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Here, we started discussion on natural or free convection. So, we started by looking at

the example of a fluid which is placed in a box, and we looked at the differences in the

temperature  which  leads  to  density  difference  and  that  leads  to  a  convection.  So,

supposing if T 1 is less than T 2, we said that rho 1 is greater than rho 2 and therefore,

the heavier fluid is sitting on top of the lighter fluid which is an unstable situation. 



(Refer Slide Time: 01:05)

And so that is going to set up a circulation leading to convection leading to convective

mode of heat transport in the horizontal direction.

This re circulation. So, its.

Student: Sir, (Refer Time: 01:35).

That is correct where the driving force is gravity here now the gradient in the horizontal

direction, because of the re circulation not every location in the horizontal direction is

going  to  be  maintained  at  same temperature.  So,  there  will  be  heat  transport  in  the

horizontal  direction  too,  but  the  primary  driving  force  for  convection  is  the  vertical

direction because of gravity, gravity is a driving force ok.



(Refer Slide Time: 02:07)

So,  now we  said  that  suppose  if  we  have  a  plate  which  is  maintained  at  a  certain

temperature, and then it is certainly drop into a quiescent fluid, which means u is 0 and T

is some T infinity and then it results in a certain boundary layer, and we looked at the x

momentum balance in the boundary for this problem, which will be u supposing if this is

y direction and this is x direction and u and v are the x and the y component velocities.

So, we said that u d u by d y plus v u du by d x plus v d u by d y that is equal to minus 1

by rho d p by d x minus g d y square. So, that is the x momentum balance.

Now, this equation is valid at every location in the in this problem and. So, it is valid in

the quiescent medium as well in the quiescent fluid as well. So, this equation is valid

both in boundary layer and in bulk. So, now, if I look at the equation in the bulk we

know that u and v are 0, velocities are 0 and not just that all the gradients are 0 in the

bulk stream.



(Refer Slide Time: 03:46)

In the quiescent region u and v are 0, because the fluid is not moving and also d u by d y

d u by d x they are also 0 all the gradients are negligible in the quiescent region.

So, therefore, the x momentum balance simply reduces to minus 1 by if rho infinity is the

density of the fluid in the quiescent region. So, that it will d p by d x equal minus g equal

to 0. So, from here we can say that d p by d x in the quiescent region, that should be

equal to minus rho infinity into g, but there is no external forcing which is actually there

is no force convection. So, the fluid is not being force to move at any location.

So, therefore, the net pressure gradient that the fluid experiences in the boundary layer

should be equal to the net pressure gradient that the fluid experiences in the quiescent

region because the fluid is not being force too at all its actually at rest and. So, the net

pressure gradient in the boundary layer should be equal to the net pressure gradient in the

quiescent region. 



(Refer Slide Time: 05:24)

So, now, if we incorporate that into our momentum balance so, what we will see we

incorporate that into the momentum balance into u d u by d x, plus v d u by d y and now

I am writing the momentum balance in the boundary layer. So, that should be equal to

minus rho infinity minus rho plus nu into d square u by d y square ok.

So, this is nothing, but the difference in the density delta rho, which is the difference in

the densities in the bulk and any location in the boundary layer, divided by the density in

the that location in the boundary layer plus nu into d square u by d y square. So, now, if

we know what is delta rho by dou rho we are done, and we should be able to solve the

equation and. So, what is the relationship between the density gradient and the other

system variable?

For example velocity or temperature or concentration whatever, here we are not looking

at  mass  transport  let  us  not  worry  about  concentration  for  now.  So,  what  is  the

relationship between delta rho by rho and u, v, x, y temperature, etcetera? So, that is the

new variable or new body force term that we did not see so far and all the convection

topic that you start seeing natural convection. So, any thoughts on how do we find this.

Student: (Refer Time: 07:17).

Yeah compressibility. So, we said that the driving force. So, note that in natural free

convection the density gradient is the function of temperature right.



We said that the temperature difference is causing the density gradients and therefore,

they have to be related in some way. The so far and all the cases that we looked at the

momentum boundary layer equation was not did not have any temperature dependence, it

was  independent  of  the  temperature  concentration.  So,  now,  we  will  start  seeing

dependence of temperature on the momentum boundary layer equations. So, the way to

that is what is called the compressibility factor compressibility factor.

So, the typical symbol that is used is beta now the definition of compressibility factor is

minus  1  by  rho  d  rho  by  d  T  at  constant  pressure.  So,  that  is  the  definition  of

compressibility factor. Now what do you expect the density gradients to be is it expected

to be very large compared to the density the local density or not. So, it is not because, it

is a free convection problem there is no force convection and. So, we expect even the

boundary layer thickness to be significantly smaller and. So, we expect that the density

gradient also to be very very small.

So, therefore, we can approximate this as minus 1 by rho. So, this approximation is what

is  called as boussinesq approximation,  after  the person boussinesq approximating the

gradient the density d rho by d T as simply the differences in the bulk and the local

density divided by the difference in the bulk temperature and the local temperature that is

what is called boussinesq approximation yes haransh.

Student: (Refer Time: 09:48).

That comes from the relationship between the pressure gradient and the quiescent region.

So,  if  you  write  the  momentum balance  in  the  quiescent  region,  where  there  is  no

velocity  velocity  is  0  because  of  fluid  is  at  rest  and  the  velocity  gradient  is  0.  So,

therefore, you will see that the x momentum balance will simply reduce to the pressure

gradient  in  the x direction  should be equal  to  minus rho infinity  times  gravity. And

because there is no external forcing the gradients have to be equal in the boundary layer

and the quiescent region and therefore, you replace the d p by d x with minus rho infinity

into g and that is how you get this expression.

Student: (Refer Time: 10:27).



Yeah, but there is no flow flow of fluid right. So, the pressure gradient is going to be

very very insignificant.

Student: (Refer Time: 10:39).

Yeah.

Student: (Refer Time: 10:41).

Right, but that is already take into account rho into g is already take into account, the

body force accounts for the force that the fluid is experiencing because of gravity that is

already accounted for in the momentum of balance.

Student: (Refer Time: 10:54).

See we look at only steady state case here and these course there is very little dynamics

we look at the only place, where we looked at some dynamics was in conduction where

we looked at the semi finite slap we really going to look at a transient cases in the these

kinds of problems.

So, this approximation is what is called as boussinesq approximation, a just to get a feel

of  what  this  compressibility  factor  really  how it  plays  an  important  role  is  that  the

compressibility factor; obviously, it is a function of temperature compressibility factor

itself is a function of temperature suppose if we say it is an ideal gas.

(Refer Slide Time: 11:29)



Rho is given by P by R T for an ideal gas. So, now, from here we can write that beta is

minus 1 by P by R T into d rho by d T at constant pressure.

So, that will be P by RT square with a minus sign. So, that will really scale as sort of 1

over temperature. So, a compressibility approximate these scales as 1 over temperature,

but let us for the moment assume that beta is some measurable property and it is not

varying significant in the temperature range that we are looking at. So, it scales as 1 over

T do you must understand this difference it scale as 1 over T, but just for sake of getting

insight as to what is happening in this problem.

Let us assume that beta remains almost constant to the temperature range that we are

looking at. So, now, we can write now the all the balance equations in the boundary layer

and. So, the first one would be continuity equation that is the continuity equation. When

we have the momentum boundary layer equation boundary layer momentum balance. So,

that will be u d u by d x plus v d u by d y that is equal to rho infinity minus rho by rho so

that we can replace using the compressibility factor so that we can rewrite as beta into T

minus T infinity into gravity plus nu into d square u by d y square.

So, all I have done is I have just replace delta rho by rho with the compressibility factor

expression using boussinesq approximation and then we have the temperature balance.

So, we assume that there is no energy generation etcetera. So, this is the energy balance

we have the momentum balance and we have the continuity equation. So, we need to

find a way to solve these boussinesq approximation in order to find the heat transport

coefficient remember that the objective is to find the local heat transport coefficient that

is the objective and of course, the average heat transport coefficient.



(Refer Slide Time: 14:04)

If there are any length or based on the length of the full play that is the objective.

So,  we  have  to  solve  some  of  these  equations  in  order  to  find  the  heat  transport

coefficient. Remember that if we know the gradient at the wall we are done right the heat

transport  coefficient  if  because the temperature  of  the plate  is  constant  and the bulk

temperature is constant. So, if we know the gradient at the wall we are done. So, the

objective is really define the temperature gradient at the inter phase between the plate

and the quiescent fluid.

So, I mentioned in the last lecture that we are going to look at the reference velocities for

this kind of a problem.



(Refer Slide Time: 15:00)

So, the first and important  issue is that  there is no bulk or free stream or any other

reference velocity. There is no reference velocity for this problems because the fluid is

active at rest, we do not know any velocity to (Refer Time: 15:26) the boundary layer.

So, what we are going to do is we going to assume that there is some reference velocity

we are going to show later that we will not be using this reference velocity for any of the

calculation purposes in fact, to even define any of the domains.

So, the only place where we will be using this reference velocity. So, it is an unknown

reference velocity. Now the only place where the reference velocity plays an important

role is when you want to make an important decision whether the free convection or a

force  convection  is  playing  a  dominant  role  in  a  real  problems.  So,  here  we  have

assumed that the problems is only free convection problem, but in principle even when

you are going to drop a plate inside there is going to be some disturbance of the bulk

fluid and. So, you would expect that there will be some velocity.

So, the question is; how do I decide whether for a given problem is the free convection

or the force convection which is the dominating mode of heat transport. So, it is at that

situation where this unknown reference velocity will play an important role so. In fact, in

that  situation this  unknown reference velocity  be equal to the bulk velocity  itself,  to

decide whether force or free convection is dominant. We will see that mostly before the



end of today’s lecture as to how to decide which one is dominant, and how to decide

particularly which correlations we use ok. 

(Refer Slide Time: 17:31)

So,  suppose  we  use  this  as  the  reference  velocity  and  then  we  introduce  the

dimensionless quantities introduce the dimensionless quantities as x star as x by l y star

as y by l u star as u by u naught note that we do not know what u naught is it still an

unknown reference velocity and v star is v by u naught. So, there will be T minus T

infinity by T s minus T infinity.

So, that is my definition of all the dimensionless quantities, then I can convert all these

model equations into the dimensionless form and. So, that will be something like this.

So, that will be u star d u star by d x star plus v star d u star by.
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D y star that is equal to beta gravity, that will be T s minus T infinity into L by u naught

square into T star plus 1 by Reynolds number into based on the length into d square u

star by d y star square. And the temperature balance will be u star d T star by d x star plus

v star into d T star by d y star that is equal to 1 by r e l into prandtl number into d square

T star by d y star square.

They are not very different from what we saw in force convection expect that your path

is new dependence of the velocity on the local temperature, that is because of the density

gradients  and that  is  because  of  the  body force that  we have included  in the model

equation. So, now, they are coupled now the earlier case the momentum balance and the

concentration and temperature equation were de coupled. So, we could solve the velocity

profile independently with respect to the temperature and you are able to get the gradient

we cannot do that here. So, still  you have you can still  solve this problems by some

transformation you going to see that in the short while.

So, before we do that let us look at this expression here, in which is a coefficient to the

local temperature. 
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So, that is beta time g into T s T infinity into L by u naught square. So, we still do not

know what u naught square is remember that it is a is an unknown reference velocity. So,

therefore,  we define  a  new number  called  Grashof  number  which  is  not  simply  the

coefficient. So, in all the earlier cases we attempt to define a dimensionless quantity for

the coefficient and here we distinguish the effect of different course here and similarly

we are going to distinguish the effect of different forces and the way to do that is you

multiply it by the square of Reynolds number. So, we remember that u naught L by new

is nothing, but Reynolds number based on the length of the plate.

So, you multiple it by the Reynolds number. So, you get an expression which essentially

gives you the ratio of any L guess ratio of beta times g what does it signify gravity. So, it

is the buoyancy forces or force that the fluid is experienced in because of gravity. So, u

naught square will cancel out what does nu signify viscous force that is all. So, it is very

easy. So, Grashof number which is essentially beta g T s minus T infinity into l by u

naught square into R e L square. So, that is the ratio of buoyancy forces to the viscous

forces yeah, but this just some functions of viscous force. 

So, its say just square, you will have square of the viscous forces that is because of the

scaling  that  you  will  require  for  the  buoyancy  force.  So,  that  gives  us  I  mean  an

interesting framework to answer the question that it  force a short while ago how we



decide whether the free convection or the force convection is the dominating mode of

heat transport. 

(Refer Slide Time: 22:39)

So,  Grashof  number  by  R  e  L  square.  So,  that  is  provides  the  framework  for

understanding which one is the dominating mode of heat transport ok.

So, supposing if you have in a real system. So, real system the bulk velocity or the free

stream velocity is really not 0. So, if we use the free stream velocity for a real system as

the scaling velocity. So, Grashof number by square of Reynolds number gives you a

dimensionless quantity, which can be used to decide which one is a dominating force. So,

supposing if it is this much smaller than 1 what would you infer, which 1 is important

force or free convection? Re forced convection which is important forced convection

dominates and if it is much larger than 1 free convection dominates, and if it almost

equal to 1 then you would expect that both are important and what if it tends to infinity.

So, look at the ratio u naught tends to 0. So, that is the purely free convection problem

right.  So,  that  is  a purely free convection  problem.  So,  this  when it  goes to  infinity

simply  means  that  the  bulk  Reynolds  number  goes  to  0  which  means  that  the  bulk

velocity is 0, which is the definition of free convection. So, we started by assuming that

it is a quiescent fluid. So, when this tends to infinity means that the Reynolds number is

0  and.  So,  therefore,  the  bulk  fluid  is  at  rest  and so,  it  is  a  purely  free  convection

problems. 



So, it just provides a framework to decide what there in a real system you never going to

have a completely free convection problem, there will always be some disturbance even

in the (Refer Time: 25:16) of example we saw there will always be some disturbances

you going to have air flow you are going to have a fan so, all that is going to disturb the

fluid. So, therefore, it gives you a nice framework to decide which 1 is the dominating

mode of heat transport.


