 A and 1 by h 2

A. So, one could define, we know what are the total resistances.
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So, the total resistance, R total, will simply be sum of all the resistances. Sum of all the

individual resistances, which is essentially sum of these.

Now, what we are going to start with in today lecture is, we are going to look at what is

called the Overall heat transport coefficient. So, one could define overall heat transfer

coefficient. And the reason for doing that is ultimately from measurement point of view.

In fact is what I would measure is the temperature here and temperature here. So, I need

to know what is the total amount of heat that is transferred from let us say, hot fluid on

this side. Or I use 1, so I can put 1 2 and 3 and cold fluid on this side. 

So, I want to know, what is the effective heat transport, that is occurred from the hot fluid

to  the  cold  fluid.  And  that  is  simply  because  I  may  not  be  able  to  measure  the

temperatures  in  between.  So,  one  could  define  the  total  amount  of  heat  that  is

transported, similar to the way we defined Newton’s law of cooling as the constitutive

equations. So, we could write, we could define an overall heat transport coefficient U,

multiplied  by  A,  multiplied  by  the  net  temperature  difference  of  the  observable

temperatures  or  measurable  properties.  And  that  should  obviously  be  equal  to,  that

should be equal to what?

Yeah, by R total; so that’s right. So, that should be equal to T infinity, 1 minus T infinity,

2 divided by R total simply by the definition of the resistances. So, from here we can



clearly read out that R total equal to 1 by U A and that should be equal to this sum of the

individual resistances; sum of all the resistances that is involved in the system that we are

considering. So, this is a ubiquitous property of a definition of any heat transport system.

So,  in  principle  one  could  define  a  overall  heat  transport  coefficient  for  any  heat

transport system. 

And what we are doing essentially is, we are lumping all the properties, all the transport

processes which are occurring inside, everything is lumped into these one quantity called

universal or overall heat coefficient. And we will see many different variations across the

overall heat transport coefficient, depending upon the system that we are considering;

that we are going to see in today’s lecture and several lectures in future. 

So, it is very important to understand the definition of overall heat transport coefficient.

And  note  that  it  is  a  fictitious  quantity.  It  can  be  detected  based  on  the  individual

properties  of  the  system  that  we  are  considering.  However,  overall  heat  transport

coefficient  is  mainly for convenience purposes and for calculation purposes. It  really

helps in defining such kind of a quantity.

So, there is 1 small aspect about resistances.
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There  is  something  called  Contact  Resistance.  So,  so  far  and  all  the  that  couple  of

examples that we described in the last lecture and start of today’s lecture, the we assume



that the contact between the slabs is supposed to be a smooth contact; however, in reality

that need not necessarily be the case. For example, if you have, when you say smooth, it

is smooth all the way up to the microscopic level right. So, it is not this smoothness that

you observe in your eyes; it is the smoothness that you would observe when you see

under a microscope. That you will not expect. 

There is no reason why you should expect that the wall that you are having has a smooth

surface all the way up to the microscopic level. So therefore, there will always be certain

resistance which is offered by the non smooth contact  between the 2 surfaces of the

composite wall. So, as a result, one could define something called a Contact Resistance.

And it depends upon the smoothness properties. So, there is no clean way to estimate

what should be the value of this contact. There are some correlations. We will not go into

those correlations in this  course, but as and when it  is required particularly from the

problem solving or exam point of view, these kinds of numbers will be provided to you.

So, give me a sec.

So,  supposing  if  you  have  another  wall  here,  now if  I  want  to  construct  resistance

network including the contact resistance, then what I would do is; supposing I have fluid

which is flowing here, then you will have. If there is no Contact Resistance, then there

total of 5 resistances, but because the contact position is not smooth, it is going to offer a

certain resistance to heat transport and therefore, you will have an additional network

which is basically the Contact Resistance which will come in series. So, the other 5 are

the  same  thing  what  we  saw a  short  while  ago.  So,  we  need  to  include  a  Contact

Resistance  which  is  present  in  between.  Supposing  we  want  to  include  a  Contact

Resistance between the second and the third wall, we could do that. We could include

another resistance here. Any questions?

Student: Why should because of there is a lack of.

Lecturer: Correct.

Student: (Refer Time: 08:32)

Lecturer:  Yeah.  Supposing if  they are not  in  contact  with  each other;  a  very simple

example is, supposing you are holding a coffee cup, there are 2 ways of holding it: I



could hold it like this with all my fingers on the curved surface of the tumbler or I could

hold it just at the top. So, if you look at the workers who are like drinking coffee and tea,

the hot tea, they usually hold the tip or they hold a cup like this. And the reason is that,

you do not want to have a direct contact with the surface which is hot. 

Now taking that parallel here, if this surface is not smooth, then the contact, the transport

of heat from one slab to the other depends upon the overall effective surface area which

is available for transport. Now if the contact is not very smooth, then the total surface

area which is available for heat transport from one slab to the other slab is not as much as

the overall surface area which is available. And therefore the total amount of heat that is

transport is not exactly the amount of heat that comes at this end and therefore this offers

a resistance. Yes, you had a question.

Student: (Refer Time: 09:46).

Yes, there will be dissipation because of that. See, what is the resistance? Note that the

resistance  is  basically  characterizes  the  total  amount,  the  ability  of  the  system  to

transport  heat,  what is the resistance that it  offers to transportation of heat from one

location to the other. Because the contact point is not significantly good, there is going to

be some dissipation. And therefore that that offers a certain resistances and that is what is

captured by the Contact Resistance. Any other question?

Alright. So, next what we are going to see is, we assumed so far in all the cases that we

considered that the area of heat transport is constant.
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So, today we are going to look at the Varying Area Systems. So, how to characterize and

quantify conduction process through a system where the surface area or cross sectional

area for heat transport is constantly changing. A very simple example would be that,

supposing I have a truncated cone, I have a truncated cone and let us say I am looking at.

So, this is let us say at equal to 0. 

So, I want to know what is the heat that is being transported from let us say, let me call

this as x direction, x equal to x 1, x 2. I wanted to call it radius. So, that is the center of

radius is 0. So I want to know what is the amount of heat, that is transported from x 1 to

x 2. And I am going to make an assumption; because I am looking at 1D systems, I am

making an assumption that the Cross-sectional  temperature;  that means, that at  every

cross  section  I  assume that  the  temperature  is  uniform in  the  cross  section  and  the

gradients are 0.

So now, so this is my radius at any location and so I could write my balance.
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And if I continue to assume that it is a Steady State system and heat generation is 0, same

assumptions as what we made before.

(Refer Slide Time: 12:38)

So, I could simply write the total amount of heat that heat transfer rate q x is given by

minus k which is the conductivity of that material multiplied by the cross sectional area

of heat transport. So, note that now the cross sectional area is a position of the function is

a function of the position, excuse me; multiplied by d T by d x. So, what is the objective?

We need to find the temperature profile that is the objective of the problem right? So, we



said that if we know the temperature distribution, if we know the temperature profile, we

are done. We have quantified the system. So, that is what we need to find. So, let us say

we integrate this equation.

(Refer Slide Time: 13:27)

So, we say that q x is minus k. What is the area? It is pi, cross sectional area is pi into

radius square. Pi r square, multiplied by d T by d x right. So, supposing I say that r goes

as a linear function of the position, if I say that the radius of the local radius goes as the

linear function of the axial position, then I could simply write this as minus k pi a square

x square into d T by d x, into d t by d x. And now what will be q x? Will it be constant or

it  will  change;  rate  of  heat  transfer  that  will  be  constant.  Why will  it  be  constant?

Because of the energy balance, you see that there is no heat that is being generated. 

So, whatever comes in it has to go out here at steady state condition. Note that steady

state is very important. Yes. So, the question is if you dissipation of heat, how will it be

constant, but when we say that there is no generation or less of heat which means that the

dissipation is 0. We will come to that. So, there are ways to consider that. We are actually

consider, when we are doing a 2 dimensional system, you can actually look at dissipation

from the outside walls and we will actually see it in one of the examples in the future

lectures.  Alright.  So,  because  q  x  is  constant,  we  should  be  able  to  integrate  this

expression to find the temperature profile.



So, supposing I integrate between T 1 and T. T 1 is the temperature at the boundaries of

this system. T 1 is the temperature at the boundaries of this system. I integrate between T

1 and T, that is equal to q x minus q x by k pi r square or k pi a square into d x by x

square going from x 1 to x. It is a pretty simple integration. So, it is q x by k pi a square

into 1 by x minus 1 by x 1. 

So, note that because it is 1 by x square, the minus sign will go away because of the

integration. And this is T minus T 1. So, therefore, T is T 1 plus q x by k pi a square into

1 by x minus 1 by x 1. Is it a complete description? We do not know the q x value right.

So, it is not a complete description yet. So, how do we find q x? So, we know that the

temperature on the other boundaries is T 2. So, we can use that property to find out what

is q x. So, we do not know what q x is.

(Refer Slide Time: 16:56)

So, how we are going to do that, we are going say T 2 is T 1 plus q x by k pi a square

multiplied by 1 by x 2 minus 1 by x 1 ok.

So, from here q x is  given by T 2 minus T 1 divided by 1 by x 2 minus 1 by x 1

multiplied by k pi a square, multiplied by k pi a square. And so now we can plug this into

our solution. We can plug this into our solution.
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So, T equal to T 1 plus k pi plus T 2 minus T 1 divided by 1 by x 2 minus 1 by x 1

multiplied by 1 by x minus 1 by x 1. So, that is the distribution, temperature distribution

in the system with the varying cross sectional area. So, an important message of this

example is that what you need, what is preserved here or what remains constant in this

system; because there is no heat generation or dissipation is the heat transfer rate and not

the flux. So, you have to make a distinction here. So, what we said is the heat transfer

rate, these remains a constant. However, the flux which is given by q prime which is

minus k d T by d x, this is not a constant.
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So, this is an important observation which you would not have made in the simple 1 D

system  where  the  cross  sectional  area  is  constant.  The  cross  sectional  area  of  heat

transport is constant, where you would not be able to make such a distinction between

the 2. So, when you have varying cross sectional area, what is really conserved and what

is really preserved is the heat transfer rate and in fact that is the reason why you write a

rate balance and not a flux balance. 

So, this is very important to understand this distinction. It is important to write transfer

rate balance because that is the final quantity that is importance and the flux need not

necessarily  remain  constant  even  in  a  small  element.  So,  it  is  very  important  to

understand this distinction. And we are going to next see how these things are going to

play  a  role  when  you  are  looking  at  radial  systems  where  this  becomes  extremely

important.


